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Przedstawiony w pracy opis drgań podłużnych i poprzecznych pręta pokazuje, że
w przypadku wykorzystania drgającego pręta, jako elementu będącego źródłem fal
mechanicznych w powietrzu decydujące znaczenie ma sposób zamocowania pręta
oraz sposób pobudzania pręta do drgań.

Opis podłużnych drgań pręta znalazł między innymi zastosowanie w modelu tzw.
rury Kundta, gdzie warunkiem wzbudzenia drgań pręta jest zamocowanie pręta
na sztywno (w jednym lub w dwóch miejscach) tak, aby na jego końcach powstała
strzałka.

Próba wykorzystania opisu drgań podłużnych pręta do wyjaśnienia zasady działa-
nia kamertonu, jako źródła fal mechanicznych w postaci dźwięku o zadanej czę-
stotliwości, jest całkowicie błędna gdyż zgięty pręt w kamertonie nie jest w żad-
nym ustalonym miejscu sztywno zamocowany i dlatego nieuprawnione wydaje
się założenie, że jego drgania są drganiami podłużnymi.
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1. ZASADA DZIAŁANIA KAMERTONU

Pod pojęciem kamertonu zwykle rozumie się przyrząd służący do strojenia instrumentów
muzycznych. W gronie kamertonów najbardziej popularny jest tzw. kamerton widełkowy
wynaleziony w Anglii w roku 1711 przez Johna Shora zwany „diapazonem” [1]. Takim ka-
mertonem najczęściej jest metalowy pręt zgięty w połowie w kształcie litery U i umocowany
na podstawce zwanej stopą. Zwykle stopa i pręt stanowią jedność. Widełki kamertonu po-
budzane są do drgań poprzez uderzenie w jedno z ramion kamertonu młoteczkiem. Widok
typowego kamertonu stroikowego (służącego do strojenia instrumentów przedstawiono na
rysunku 1.
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Rysunek 1. Kamerton stroikowy ustawiony na tzw. pudle rezonansowym wraz
z wyposażeniem w postaci młoteczka

Źródło: opracowanie własne.

Zasada działania kamertonu polega na wzbudzeniu w nim złożonych drgań widełek w wy-
niku uderzenia młoteczkiem. Widełki drgając:

1. stają się źródłem fali akustycznej (o zadanej częstotliwości) w otaczającym kamerton
powietrzu,

2. wprowadzają w drgania stopę, co schematycznie przedstawiono na rysunku 2.

Rysunek 2. Zasada wprowadzenia w ruch góra-dół stopy kamertonu. Gdy ramiona
kamertonu są zbliżone do siebie to wygięcie w kształcie litery U zmienia nieznacznie
swój kształt powodując obniżenie położenia stopy. Gdy z kolei ramiona kamertonu
są oddalone, to kształt litery U ulega spłaszczeniu i stopa unosi się do góry

Źródło:[2].

Z uwagi na fakt, że same drgające ramiona są słabym promiennikiem fal akustycznych,
brzmienie kamertonu można wzmocnić umieszczając stopę na odpowiednio skonstruowanym
pudle rezonansowym, co pokazano na rysunku 3. Pudło stanowi płaska skrzynka otwarta
z jednego lub obu końców. Długość pudła jest tak dobrana, aby w przypadku pudła otwar-
tego na jednym końcu miało ono długość równą 1/4 długości fali dźwiękowej w powietrzu
powstałej w wyniku drgań stopy z zadaną częstotliwością. W przypadku pudła obustronnie
otwartego długość pudła to 1/2 długości fali dźwiękowej w powietrzu.

Konstrukcja pudła wzmacniającego dźwięk oparta jest na zjawisku rezonansu. Gdy ge-
nerator fal dźwiękowych (takim jest drgająca stopa kamertonu) umieścić w środku górnej
powierzchni jednostronnie otwartego pudła to po wprawieniu powierzchni w drgania może
w pudle powstać fala stojąca, co zobrazowano na rysunku 3.
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Strzałka fali stojącej

Stopa kamertonu

Rysunek 3. Rezonans fali dźwiękowej w pudle jednostronnie otwartym. Długość
pudła LP = λP /4, gdzie λP =

vP
fK
. Oznaczenia: λP to długość fali akustycznej

w powietrzu, vP to prędkość fazowa rozchodzenia się fali akustycznej w powietrzu,
zaś fK jest częstotliwością drgań kamertonu

Źródło: opracowanie własne.

Analiza drgań kamertonu jest dosyć skomplikowana. Podstawowy model drgań można
opisać poprzez rozważenie rozchodzenia się zaburzenia w rozprostowanym kamertonie pozba-
wionym stopy, co przedstawiono na rysunku 4, z uwzględnieniem, że środek tak powstałego
pręta musi drgać. W dalszej części zostanie rozstrzygnięte czy te drgania są podłużne czy
poprzeczne.

Rysunek 4. Rozprostowany i rozmontowany kamerton. Widełki można przedstawić,
jako pręt o długości L

Źródło: opracowanie własne.

Wprawienie pręta w drgania polega na uderzeniu weń młoteczkiem. Podczas uderzenia mło-
teczka, wektor prędkości v⃗M z jaką uderza on w pręt może być nachylony pod dowolnym
kątem do pręta. Skutkuje to tym, że w pręcie mogą rozchodzić się dwa zaburzenia: podłużne
– wzdłuż osi pręta, poprzeczne — prostopadłe do osi pręta.

2. DRGANIA PODŁUŻNE PRĘTA

Można założyć, że pręt, w którym będzie rozchodzić się fala podłużna to prostopadłościan
o długości L i wymiarach poprzecznych b× g, jak na rysunku 5.
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Rysunek 5. Widok analizowanego pręta o przekroju poprzecznym w kształcie
prostokąta o wymiarach b× g
Źródło: opracowanie własne.

Wprowadzając jednowymiarowy układ odniesienia {x, z}, położenie pręta można zobra-
zować jak na rysunku 6.

Rysunek 6. Położenie pręta w jednowymiarowym układzie odniesienia {x, z}
Źródło: opracowanie własne.

Pręt wykonany jest z materiału, dla którego znane są: gęstość ρ oraz moduł Younga E.
Niech w odległości xi od początku pręta znajduje się odcinek pręta o długości dx. Wiadomo,
że w dowolnym punkcie xi pręta o przekroju poprzecznym S występują naprężenia normalne
σ(xi) opisane wzorem

σ(xi) =
F (xi)
S
, (1)

gdzie F (xi) jest wartością siły prostopadłej do przekroju poprzecznego pręta. Obecność na-
prężenia skutkuje pojawieniem się deformacji ε(xi), związanej z naprężeniem σ(xi) poprzez
prawo Hooke’a

ε(xi) =
(
∂z

∂x

)
xi

=
1
E
σ(xi). (2)

Założenie, że młoteczek uderza cyklicznie w pręt z częstością ωMŁ, prowadzi do wniosku, że
pod wpływem tych uderzeń w pręcie rozchodzą się cykliczne naprężenia normalne. Wówczas
naprężenia σ(xi) oraz σ(xi+dx) występujące w pobliżu odcinka dx pręta można przedstawić
tak jak na rysunku 7.

Rysunek 7. Naprężenia i siły występujące na obu końcach odcinka dx pręta
Źródło: opracowanie własne.

