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1. WSTĘP

1.1. Równania trzeciego stopnia
Ogólne równanie stopnia trzeciego ma postać,

ax3 + bx2 + cx + d = 0, (1)

gdzie a, b, c i d to współczynniki rzeczywiste bądź zespolone, a x to zmienna (również 
rzeczywista, bądź zespolona). Zakłada się, że współczynnik a ̸= 0, w przeciwnym razie 
równanie (1) staje się równaniem stopnia drugiego, którego sposoby na rozwiązanie 
znane były od starożytności.

Nie będziemy w szczegółach przedstwiać algorytmu, który pozwala na znalezienie 
wszystkich pierwiastków równania trzeciego stopnia (wiadomo, że każde równanie 
trzeciego stopnia ma przynajmniej jeden pierwiastek rzeczywisty). Przypomnijmy 
jedynie, że p rzez p odstawienie:

x = y −
b

3a
(2)
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W artykule dyskutujemy przydatność równań trzeciego stopnia w izyce poziomu 
szkoły średniej i pierwszego roku studiów wyższych technicznych. Doświadczenia 
dydaktyczne wskazują, że metody rozwiązywania takich równań nie są szczegó-
łowo przedstawiane uczniom i studentom. Ten stan rzeczy usprawiedliwia się 
twierdząc, że równania trzeciego stopnia pojawiają się raczej w zaawansowa-nych 
zagadnieniach. Polemizujemy z tą tezą analizując dwa, dość elementarne 
przykłady.

Historia równań trzeciego stopnia sięga zamierzchłej historii starożytnego Babilonu, 
Egiptu i Grecji [1]. Jednak dopiero w XVI wieku udało się skompletować metodę ich roz-
wiązywania. Zawdzięczamy to wybitnym matematykom tamtych czasów, wśród których wy-
mienić należy takich uczonych, jak: Scipio del Ferro, Antonio Mario Fiori, Niccolo Tartaglia 
i Girolamo Cardano. Fascynującej historii odkrycia sposobu na rozwiązywanie równań trze-
ciego stopnia, matematycznych „pojedynków na zadania”, przekazywanych w zaufaniu for-
muł i - wreszcie - „zdrady”, o jaką Cardano został przez Tartaglię oskarżony, nie będziemy tu 
przytaczać. Zainteresowanych odsyłamy do treściwego bloga P. Gładkiego [2].
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równanie (1) redukuje się do tzw. postaci kanonicznej Cardano:

y3 = 3py + 2q, −3p :=
c

a
− b2

3a2
, −2q :=

2b3

27a3
+

d

a
− bc

3a2
. (3)

Równanie (3) może być rozwiązane przy pomocy tzw.: wzoru Cardano

y =
3

√
q +

√
q2 − p3 +

3

√
q −

√
q2 − p3 (4)

Szczegółową dyskusję stosowalności wzoru (4) można znaleźć w wielu pozycjach, np. w [3].
Wzór Cardano (4) pozwolił Rafaelowi Bombelliemu odkryć liczby zespolone (Algebra,

1572), których obecna rola w matematyce i fizyce jest nie do przecenienia. Otóż Bombelli
zauważył, że nawet gdy q2 − p3 < 0, można ze wzoru Cardano uzyskać rozwiązanie rzeczy-
wiste. Bombelli posłużył się przykładem x3 = 15x + 4. Łatwo odgadnąć, że liczba 4 jest
rozwiązaniem tego równania. Jednak wzór Cardano daje

x = 3
√
2 + 11i+ 3

√
2− 11i, (5)

gdzie i2 = −1. Bombelli zaproponował algebraiczne reguły operacji na liczbach, które dziś
nazywamy zespolonymi. Otrzymał

3
√
2 + 11i = 2 + i, 3

√
2− 11i = 2− i, (6)

co w konsekwencji daje x = 4. W taki sposób odkryto liczby zespolone.
Zauważmy jeszcze, iż pośród wszystkich równań wielomianowych, ogólne metody ich roz-

wiązywania możliwe są do sformułowania jedynie dla stopni ⩽ 4. Rozwiązań równań stopnia
piątego i wyższych nie da się już niestety określić w skończonej liczbie kroków, bazujących
na wzorach zbudowanych ze współczynników równania i wykorzystujących cztery podstawo-
we działania arytmetyczne oraz pierwiastki stopni naturalnych. Dowodu tego niezwykłego
faktu dostarcza tzw. twierdzenie Abela-Ruffiniego, szeroko omówione np. w [4].