Oznacza to, że zgodnie ze wzorem (2.1) i (2.2) na lewy przekrój odcinka dx pręta podziała
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siła F (xi) równa

F (xi) = ES
(
∂z

∂x

)
xi

, (3)

zaś na prawy przekrój odcinka pręta dx podziała siła F (xi + dx) równa

F (xi + dx) = ES
(
∂z

∂x

)
xi+dx

. (4)

Zwrot siły F (xi + dx) jest przeciwny do zwrotu siły F (xi). Wynika to z trzeciej zasady
dynamiki Newtona. W rzeczywistości siła F (xi+dx) jest przyłożona ze strony elementu dx
na kolejny element znajdujący się po prawej stronie od dx, podobnie jak siła F (xi) jest siłą
przyłożoną do elementu dx ze strony sąsiadującego z dx elementu po jego lewej stronie.

Oznacza to, że na element dx działa wypadkowa siła F , której wartość można wyznaczyć
w oparciu o zależności (3) i (4) ze wzoru

F = F (xi + dx)− F (xi) = ES

[(
∂z

∂x

)
xi+dx

−
(
∂z

∂x

)
xi

]
. (5)

Rozwijając funkcję
∂z

∂x
w szereg Taylora i ograniczając rozwinięcie jedynie do pierwszego

składnika szeregu, można otrzymać

F ∼= ES

[(
∂z

∂x

)
xi

+
(
∂2z

∂x2

)
xi

dx−
(
∂z

∂x

)
xi

]
∼= ES

(
∂2z

∂x2

)
xi

dx. (6)

Pod wpływem siły F , zgodnie z drugą zasadą dynamiki Newtona, element dx o masie dm
porusza się z przyspieszeniem a opisanym równaniem

a =
∂2z

∂t2
=
F

dm
=
F

ρS dx
. (7)

Podstawiając zależność (6) do (7) otrzymuje się równanie

∂2z

∂t2
=

ES

(
∂2z

∂x2

)
xi

dx

ρS dx
=
E

ρ

(
∂2z

∂x2

)
xi

. (8)

Z uwagi na fakt, że długość elementu dx jest bardzo mała, to we wzorze (8) można opuścić
indeks xi i otrzymać równanie fali dla dowolnego punktu x pręta w postaci

∂2z

∂t2
=
E

ρ

∂2z

∂x2
. (9)

Rozwiązaniem tego równania różniczkowego drugiego stopnia jest między innymi funkcja
z(x, t) opisana równaniem

z(x, t) = AL sin(ωM t− kLx+ ϕ0), (10)

gdzie AL jest amplitudą drgań podłużnych, ωM jest częstością drgań dowolnego elementu
dx pręta oraz kL = 2π/λL jest tzw. wektorem falowym fali podłużnej o długości λL pod
warunkiem, że (

ωM
kL

)2
=
E

ρ
. (11)
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Równanie (10) opisuje rozchodzenie się w pręcie podłużnej fali płaskiej, dla której wyrażenie
będące argumentem funkcji sinus jest tzw. fazą fali ϕ(x, t) równą

ϕ(x, t) = (ωM t− kLx+ ϕ0), (12)

gdzie ϕ0 jest tzw. fazą początkową.

Ustalając dowolną wartość funkcji opisanej wzorem (12) – np. niech ϕ(x, t) = ϕC –
można sprawdzić jak jednocześnie muszą zmieniać się argumenty funkcji (12) (czyli x i t)
aby faza fali pozostawała taka sama (stała). Wynika stąd, że różniczka takiej fazy musi być
równa zeru

d(ϕ(x, t)) = dϕC = 0. (13)

Oznacza to, że

d(ϕ(x, t)) = d(ωM t− kLx+ ϕ0) = ωMdt− kLdx = 0. (14)

Stąd
dx
dt
=
ωM
kL
. (15)

Wyrażenie (15) opisuje prędkość, z jaką przesuwa się wzdłuż osi x stała faza np. ϕC i stąd
nazwa tej prędkości to „prędkość fazowa vF ” rozchodzącej się w pręcie fali podłużnej opisanej
równaniami (9) i (10) i wynosi ona (w oparciu o wzór (11))

vF =
ωM
kL
=

√
E

ρ
. (16)

Zgodnie z zasadą Huygensa, gdy fala dotrze do końca pręta (np. x = L) punkt końcowy
staje się źródłem wtórnej fali (tzw. odbitej) o dokładnie takiej samej częstotliwości jak fala
pierwotna tyle, że wędrującej w przeciwną stronę niż fala pierwotna. Ośrodkiem otaczającym
pręt jest powietrze, którego opór falowy Zpowietrze = ρpv

(p)
F , gdzie gęstość powietrza ρp ∼=

1, 185 kgm−3 zaś v(p)F ∼= 346m s−1 jest prędkością fazową fali w powietrzu. Opór falowy
powietrza jest dużo mniejszy od oporu falowego pręta Zpręta = ρvF =

√
Eρ, co skutkuje

tym, że fala odbita na końcu pręta nie jest przesunięta w fazie względem fali padającej.
Oznacza to, że w pręcie przemieszczają się dwie fale wzajemnie spójne (o tych samych
częstotliwościach i porównywalnych amplitudach AL) nakładające się na siebie, czyli w tym
przypadku interferujące ze sobą zgodnie z równaniem

z(x, t) = AL sin(ωM t− kLx) +AL sin(ωM t+ kLx). (17)

Wykorzystując wzór trygonometryczny

sinα+ sin θ = 2 sin
α+ θ
2
cos
α− θ
2

(18)

oraz fakt, że funkcja cosinus jest funkcją parzystą, równanie (17) przyjmuje postać

z(x, t) = 2AL sin(ωM t) cos(kLx). (19)

Fala odbita wędrując w pręcie ponownie odbija się, ale tym razem na drugim końcu pręta
(w punkcie x = 0). Zgodnie ze wzorem (19)

z(x = 0, t) = 2AL sin(ωM t) cos(kL × 0) = 2AL sin(ωM t). (20)
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Oznacza to, że w tym punkcie pręt drga z maksymalną amplitudą równą 2AL. Ale z punktu
widzenia symetryczności zjawiska identyczna sytuacja musi mieć miejsce w punkcie x = L,
czyli

z(x = L, t) = 2AL sin(ωM t) cos(kLL) = 2AL sin(ωM t). (21)

Zatem koniec pręta (x = L) drga z amplitudą 2AL wtedy i tylko wtedy gdy

cos(kLL) = ±1. (22)

Gdy cos(kLL) = −1 to kLL = π. Oznacza to, że w pręcie rozchodzi się fala o długości λL1,
którą można wyznaczyć ze wzoru

2π
λL1
L = π, (23)

czyli
λL1 = 2L. (24)

Długości fali λL1 odpowiada częstotliwość fL1 drgań podłużnych każdego elementu pręta

fL1 =
vF
λL1
=
1
2L

√
E

ρ
. (25)

Takie drganie można zobrazować jak na rysunku 8.

Rysunek 8. Drganie podłużne pręta z częstotliwością fL1. Jest to tzw. „mod
podstawowy” drgającego pręta
Źródło: opracowanie własne.

Gdyby z kolei cos(kLL) = +1, to kLL = 2π. Oznacza to, że w pręcie rozchodzi się fala
o długości λL2, którą można wyznaczyć ze wzoru

2π
λL2
L = 2π, (26)

czyli
λL2 = L. (27)

Długości fali λL2 odpowiada częstotliwość fL2 drgań każdego elementu pręta

fL2 =
vF
λL2
=
1
L

√
E

ρ
= 2
1
2L

√
E

ρ
= 2fL1 . (28)

Takie drganie można zobrazować jak na rysunku 9.
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Rysunek 9. Drganie podłużne pręta z częstotliwością fL2. Jest to tzw. „drugi mod
harmoniczny” drgającego pręta
Źródło:opracowanie własne.

Przedstawione na rysunkach 8 i 9 drgania pręta stanowią przykłady tzw. fal stojących,
które mogą zaistnieć w drgającym pręcie. Niemniej warunkiem ich powstania jest okresowe
uderzanie młoteczkiem w pręt. Zakładając, że brak jest czynników rozpraszających ener-
gię, to gdy w całkowitej objętości pręta przemieszczają się w obie strony fale spójne można
w pewnym momencie odstąpić od uderzania młoteczkiem w pręt a fala stojąca będzie nie-
skończenie długo występować w pręcie.

W pręcie można wzbudzić kolejne mody fal stojących, którym odpowiadają coraz to
wyższe częstotliwości – odpowiednio fL3, fL4, . . . , fLn, gdzie n jest liczbą naturalną –
będące wielokrotnością częstotliwości podstawowej fL1

fLn = nfL1 . (29)

O tym jaki mod (sposób) drgania wystąpi decydują dwa czynniki:

1. sposób zamocowania (podparcia) pręta,

2. zasoby energetyczne.

Zamocowanie na stałe pręta w jego środku powoduje, że w pręcie rozchodzi się fala o często-
tliwości fL1 lub fala o częstotliwości będącej nieparzystą wielokrotnością częstotliwości fL1.
Zamocowanie pręta w dwóch miejscach (w węzłach jak na rysunku 9) skutkuje drganiami
pręta z częstotliwością fL2 lub parzystymi wielokrotnościami fL1. Gdyby jednak sposób za-
mocowania pręta był nieustalony to o wyborze sposobu drgań zadecyduje energia drgającego
pręta.

Objętościową gęstość energii fali mechanicznej ρEnV w punkcie P o współrzędnej xP
opisuje wzór

ρEnV (x, t)P =
1
2
ρ

[(
∂z

∂t

)2
P

+ v2F

(
∂z

∂x

)2
P

]
. (30)

Po podstawieniu równania fali stojącej (19) do powyższego wzoru

ρEnV (x, t)P = 2ρA
2
Lω
2
M

[
cos2(kLxP ) cos2(ωM t) + sin2(kLxP ) sin2(ωM t)

]
. (31)

Stąd energię En drgającego pręta w danej chwili t⊛ opisuje wzór

En(t⊛) =
∫ L
0
ρEnV (x, t

⊛) dx . (32)
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Po podstawieniu (31) do (32) końcowy wzór na energię En(t⊛) drgającego pręta jest postaci

En(t⊛) = 2ρA2Lω
2
M

[
1
2
L+
λL
4π
sin
(
4πL
λL

)
cos(2ωM t⊛)

]
. (33)

Średnią energię ⟨En⟩ drgającego pręta w jednym okresie T jego drgania opisuje wzór

⟨En⟩ =
∫ T
0 En(t

⊛) dt⊛

T
. (34)

Stąd po podstawieniu (33) do (34) średnia energia wynosi

⟨En⟩ = 2ρA2Lω2M ·
1
2
L = ρLA2Lω

2
M = 4π

2ρLA2Lf
2
L . (35)

Oznacza to, że średnia energia drgającego pręta zależy od kwadratu częstotliwości modu
drgania i jest najmniejsza dla podstawowego modu, czyli drgania pręta z częstotliwością
fL1. Zatem mając do wyboru różne mody drgania, gdy brak jest warunków brzegowych
związanych ze sposobem zamocowania pręta, wybiera on drganie o jak najmniejszej energii
czyli drganie z częstotliwością fL1, jak gdyby „sugerując” aby go podeprzeć w jego środku.
Porównując rysunek 4 z 8 widać tutaj pewien problem. Zgodnie z rysunkiem 4 w środku
pręta, (czyli tam gdzie znajduje się stopa kamertonu) powinny występować drgania. Ale
zgodnie z rysunkiem 8, dla podstawowego modu drgania pręta, w jego środku znajduje się
węzeł. To z kolei sugeruje, że dobrze by było, aby w takim pręcie powstał „drugi mod har-
moniczny drgania” ze strzałką w środku pręta. Aby tak jednak mogło się stać, pręt musiałby
być podparty w węzłach jak na rysunku 9. Z zasady działania kamertonu wynika jednak,
że pręt z którego jest on wykonany nigdzie z wyjątkiem jego środka, gdzie umieszczona jest
stopa kamertonu, nie jest podparty. To podparcie w środku pręta jest szczególne, bo stopa
kamertonu działa jak przetwornik „mechaniczno-akustyczny” przenoszący drgania pręta na
powierzchnię pudła, do której dotyka nóżka, tak jak pokazano na rysunkach 1–3.

Podsumowując powyższe rozważania należy podkreślić, że drgania podłużne nie wystar-
czają do opisu działania kamertonu z następujących powodów.

1. Wymagają one cyklicznego uderzania młoteczkiem, najlepiej w specyficzny sposób,
równolegle do pręta, przy czym częstotliwość fL uderzeń musi spełniać warunek

fL =
vF
λL
. (36)

Dodatkowo, aby powstała fala stojąca

L = n
λL
2
, (37)

gdzie z kolei n ∈ N (należy do zbioru liczb naturalnych) i stanowi o tzw. rzędzie fali
harmonicznej. A w praktyce w kamerton uderza się tylko raz.

2. Nawet gdyby uderzać cyklicznie, to dla podstawowego modu drgającego, nie zamoco-
wanego w specjalny sposób pręta, w jego środku powstaje węzeł, a w rzeczywistości
powinna w tym miejscu być możliwość drgania pręta – czyli najlepiej gdyby w środku
pręta powstawała strzałka.

3. Drgający kamerton jest słabym emiterem fal dźwiękowych w powietrzu i o jego funk-
cjonalności stanowi przede wszystkim możliwość pobudzania do drgań punktu styku
stopy kamertonu z podłożem.
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DRGANIA POPRZECZNE PRĘTA

Modelowy pręt przedstawia nadal rysunek 5. Korekty wymaga wprowadzenie kartezjańskie-
go, dwuwymiarowego {x, y} układu odniesienia co przedstawia rysunek 10.

Rysunek 10. Położenie pręta w kartezjańskim układzie odniesienia {x, y}
Źródło: opracowanie własne.

Niech w chwili początkowej w pręt w punkt o dowolnej współrzędnej xi uderza prosto-
padle do pręta młoteczek, tak jak na rysunku 11.

Rysunek 11. Uderzenie młoteczka w pręt
Źródło: opracowanie własne.

Powoduje to, że w miejscu uderzenia xi pojawia się odkształcenie pręta w kształcie, które
przypomina literę U. Można to zobrazować jak na rysunku 12.

Rysunek 12. Lokalne odkształcenie pręta w punkcie o współrzędnej xi spowodowane
uderzeniem młoteczka

Źródło: opracowanie własne.

To lokalne odkształcenie odcinka dx pręta w punkcie xi można powiększyć, co przedstawiono
na rysunku 13.

42
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A B

sA

sB

nA

nB

Rysunek 13. Powiększenie lokalnego odcinka dx pręta. Linia przerywana
przechodząca przez środek pręta (oznaczona kolorem niebieskim) to tzw. linia

(warstwa) neutralna pręta. Pod wpływem deformacji nie ulega ona ani wydłużeniu,
ani skróceniu. Warstwy pręta położone powyżej warstwy neutralnej ulegają

skróceniu, zaś warstwy położone poniżej ulegają wydłużeniu. sA i sB to styczne do
zdeformowanego odcinka dx pręta w punktach A i B. nA i nB to tzw. normalne,

czyli proste prostopadłe do stycznych odpowiednio sA i sB
Źródło: opracowanie własne.

Celem rozwiązania zagadnienia drgań poprzecznych pręta jest znalezienie
algebraicznej postaci funkcji opisującej zależność y od x dla linii neutralnej
(niebieskiej na rysunku 13) czyli funkcji y(x).