1.2. Równania sześcienne w dydaktyce fizyki i matematyki
Doświadczenia zebrane przez autorów w trakcie pracy nauczyciela akademickiego dowodzą,
że zagadnienie równań sześciennych (jak i równań czwartego stopnia), nie jest zagadnieniem
szeroko poruszanym na ćwiczeniach z matematyki i fizyki. Równania wielomianowe stopni
wyższych niż drugi rozwiązywane są już raczej na ćwiczeniach z metod numerycznych, gdzie
odpowiednie pierwiastki znajduje się np. przy pomocy metody Newtona-Raphsona. Podejście
takie usprawiedliwia się twierdząc, że równania sześcienne nie pojawiają się w zagadnieniach
fizycznych poruszanych na lekcjach w szkole średniej i na wykładach na pierwszych latach
studiów technicznych.

Nie jest to prawda. Faktycznie, problemy wymagające umiejętności rozwiązywania rów-
nań stopnia trzeciego nie są powszechne, ale z całą pewnością występują i to w zagadnieniach, 
których fizyczne podstawy nie wykraczają poza zakres szkoły średniej.
Jednym z najprostszych i najbardziej klasycznych problemów, w którym naturalnie poja-
wia się równanie sześcienne, jest zagadnienie dwóch, zawieszonych naprzeciwko siebie, jed-
noimiennie naładowanych kul. Odpowiednie zadania można znaleźć np. w kultowych już 
pozycjach pod redakcją M.S. Cedrika [5] i [6]. Ścisłe rozwiązanie takiego zagadnienia przed-
stawiamy w paragrafie 2.1. Bardziej wyrafinowanego przykładu dostarcza zagadnienie ruchu 
ciała w polu grawitacyjnym przy obecności stałych sił oporu powietrza – opisujemy je w para-
grafie 2.2.
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Wspomnijmy jeszcze, że z równaniem wielomianowym trzeciego stopnia spotkamy się
także na gruncie termodynamiki. Omawiane na pierwszym roku studiów technicznych tzw.
równanie Van der Waalsa stanu gazu rzeczywistego, zapisywane dla jednego mola tradycyjnie
w następujący sposób: (

p+
a

V 2
m

)
(Vm − b) = RT, (7)

można przecież przekształcić do postaci:

pV 3
m − (bp+RT )V 2

m + aVm − ab = 0. (8)

Jest ono zatem równaniem wielomianowym trzeciego stopnia ze względu na objętość molową.
Biorąc pod uwagę rząd wielkości empirycznych współczynników a i b [7] oraz realne warto-
ści ciśnienia p i temperatury T , otrzymamy zawsze jedno rozwiązanie rzeczywiste takiego
równania (z uwagi na dodatni wyróżnik postaci kanonicznej). Mamy zatem np. możliwość
obliczenia analitycznie objętości molowej gazu dla innych niż normalne warunków ciśnienia
i temperatury.

2. PRZYKŁADY

2.1. Zadanie 1: dwie naładowane kulki
Klasyczny problem, w którym pojawia się równanie trzeciego stopnia, to problem dwóch
naładowanych ciał. Rozważmy dwie małe metalowe kulki o jednakowych masach m powie-
szone na niciach o długości l, zaczepionych w tym samym punkcie. Kulki te początkowo
stykają się ze sobą. Następnie dostarczamy im ładunek elektryczny 2q, który rozkłada się na
nich po równo, a w efekcie odpychanie kulombowskie rozdziela kulki tworząc z ich środków
i punktu zawieszenia trójkąt równoramienny o podstawie x (rysunek 1). Zadanie polega na
znalezieniu wspomnianej odległości x, na jaką kulki oddalą się od siebie.

W uproszczonym wariancie opisywanym przez Cedrika [5] przyjmuje się, że kąt rozwarcia
nitek jest bardzo mały, wskutek czego otrzymuje się trywialne równanie trzeciego stopnia
o rozwiązaniu

x = 3

√
2klq2

mg
, (9)

sin θ =
x

2l
, tg θ =

kq2

mgx2
. (10)

Eliminując z nich następnie kąt θ otrzymujemy równanie:

m2g2x6 + k2q4(x2 − 4l2) = 0, (11)

które można przekształcić do postaci:

ay3 + y − 4 = 0, a :=
m2g2l4

k2q4
, y :=

x2

l2
. (12)

Równanie (12) ma jedno rzeczywiste rozwiązanie bez względu na wartość parametru a (jest
to fizycznie jasne, jako że przedstawione zagadnienie może mieć tylko jedno rozwiązanie).
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gdzie k to „stała” elektrostatyczna, zaś g to przyspieszenie ziemskie. W wariancie „bezkom-
promisowym” na podstawie rysunku 1 znajdujemy związki:
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Używając do jego rozwiązania dostępnych online narzędzi (np. [8]), dostajemy:

y =
3
√
18a2 +

√
3
√
108a4 + a3

a 3
√
9

− 1
3
√
3

3
√

18a2 +
√
3
√
108a4 + a3

. (13)

Nie mając dostępu do narzędzi bazujących na pakietach do obliczeń symbolicznych, uzy-
skanie rozwiązania (13) – bez znajomości wzoru Cardano – jest praktycznie niemożliwe.