Niech w odległości z od linii neutralnej znajduje się warstwa o grubości dz, która ulega
wydłużeniu o dε. Aby to było możliwe do tej warstwy musi być przyłożona siła dF⃗ , normalna
do warstwy, o wartości dF i spełniająca prawo Hooke’a

dε
dx
=
1
E

dF
dS
, (38)

gdzie dS jest polem powierzchni przekroju warstwy o grubości dz. Przekrój poprzeczny
pręta, jako prostokąta o wymiarach b× g, przedstawiono na rysunku 14.

Linia neutralna

Rysunek 14. Przekrój poprzeczny pręta
Źródło: opracowanie własne.
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Stąd element powierzchni dS wynosi

dS = b · dz. (39)

Zgodnie z rysunkiem 13 deformacja dε warstwy dS wynosi

dε = z · dϕ , (40)

gdzie dϕ jest kątem pomiędzy normalnymi do wygiętego fragmentu dx pręta w punktach A
i B.

Podstawiając (39) i (40) do równania (38) można wyznaczyć wartość siły normalnej dF
niezbędnej do deformacji warstwy dz

dF = E bdz
z dϕ
dx
= Eb

(
dϕ
dx

)
z dz. (41)

Wartość całkowitego momentu siły M⃗ potrzebnego do zdeformowania fragmentu dx wynosi

M =
∫ g/2
−g/2
z dF = Eb

(
dϕ

dx

)∫ g/2
−g/2
z2 dz. (42)

Występująca we wzorze całka oznaczona jest tzw. „momentem bezwładności przekroju po-
przecznego belki” i wynosi

J = b
∫ g/2
−g/2
z2 dz =

1
12
bg3 . (43)

Oznacza to, że całkowity moment siły opisuje wzór

M = E ·
(
dϕ
dx

)
· J . (44)

Występująca we wzorze (44) pochodna
dϕ
dx
opisuje tzw. krzywiznę K linii neutralnej, zapi-

sanej jako funkcja y(x), w punkcie xi(
dϕ
dx

)
xi

= K(xi). (45)

Wówczas wzór (44) przyjmuje postać

M(xi) = E · J ·K(xi). (46)

Aby fragment belki dx mógł się lokalnie wygiąć, muszą być do tego fragmentu przyłożone
momenty sił M⃗ jak na rysunku 15.

Rysunek 15. Momenty sił niezbędne do zdeformowania fragmentu belki dx
Źródło: opracowanie własne.
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Momentom sił towarzyszą siły T⃗ prostopadłe warstwy neutralnej pręta, zwane siłami tną-
cymi [3]. Siłę tnącą (poprzeczną) przyjmuje się jako dodatnią, gdy będzie ona dążyła do
wywołania ruchu obrotowego analizowanego elementu zgodnie z ruchem wskazówek zegara.
Można to zobrazować na rysunku 16.

Rysunek 16. Siły tnące (poprzeczne) przyłożone do elementu dx pręta
Źródło: opracowanie własne.

W stanie równowagi można wyznaczyć równania momentów sił względem środka ciężkości
elementu dx, który to środek umieszczono w punkcie o współrzędnej xi + dx

T (xi) · dx+M(xi)−M(xi + dx)− T (xi + dx) · 0 = 0. (47)

Ale

M(xi + dx) =M(xi) + dM =M(xi) +
(
∂M

∂x

)
xi

dx. (48)

Stąd

T (xi) · dx+M(xi)−

[
M(xi) +

(
∂M

∂x

)
xi

dx

]
= 0 , (49)

czyli

T (xi) · dx =
(
∂M

∂x

)
xi

dx. (50)

Oznacza to, że siła tnąca w punkcie o współrzędnej xi wynosi

T (xi) =
(
∂M

∂x

)
xi

. (51)

Podstawiając zależność (46) do (51) dostajemy, że siłę tę opisuje wzór

T (xi) = E · J ·
(
∂K

∂x

)
xi

. (52)

Krzywiznę linii neutralnej y(x) fragmentu dx belki w punkcie xi opisuje znany z geometrii
różniczkowej [4] wzór

K(xi) =

(
∂2y

∂x2

)
xi[√

1 +
(
∂y

∂x

)2
xi

]3 . (53)

Z uwagi na fakt, że element dx jest bardzo mało odkształcony(
∂y

∂x

)
xi

≪ 1 (54)
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B PAM Vol.1, No.1 (2025)

wynika, że

K(xi) ∼=
(
∂2y

∂x2

)
xi

. (55)

Po podstawieniu wyrażenia (55) do (52) otrzymać można wzór opisujący wartość siły ścina-
jącej

T (xi) = E · J ·
∂

∂x

(
∂2y

∂x2

)
xi

= E · J ·
(
∂3y

∂x3

)
xi

(56)

Stąd wypadkowa, pionowa siła F (xi) działająca na element dx, chcąca go przywrócić do
położenia równowagi, wynosi

F (xi) = T (xi)− T (xi + dx) (57)

i jest ona skierowana zgodnie ze zwrotem osi y na rysunku 16.

Rozwijając funkcję T (x) w szereg Taylora można ograniczyć się do pierwszego wyrazu
rozwinięcia

T (xi + dx) ∼= T (xi) +
(
∂T

∂x

)
xi

dx. (58)

Po podstawieniu zależności (58) do (57) wartość siły F (xi) opisuje wzór

F (xi) ∼= T (xi)−

[
T (xi) +

(
∂T

∂x

)
xi

dx

]
∼= −
(
∂T

∂x

)
xi

dx. (59)

Podstawienie wyrażenia (56) do (59) prowadzi do wzoru

F (xi) ∼= −EJ
(
∂4y

∂x4

)
xi

dx. (60)

Siła ta zgodnie z drugą zasadą dynamiki Newtona działając na masę dm elementu dx jest
równa

F (xi) = dm ·
(
∂2y

∂t2

)
xi

= ρS dx ·
(
∂2y

∂t2

)
xi

. (61)

Porównując wzory (60) i (61)

ρS dx
(
∂2y

∂t2

)
xi

∼= −EJ
(
∂4y

∂x4

)
xi

dx. (62)

Stąd

ρS dx
(
∂2y

∂t2

)
xi

+ EJ
(
∂4y

∂x4

)
xi

dx ∼= 0 , (63)

czyli [
ρS

(
∂2y

∂t2

)
xi

+ EJ
(
∂4y

∂x4

)
xi

]
dx ∼= 0. (64)

Oznacza to, że równanie opisujące współrzędną y ruchu elementu dx pod wpływem uderzenia
młoteczkiem jest postaci

ρS

(
∂2y

∂t2

)
+ EJ

(
∂4y

∂x4

)
= 0. (65)
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Jest to poszukiwane równanie różniczkowe opisujące zależność y(x, t) dla linii neutralnej
belki [5].

Porównując równanie (9) opisujące propagację fali podłużnej w belce z równaniem (65)
opisującym propagację poprzecznego zaburzenia w belce widać, że równanie (65) nie jest
klasycznym równaniem falowym.

Równanie (65) można zapisać w postaci

ρ

(
∂2y

∂t2

)
+ E
J

S

(
∂4y

∂x4

)
= 0. (66)

Niech
J

S
= χ2 . (67)

Stąd, w oparciu o wzór (16) kładąc, że vF = c jest prędkością fali podłużnej w pręcie(
∂2y

∂t2

)
+
E

ρ

J

S

(
∂4y

∂x4

)
=
(
∂2y

∂t2

)
+ c2χ2

(
∂4y

∂x4

)
= 0. (68)

Powyższe równanie można rozwiązać metodą separacji zmiennych [5]. Niech funkcja y(x, t)
będzie iloczynem dwóch funkcji: jednej Γ(t) zależnej tylko od czasu oraz drugiej Ψ(x) zależnej
jedynie od położenia, zgodnie z równaniem

y(x, t) = Γ(t)Ψ(x). (69)

Wówczas (
∂2y

∂t2

)
= Ψ(x)

(
∂2Γ
∂t2

)
oraz

(
∂4y

∂x4

)
= Γ(t)

(
∂4Ψ
∂x4

)
. (70)

Po podstawieniu (70) do (68)

Ψ(x)
(
∂2Γ
∂t2

)
+ (cχ)2Γ(t)

(
∂4Ψ
∂x4

)
= 0. (71)

Po separacji zmiennych wzór (71) przyjmuje postać

1
Γ(t)

(
∂2Γ
∂t2

)
= −(cχ)2 1

Ψ(x)

(
∂4Ψ
∂x4

)
. (72)

Można przyjąć, że lewa i prawa strona tego równania są równe pewnej ujemnej stałej −ω2

1
Γ(t)

(
∂2Γ
∂t2

)
= −ω2 (73)

oraz

−(cχ)2 1
Ψ(x)

(
∂4Ψ
∂x4

)
= −ω2 . (74)

Z równania (73) wynika, że (
∂2Γ
∂t2

)
+ ω2Γ(t) = 0. (75)

Jest to równanie oscylatora harmonicznego, którego ogólnym rozwiązaniem jest funkcja ze-
spolona

Γ̃(t) = Γ̃0eiωt + ˜̄Γ0e−iωt . (76)
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Z kolei z równania (74) wynika, że(
∂4Ψ
∂x4

)
=
(
ω

cχ

)2
Ψ(x). (77)

Wprowadzając nową zmienną v taką, że

v2 = ωcχ (78)

równanie (77) można zapisać jako(
∂4Ψ
∂x4

)
=
(ω
v

)4
Ψ(x). (79)

Poszukiwaną funkcją Ψ(x) jest taka funkcja, której czwarta pochodna jest podobna do danej.
Stąd funkcję Ψ(x) przedstawić można w postaci wykładniczej

Ψ(x) = Aeγx . (80)

Po podstawieniu zależości (80) do (79)

γ4Aeγx =
(ω
v

)4
Aeγx . (81)

Oznacza to, że

γ4 =
(ω
v

)4
. (82)

Wzór (82) można przedstawić w postaci

γ4 −
(ω
v

)4
=
(
γ2 −
(ω
v

)2)
·
(
γ2 +
(ω
v

)2)
= 0. (83)

Stąd (
γ − ω
v

)
·
(
γ +
ω

v

)
·
(
γ − iω

v

)
·
(
γ + i
ω

v

)
= 0. (84)

Oznacza to, że są cztery różne γ

γ1 =
ω

v
, γ2 = −

ω

v
, γ3 = i

ω

v
, γ4 = −i

ω

v
(85)

oraz, że funkcja Ψ(x) przyjmuje postać

Ψ(x) = A1eγ1x +A2eγ2x +A3eγ3x +A4eγ4x . (86)

Wynika stąd, że funkcja y(x, t), zgodnie ze wzorem (69), przyjmuje postać

ỹ(x, t) = eiωt ·
[
Ãe

ω
v x + B̃e−

ω
v x + C̃ei

ω
v x + D̃e−i

ω
v x
]
, (87)

gdzie Ã, B̃, C̃ i D̃ są zespolonymi amplitudami.

Powyższe równanie nie opisuje jednak zaburzenia rozchodzącego się ze stałą prędkością
fazową vF = c, z jaką rozchodzi się fala podłużna w pręcie. Można to uzasadnić w następujący
sposób. Gdyby rozważyć jedynie jeden ze składników w równaniu (87) np.

ỹ(x, t) = eiωt · D̃e−iωv x = D̃ei(ωt−
ω
v x), (88)
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to część rzeczywista (88) przyjmuje postać

y(x, t) = D cos
(
ωt− ω

v
x
)
= D cos(ωt− k∗x) , (89)

gdzie prędkość fazowa vDF rozchodzącego się powyższego zaburzenia to

vDF =
dx

dt
=
ω

k∗
=
ω(ω
v

) = v. (90)

Zgodnie ze wzorem (78)
vDF =

√
cχω. (91)

Oznacza to, że zaburzeniom o różnych częstościach ω odpowiadają różne prędkości rozcho-
dzenia się stałej fazy. Wynika stąd, że zaburzenie poprzeczne w pręcie (w odróżnieniu od
zaburzenia podłużnego) podlega zjawisku dyspersji.

Wykorzystując tożsamości trygonometryczne

e±α = coshα± sinhα (92)

oraz wzory Eulera
e±iα = cosα± i sinα (93)

można ograniczyć równanie (87) do przestrzeni rzeczywistej i wówczas

y(x, t) = Γ0 cos(ωt+ φ)
[
A cosh

(ω
v
x
)
+B sinh

(ω
v
x
)
+ C cos

(ω
v
x
)
+D sin

(ω
v
x
)]
, (94)

gdzie stałe Γ0, A, B, C i D są już teraz amplitudami rzeczywistymi. Oznacza to, że zgodnie
ze wzorami (69) i (76)

Γ(t) = Γ0 cos(ωt+ φ) (95)

oraz
Ψ(x) =

[
A cosh

(ω
v
x
)
+B sinh

(ω
v
x
)
+ C cos

(ω
v
x
)
+D sin

(ω
v
x
)]
. (96)

Można sprawdzić, że faktycznie równanie (94) jest rozwiązaniem równania (68) opisują-
cego rozchodzenie się drgań poprzecznych w pręcie. Druga pochodna y po czasie t wynosi

∂2y

∂t2
= −ω2 · cos(ωt+ φ) ·Ψ(x) = −ω2 · Γ(t) ·Ψ(x). (97)

Kolejne pochodne cząstkowe y po x wynoszą

∂y

∂x
= Γ(t)

(ω
v

) [
A sinh

(ω
v
x
)
+B cosh

(ω
v
x
)
− C sin

(ω
v
x
)
+D cos

(ω
v
x
)]
, (98)

∂2y

∂x2
= Γ(t)

(ω
v

)2 [
A cosh

(ω
v
x
)
+B sinh

(ω
v
x
)
− C cos

(ω
v
x
)
−D sin

(ω
v
x
)]
, (99)

∂3y

∂x3
= Γ(t)

(ω
v

)3 [
A sinh

(ω
v
x
)
+B cosh

(ω
v
x
)
+ C sin

(ω
v
x
)
−D cos

(ω
v
x
)]
, (100)

∂4y

∂x4
= Γ(t)

(ω
v

)4 [
A cosh

(ω
v
x
)
+B sinh

(ω
v
x
)
+ C cos

(ω
v
x
)
+D cos

(ω
v
x
)]
. (101)

Widać, że
∂4y

∂x4
= Γ(t)

(ω
v

)4
Ψ(x). (102)
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Po podstawieniu zależności (97) i (102) do (68) oraz uwzględniając wzór (78)

−ω2 · Γ(t) ·Ψ(x) + (cχ)2 Γ(t)
(ω
v

)4
Ψ(x) = ω2 · Γ(t) ·Ψ(x)

[(cχω
v2

)2
− 1
]
= 0. (103)

To potwierdza, że funkcja y(x, t) opisana równaniem (94) jest rozwiązaniem równania (68)
opisującego rozchodzenie się drgań poprzecznych w pręcie.