Jeśli jednak znamy wzór Cardano, porównując (3) z (12) łatwo zauważyć, że 3p = −1

a
oraz

2q =
4

a
. Z (4) dostajemy

y =
3

√
2

a
+

√
4

a2
+

1

27a3
+

3

√
2

a
−

√
4

a2
+

1

27a3
(14)

Oczywiście rozwiązania (13) i (14) są tożsame, co łatwo sprawdzić. Wracając do podstawienia
ze wzorów (12) otrzymujemy odległość między kulkami:

x = l

√√√√ 3
√

18a2 +
√
3
√
108a4 + a3

a 3
√
9

− 1
3
√
3

3
√
18a2 +

√
3
√
108a4 + a3

(15)

W poprzednim przykładzie równanie trzeciego stopnia (12) zależało od jednego parametru
rzeczywistego a, który mógł przyjmować dowolne wartości dodatnie. Na równanie trzecie-
go stopnia, zależne jedynie od ustalonych współczynników, natykamy się przy rozważaniu

8

między nimi, FN – siła naciągu nici. W stanie równowagi wypadkowa sił działających na kulkę
wynosi zero

 Źródło: opracowanie własne.

Rysunek 1. Dwie odpychające się kulki: Q – ciężar kulek, Fc – siła kulombowskiego odpychania 

2.2. Zadanie 2: pionowy ruch małej kulki w polu grawitacyjnym ze stałymi
oporami powietrza

Równania trzeciego stopnia w fizyce
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zagadnienia ciała wyrzuconego pionowo w górę w polu grawitacyjnym przy obecności sta-
łych sił oporu (pomińmy dyskusję, czy stała siła oporu powietrza zdarza się w realnych
sytuacjach).

• przy braku oporów powietrza,

• jeśli opory powietrza przyjmują stałą wartość.

W drugim przypadku przebadaj zależność całkowitego czasu ruchu oraz wartości prędkości
od wartości siły oporu powietrza.

2.2.1. Ruch bez oporu

vg(t) = v0 − gt; vd(t) = gt (16)

sg(t) = v0t−
gt2

2
; sd(t) =

gt2

2

Kiedy ciało osiąga maksymalną wysokość H0, jego prędkość spada do zera. Oznaczając przez
tg czas wznoszenia, znajdujemy zależności:

tg =
v0
g
; H0 =

v20
2g

(17)

W drugiej fazie ruchu, czyli w trakcie opadania w dół, ciało ma początkową prędkość
równą zero. Spada z wysokości, na którą wcześniej się wzniosło, czyli z H0. Czas opadania
td znajdujemy zatem z warunku sd(td) = H0, otrzymując:

td =

√
2H0

g
. (18)

Wykorzystując zależności (17) dostajemy

tg = td. (19)

Prędkość uderzenia o podłoże vk = vd(td), czyli

vk = v0. (20)

Prędkość uderzenia o podłoże jest zatem równa prędkości, z jaką ciało zostało wystrzelone.
To zrozumiałe, jako że brak oporów implikuje brak strat energii. Oznaczmy czas wznoszenia
i czas opadania w przypadku braku oporów przez t0. A zatem

t0 :=
v0
g

= tg = td. (21)

9

4 Będziemy używać indeksów „g” dla oznaczenia wielkości w trakcie ruchu „w górę” oraz „d” dla ruchu „w dół”.

A. Chudecki, J. Tomaszewski, P. Słoma

Sformułujmy zagadnienie: napisz równania na prędkość i drogę podczas ruchu „w górę”  
i  „w dół” dla ciała wystrzelonego pionowo do góry z prędkością początkową o wartości v0; 
wyznacz czas wznoszenia i opadania, prędkość w chwili uderzenia o podłoże i maksymalną 
wysokość, na którą ciało się wzniosło. Zadanie rozwiąż w dwóch przypadkach:

Rozważmy najpierw przypadek b ez o poru (rysunek 2 z F = 0). 
W pierwszej fazie ruchu „w   górę” równanie II zasady d ynamiki Newtona m  a postać mag = −mg  
z w  arunkami p oczątkowymi s(0) = 0, vg(0) = v0. W d rugiej fazie ruchu "w d ół" m  amy mad = mg 
o raz w  arunki p o czątkowe s(0) = 0, vg(0) = 0. Ruch jest ruchem jednostajnie zmiennym  i łatwo
znajdujemy zależności:4