Pozostaje problem wyznaczenia amplitud A, B, C i D. Z warunków granicznych wyni-
ka, że na końcach pręta nie występują ani momenty sił ani siły ścinające. Oznacza to, że
w początku pręta, dla x = 0 moment siły M(x = 0) = 0 oraz T (x = 0) = 0. Stąd w oparciu
o wzory (52) i (55)

M(x = 0) = EJ
(
∂2y

∂x2

)
x=0
= 0. (104)

Ale wobec związków (99) i (104)(
∂2y

∂x2

)
x=0
= Γ(t)

(ω
v

)2
[A cosh(0) +B sinh(0)− C cos(0)−D sin(0)] = 0. (105)

Wynika stąd, że
A− C = 0 , (106)

czyli
A = C. (107)

Z kolei w oparciu o wzór (56)

T (x = 0) = EJ
(
∂3y

∂x3

)
x=0
= 0. (108)

Czyli po zastosowaniu zależności (100) i wobec (108)(
∂3y

∂x3

)
x=0
= Γ(t)

(ω
v

)3
[A sinh(0) +B cosh(0) + C sin(0)−D cos(0)] = 0. (109)

Wynika stąd, że
B −D = 0 , (110)

czyli
B = D. (111)

Oznacza to, że równanie (94) przyjmuje postać

y(x, t) = Γ0 cos(ωt+ φ)
{
A
[
cosh
(ω
v
x
)
+ cos

(ω
v
x
)]
+B
[
sinh
(ω
v
x
)
+ sin

(ω
v
x
)]}
.

(112)
Wobec tego, druga i trzecia pochodna cząstkowa y po x, zgodnie ze wzorem (112), opisane
są wzorami

∂2y

∂x2
= Γ(t)

(ω
v

)2 {
A
[
cosh
(ω
v
x
)
− cos

(ω
v
x
)]
+B
[
sinh
(ω
v
x
)
− sin

(ω
v
x
)]}
, (113)

∂3y

∂x3
= Γ(t)

(ω
v

)3 {
A
[
sinh
(ω
v
x
)
+ sin

(ω
v
x
)]
+B
[
cosh
(ω
v
x
)
− cos

(ω
v
x
)]}
. (114)
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Stąd, wiedząc, że dla drugiego swobodnego końca pręta (czyli dla x = L) moment siły i siła
ścinająca są również równe zero, to

M(x = L) = EJ
(
∂2y

∂x2

)
x=L
= 0, (115)

czyli

Γ(t)
(ω
v

)2 {
A
[
cosh
(ω
v
L
)
− cos

(ω
v
L
)]
+B
[
sinh
(ω
v
L
)
− sin

(ω
v
L
)]}
= 0, (116)

a także

T (x = L) = EJ
(
d3y

dx3

)
x=L
= 0, (117)

czyli

Γ(t)
(ω
v

)3 {
A
[
sinh
(ω
v
L
)
+ sin

(ω
v
L
)]
+B
[
cosh
(ω
v
L
)
− cos

(ω
v
L
)]}
= 0. (118)

Z równań (116) i (118) wynika, że

A
[
cosh
(ω
v
L
)
− cos

(ω
v
L
)]
= −B

[
sinh
(ω
v
L
)
− sin

(ω
v
L
)]

(119)

oraz
A
[
sinh
(ω
v
L
)
+ sin

(ω
v
L
)]
= −B

[
cosh
(ω
v
L
)
− cos

(ω
v
L
)]
. (120)

Należy wyznaczyć takie częstości ω, dla których równania (119) i (120) są równoważne.
W tym celu najpierw należy pozbyć się amplitud A i B dzieląc stronami powyższe równania

A
[
cosh
(ω
v
L
)
− cos

(ω
v
L
)]

A
[
sinh
(ω
v
L
)
+ sin

(ω
v
L
)] = −B

[
sinh
(ω
v
L
)
− sin

(ω
v
L
)]

−B
[
cosh
(ω
v
L
)
− cos

(ω
v
L
)] . (121)

Stąd
cosh
(ω
v
L
)
− cos

(ω
v
L
)

sinh
(ω
v
L
)
+ sin

(ω
v
L
) = sinh

(ω
v
L
)
− sin

(ω
v
L
)

cosh
(ω
v
L
)
− cos

(ω
v
L
) . (122)

Mnożąc wyrażenia we wzorze (122) na krzyż[
cosh
(ω
v
L
)
− cos

(ω
v
L
)]2
=
[
sinh
(ω
v
L
)
+ sin

(ω
v
L
)]
·
[
sinh
(ω
v
L
)
− sin

(ω
v
L
)]
. (123)

Stąd

cosh2
(ω
v
L
)
− 2 cosh

(ω
v
L
)
· cos
(ω
v
L
)
+ cos2

(ω
v
L
)
= sinh2

(ω
v
L
)
− sin2

(ω
v
L
)
, (124)

czyli

cosh2
(ω
v
L
)
− sinh2

(ω
v
L
)
−2 cosh

(ω
v
L
)
· cos
(ω
v
L
)
+sin2

(ω
v
L
)
+cos2

(ω
v
L
)
= 0. (125)

Korzystając z tożsamości trygonometrycznych

cosh2(Θ)− sinh2(Θ) = 1 (126)
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oraz

sin2(Θ) + cos2(Θ) = 1, (127)

równanie (125) można przepisać w postaci

1− 2 cosh
(ω
v
L
)
· cos
(ω
v
L
)
+ 1 = 0. (128)

Stąd

cosh
(ω
v
L
)
· cos
(ω
v
L
)
= 1. (129)

Powyższe równanie można zapisać w postaci

cos
(ω
v
L
)
− 1

cosh
(ω
v
L
) = 0. (130)

Niech zmienną µ definiuje wzór

µ =
ω

v
L. (131)

Gdyby wprowadzić funkcję h zmiennej µ zdefiniowaną jako

h(µ) = cos(µ)− 1
cosh(µ)

, (132)

to wykres tej funkcji można przedstawić jak na rysunku 17.

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

µ/(π/2)

h(µ)

Rysunek 17. Wykres funkcji h(µ)
Źródło: opracowanie własne.

Z wykresu funkcji h(µ) wynika, że przyjmuje ona wartości równe zero dla argumentów
µ zebranych w tabeli 1.
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Tabela 1. Argumenty µ, dla których funkcja h(µ) przyjmuje wartości równe zero.
Pierwiastki funkcji h(µ) wyznaczono numerycznie przy pomocy procedury Szukaj wy-
niku w arkuszu kalkulacyjnym Microsoft Excel.

i µi/(π/2)

1 3,011237462
2 4,999505341
3 7,000021359
4 8,999999077
5 11,00000004
6 13,00000000
7 15,00000000
8 17,00000000

Źródło: opracowanie własne.

Z wykresu widać wyraźnie, że wraz ze wzrostem wartości argumentów zanika wkład funkcji
cosinus hiperboliczny (cosh) i dominuje funkcja cosinus (cos).

Kolejne częstości ωi dla których zależności (119) i (120) są sobie równoważne spełniają
równania

ω1L

v1
=
π

2
× 3, 011237462,

ω2L

v2
=
π

2
× 4, 999505341,

ω3L

v3
=
π

2
× 7, 000021359,

ω4L

v4
=
π

2
× 8, 999999077, itd.

(133)

Oznacza to, że wykorzystując wzór (78), częstotliwości fi z jakimi może drgać pręt opisują
równania

f1 =
πcχ

8L2
× (3, 011237462)2,

f2 =
πcχ

8L2
× (4, 999505341)2,

f3 =
πcχ

8L2
× (7, 000021359)2,

f4 =
πcχ

8L2
× (8, 999999077)2, itd.

(134)

Kolejne częstotliwości mają się do siebie (w przybliżeniu do czterech miejsc po przecinku)
jak

f1 : f2 : f3 : f4 : . . . = 1 : 2, 7565 : 5, 4039 : 8, 9330 : . . . . (135)

Oznacza to, że kolejne częstotliwości nie są harmonicznymi częstotliwości podstawowej f1,
czyli nie są wielokrotnościami częstotliwości podstawowej f1.

Dla każdego modu drgania pręta (czyli sposobu jego drgań) zaburzenie w pręcie rozchodzi
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się z inną prędkością fazową. Wykorzystując wzór (78) prędkości te opisują równania

v1 =
πcχ

2L
× 3, 011237462,

v2 =
πcχ

2L
× 4, 999505341,

v3 =
πcχ

2L
× 7, 000021359,

v4 =
πcχ

2L
× 8, 999999077, itd.

(136)

Kolejne prędkości mają się do siebie (w przybliżeniu do czterech cyfr po przecinku) jak

v1 : v2 : v3 : v4 : . . . = 1 : 1, 6603 : 2, 3246 : 2, 9889 : . . . . (137)

Do równania (125) można dojść jeszcze w inny, równoważny sposób. Równania (119)
i (120) tworzą układ dwóch równań jednorodnych z dwiema niewiadomymi A i B

A
[
cosh
(ω
v
L
)
− cos

(ω
v
L
)]
+B
[
sinh
(ω
v
L
)
− sin

(ω
v
L
)]
= 0,

A
[
sinh
(ω
v
L
)
+ sin

(ω
v
L
)]
+B
[
cosh
(ω
v
L
)
− cos

(ω
v
L
)]
= 0.

(138)

Najprostsze rozwiązania tego równania to A = 0 i B = 0. Tyle, że wtedy zgodnie z równania-
mi (94), (107) i (111) y = 0 dla każdego x w dowolnej chwili czasu – co oznacza brak drgania
pręta. Warunkiem istnienia niezerowych rozwiązań układu równań (138) jest zerowanie się
wyznacznika ∣∣∣∣∣∣∣

cosh
(ω
v
L
)
− cos

(ω
v
L
)
sinh
(ω
v
L
)
− sin

(ω
v
L
)

sinh
(ω
v
L
)
+ sin

(ω
v
L
)
cosh
(ω
v
L
)
− cos

(ω
v
L
)
∣∣∣∣∣∣∣ = 0, (139)

co prowadzi do związku (123).

Rozwiązanie równania (129) umożliwia uzyskanie zbioru ωi ∈ {ω1, ω2, ω3, ω4, . . .}, któ-
rego cztery pierwsze wyrazy to ωi występujące w równaniach (133). Każdemu ωi odpowiada
para niezerowych amplitud A(i) oraz B(i) spełniających równanie


A(i)
[
cosh
(
ωi
vi
L

)
− cos

(
ωi
vi
L

)]
+B(i)

[
sinh
(
ωi
vi
L

)
− sin

(
ωi
vi
L

)]
= 0,

A(i)
[
sinh
(
ωi
vi
L

)
+ sin

(
ωi
vi
L

)]
+B(i)

[
cosh
(
ωi
vi
L

)
− cos

(
ωi
vi
L

)]
= 0.

(140)

Gdyby przyjąć, że A(i) jest znane to wówczas z dowolnego z równań (140) można wyznaczyć
B(i). Na przykład wykorzystując pierwsze z równań (140)

B(i) = −
cosh
(
ωi
vi
L

)
− cos

(
ωi
vi
L

)
sinh
(
ωi
vi
L

)
− sin

(
ωi
vi
L

) A(i). (141)
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Wówczas równanie (112) przyjmuje postać{ [ 
y(x, t) = A(i) · cos(ωit + φ) · cosh

(
ωi
vi
x

)
+ cos

(
ωi
vi
x

)]

−

cosh

ωi
vi
L

 ( )
− cos

(
ωi
vi
L

)
sinh
(
ωi
vi
L

)
− sin

(
ωi
vi
L

)
 ·
[
sinh
(
ωi
vi
x

)
+ sin

(
ωi
vi
x
)] }

. (142)

Amplituda A(i) zależy od warunków początkowych.
Niech np. L = 1 m. Wówczas zgodnie ze wzorem (133)

ω1 = v1 ·
π 

2L 
× 3,011237462 s

−1 (143)

oraz
ω1
v1
=
π

2L 
×

∼3,011237462 = 4,73 m−1. (144)

Równanie (142) przyjmuje wówczas postać

y(x, t) = A(1) · cos(ω1t + φ) ·

{
[cosh(4,73x) + cos(4,73x)]

−
[
cosh(4,73) − cos(4,73) 
sinh(4,73) − sin(4,73)

]
· [sinh(4,73x) + sin(4,73x)]

}
. (145)

Można zdefiniować funkcję η(1)(x)

(146)η(1)(x) = [cosh(4,73x) + cos(4,73x)] − 0,9825 · [sinh(4,73x) + sin(4,73x)]. 

Wykresy funkcji η(1)(x) oraz −η(1)(x) przedstawiono na rysunku 18.
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Rysunek 18. Wykresy funkcji η(1)(x) oraz −η(1)(x) 
Źródło: opracowanie własne.
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Z wykresów widać, że strzałka drgań pręta występuje w jego środku (dla x(1)s = 0,500m).
Z kolei węzły drgań występują dla x(1)w1 ∼= 0,224m oraz dla x

(1)
w2
∼= 0,776m. Taki sposób

drgania pręta nazywa się modem podstawowym drgań poprzecznych.

Gdyby utrzymać założenie, że L = 1m to dla drugiego modu drgań, zgodnie ze wzorem
(133)

ω2 = v2 ·
π

2L
× 4,999505341 s−1 (147)

oraz
ω2
v2
=
π

2L
× 4,999505341 ∼= 7,85m−1. (148)

Równanie (142) przyjmuje w tym przypadku postać

y(x, t) = A(2) · cos(ω2t+ φ) ·

{
[cosh(7,85x) + cos(7,85x)]

−
[
cosh(7,85)− cos(7,85)
sinh(7,85)− sin(7,85)

]
· [sinh(7,85x) + sin(7,85x)]

}
. (149)

Wówczas funkcja η(2)(x) przyjmuje postać

η(2)(x) = [cosh(7,85x) + cos(7,85x)]− 1,0008 · [sinh(7,85x) + sin(7,85x)]. (150)

Wykresy funkcji η(2)(x) oraz −η(2)(x) przedstawiono na rysunku 19.
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Rysunek 19. Wykresy funkcji η(2)(x) oraz −η(2)(x)
Źródło: opracowanie własne.

Z powyższych wykresów widać, że strzałki drgań pręta występują dla x(2)s1 ∼= 0,308m oraz
x
(2)
s2
∼= 0,692m. Z kolei węzły drgań występują dla x(2)w1 ∼= 0,132m, x

(2)
w2
∼= 0,500m oraz dla

x
(2)
w3
∼= 0,868m.
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Dla trzeciego modu drgań, zgodnie ze wzorem (133)

ω3 = v3 ·
π

2L
× 7,000021359 s−1 (151)

oraz
ω3
v3
=
π

2L
× 7,000021359 ∼= 11,00m−1. (152)

Równanie (142) przyjmuje w tym przypadku postać

y(x, t) = A(3) · cos(ω3t+ φ) ·

{
[cosh(11x) + cos(11x)]

−
[
cosh(11)− cos(11)
sinh(11)− sin(11)

]
· [sinh(11x) + sin(11x)]

}
. (153)

Wówczas funkcja η(3)(x) przyjmuje postać

η(3)(x) = [cosh(11x) + cos(11x)]− 1,0000 · [sinh(11x) + sin(11x)]. (154)

Wykresy funkcji η(3)(x) oraz −η(3)(x) przedstawiono na rysunku 20.
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L/m
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Rysunek 20. Wykresy funkcji η(3)(x) oraz −η(3)(x)
Źródło: opracowanie własne.

Z powyższych wykresów widać, że strzałki drgań pręta występują dla x(3)s1 ∼= 0,220m, x
(3)
s2
∼=

0,500m oraz x(3)s3 ∼= 0,780m. Z kolei węzły drgań występują dla x
(3)
w1
∼= 0,094m, x(3)w2 ∼=

0,356m, x(3)w3 ∼= 0,644m oraz dla x
(3)
w4
∼= 0,906m.

Dla czwartego modu drgań, zgodnie z zależnością (133)

ω4 = v4 ·
π

2L
× 8,999999077 s−1 (155)
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oraz
ω4
v4
=
π

2L
× 8,999999077 ∼= 14,14m−1. (156)

Równanie (142) przyjmuje w tym przypadku postać

y(x, t) = A(4) · cos(ω4t+ φ) ·

{
[cosh(14,14x) + cos(14,14x)]

−
[
cosh(14,14)− cos(14,14)
sinh(14,14)− sin(14,14)

]
· [sinh(14,14x) + sin(14,14x)]

}
. (157)

Wówczas funkcja η(4)(x) przyjmuje postać

η(4)(x) = [cosh(14,14x) + cos(14,14x)]− 1,0000 · [sinh(14,14x) + sin(14,14x)]. (158)

Wykresy funkcji η(4)(x) oraz −η(4)(x) przedstawiono na rysunku 21.
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Rysunek 21. Wykresy funkcji η(4)(x) oraz −η(4)(x)
Źródło: opracowanie własne.

Z powyższych wykresów widać, że strzałki drgań pręta występują dla x(4)s1 ≈ 0,171m, x
(4)
s2 ≈

0,389m, x(4)s3 ≈ 0,611m oraz x
(4)
s4 ≈ 0,829m. Z kolei węzły drgań występują dla x

(4)
w1 ≈

0,073m, x(4)w2 ≈ 0,277m, x
(4)
w3 ≈ 0,500m, x

(4)
w4 ≈ 0,723m oraz dla x

(4)
w5 ≈ 0,927m.

W analogiczny sposób można przedstawiać kolejne mody drgań. Z wykresów na rysun-
kach od 18 do 21 wynika, że o sposobie drgania pręta decyduje sposób jego podparcia.
Dobierając punkty podparcia tak, aby znajdowały się one w miejscach położenia węzłów
dla poszczególnych modów, można wybrać konkretny poprzeczny mod drgania. Charakte-
rystyczne jest to, że dla poprzecznych modów będących nieparzystymi wielokrotnościami
modu podstawowego w środku pręta występują strzałki. Dla parzystych wielokrotności po-
przecznego modu podstawowego w środku pręta pojawia się węzeł.
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Wykorzystując drgający pręt jako źródło dźwięku podpiera się go w węzłach poprzecz-
nego modu podstawowego przedstawionego na rysunku 18. Między innymi z powodu tego,
że węzły pozostałych modów znajdują się w innych miejscach niż dla modu podstawowe-
go, mody wyższych rzędów są silnie tłumione. Stanowi to jeden z podstawowych powodów
wykorzystania podpartych prętów drewnianych lub metalowych do budowy melodycznych
idiofonów sztabkowych czyli instrumentów perkusyjnych typu ksylofon, marimba (drewniane
pręty) czy dzwonki, wibrafon, czelesta (metalowe pręty).

Drgający poprzecznie pręt można jakościowo wykorzystać do wyjaśnienia działania ka-
mertonu. Dla podstawowego modu poprzecznego drgań pręta, w środku pręta jest strzałka.
Wygięcie pręta w kształcie litery U oraz dołączenie w środku pręta stopy powoduje, że wę-
zły takiego drgania zbliżają się do środka pręta [2]. Niemniej stopa kamertonu silnie drga.
O częstotliwości drgań kamertonu, podobnie jak pręta, decydują zgodnie ze wzorami (133)
i (78):

1. materiał, z jakiego wykonano pręt – gęstość objętościowa ρV oraz moduł Younga E
wpływają na wartość prędkości c = vF drgań podłużnych w pręcie;

2. założenia konstrukcyjne:

(a) długość ramion kamertonu – ok. L/2,

(b) typ przekroju poprzecznego pręta z jakiego wykonany jest pręt – współczynnik
χ jako funkcja S pola przekroju pręta oraz J momentu bezwładności przekroju
poprzecznego pręta.

Uderzenie młoteczkiem w jedno z ramion kamertonu pobudza w nim drgania złożone
z wielu drgań nieharmonicznych, schematycznie przedstawionych na rysunku 22.

Rysunek 22. Schematyczne drgania ramion kamertonu dla kilku pierwszych drgań
nieharmonicznych

Źródło: opracowanie własne.

Wraz z upływem czasu wyższe nieharmoniczne drgania zanikają i pozostaje prawie tylko
drganie podstawowe. Ewidentnie pomaga w tym pudło rezonansowe, którego konstrukcja
preferuje drganie o częstotliwości podstawowej. Pudło wzmacnia i wydłuża czas działania
kamertonu [1].

3. PODSUMOWANIE

Przedstawiony w pracy opis drgań podłużnych i poprzecznych pręta pokazuje, że w przy-
padku wykorzystania drgającego pręta, jako elementu będącego źródłem fal mechanicznych
w powietrzu decydujące znaczenie ma sposób zamocowania pręta oraz sposób pobudzania
pręta do drgań.
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Podłużne drgania pręta znalazły miedzy innymi zastosowanie w tzw. rurze Kundta, gdzie
warunkiem wzbudzenia drgań pręta są:

(a) zamocowanie pręta na sztywno (w jednym miejscu pośrodku lub w dwóch miejscach)
tak, aby na jego końcach powstała strzałka;

(b) przesuwanie z niewielkim naciskiem szmatki nasączonej kalafonią (sproszkowaną mie-
szaniną kwasów żywicznych, służącą do zwiększenia szorstkości materiału szmatki, co
skutkuje wzrostem przyczepności szmatki do podłoża) wzdłuż pręta w celu wzbudze-
nia w nim drgań podłużnych.

Modele drgań poprzecznych pręta opisują działanie szeregu instrumentów idiofonicznych
takich jak

• dzwonki, ksylofony itp., gdzie źródłem dźwięku jest swobodny, jedynie podparty pręt;

• harmonijka ustna czy akordeon, gdzie źródłem dźwięku jest tzw. stroik – czyli zamo-
cowany na jednym końcu drgający pręt wprowadzany w ruch przez powietrze – stąd
często ten typ instrumentów przypisany jest do tzw. aerofonów.

Próba wykorzystania opisu drgań podłużnych pręta do wyjaśnienia działania kamertonu,
czyli źródła dźwięku o zadanej częstotliwości jest całkowicie błędna głównie z dwóch powo-
dów:

(a) pręt (zgięty) w kamertonie nie jest w żadnym ustalonym miejscu sztywno zamocowany
i dlatego nieuprawnione wydaje się założenie, że jego drgania to drgania podłużne;

(b) sposób wzbudzania drgań polega na uderzeniu młoteczkiem w jedno z ramion kamer-
tonu – czyli wytworzeniu w kamertonie fali poprzecznej.

Niemniej, dokładny model drgań kamertonu wymaga uwzględnienia między innymi:

(a) niejednorodności rozkładu masy drgającego pręta, wynikającej zarówno z dołącze-
nia do niego stopy jak i ewentualnego zastosowania dodatkowych przesuwnych mas
na ramionach kamertonu w celu niewielkiej korekty podstawowej częstotliwości jego
drgań;

(b) drgań skrętnych ramion kamertonu,

co nie zostało rozważone w powyższej pracy.
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