;

;

;
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Całkowity czas ruchu
tc = tg + td = 2t0. (22)

2.2.2. Ruch ze stałym oporem

Rozważmy teraz sytuację, w której oprócz siły ciężkości działa siła oporu o stałej wartości
F ⩾ 0, takiej samej podczas obu etapów ruchu (i zawsze przeciwnie skierowanej do chwilowej
prędkości ciała). Równania ruchu mają teraz postać:

mag = −mg − F =⇒ ag = −g(1 + x) (23)
mad = mg − F =⇒ ad = g(1− x),

vg(t) = v0 − (1 + x)gt; vd(t) = (1− x)gt (24)

sg(t) = v0t− (1 + x)
gt2

2
; sd(t) = (1− x)

gt2

2

Podobnie jak w przypadku ruchu bez oporu, łatwo znajdujemy czas wznoszenia, wiedząc,
że vg(tg) = 0, co daje:

tg =
v0

g(1 + x)
=

t0
1 + x

(25)

Po czasie tg ciało wznosi się na wysokość H = sg(tg), czyli:

H =
1

1 + x

v20
2g

=
H0

1 + x
(26)

10

Rysunek 2. Ruch ciała w górę i w dół 
Źródło: opracowanie własne.

Równania trzeciego stopnia w fizyce

;

;

.

.

gdzie oznaczyliśmy x :=
F

mg
. Zauważmy, że siła oporu musi być mniejsza od ciężaru cia-

ła. W przeciwnym razie w trakcie spadania ciała mogłoby dojść do niefizycznej sytuacji,
w której ciało pozostałoby nieruchome (lub w najlepszym przypadku spadało ruchem jed-
nostajnym). Zakładamy zatem, że F < mg, czyli x < 1. Oczywiście, x ⩾ 0.

Stosując równania (23) znajdujemy
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Aby wyznaczyć czas opadania, wykorzystajmy fakt, że sd(td) = H, skąd otrzymujemy

td =
v0

g
√
1− x2

=
t0√

1− x2
. (27)

Ciało uderza o podłoże z prędkością vk = vd(td), co daje:

vk = v0

√
1− x

1 + x
. (28)

Zauważmy, że tg < t0 < td. Dokładniej, zachodzi relacja

td = tg

√
1 + x

1− x
(29)

Czas całkowity wyraża się z kolei wzorem:

tc(x) = t0

(
1

1 + x
+

1√
1− x2

)
. (30)

Wykres funkcji tc(x) jest przedstawiony na Rysunku 3.

Z wykresu funkcji tc(x) widzimy, że dla pewnej wartości zmiennej x czas całkowity jest
taki sam, jak w przypadku ruchu bez oporów. Aby znaleźć tę wartość, musimy rozwiązać
równanie tc = 2t0, które daje:

x(1− 2x2) = 0 (31)

11

Rysunek 3. Wykres funkcji tc(x) 
Źródło: opracowanie własne.

A. Chudecki, J. Tomaszewski, P. Słoma

.
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Równanie to ma trzy rozwiazania, z których pierwsze x = −
√
2

2
nie ma sensu fizycznego,

drugie x = 0 odpowiada oczywistemu przypadkowi ruchu bez oporów, a trzecie, najbardziej

nas interesujace, to x =

√
2

2
. Zatem, jeśli siła oporu ma wartość F =

√
2

2
mg, czas ruchu

jest dokładnie taki sam, jak w przypadku braku oporów. Oczywiście w takim przypadku
ciało wznosi się na wysokość niższą niż H0, a dokładniej równą H0(2 −

√
2), oraz uderza

w podłoże z prędkością (
√
2− 1)v0.

Teraz rozważmy zagadnienie, które doprowadzi nas do równania trzeciego stopnia. Za-
uważmy, że funkcja tc(x) ma minimum. Istnieje zatem taka wartość siły oporu, dla której
całkowity czas ruchu jest najkrótszy. Minimum funkcji tc(x) znajdziemy przyrównując do
zera jej pochodną. Dostajemy równanie:

2x3 − 2x2 + 3x− 1 = 0. (32)

Równanie to ma jeden pierwiastek rzeczywisty, równy

x0 =
1

3

1 +
3
√

4 + 3
√
78

3
√
4

− 7

3

√
2(4 + 3

√
78)

 ≈ 0, 39661. (33)

Jest to interesujący wynik: jeśli siła oporu wynosi F ≈ 0, 39661mg, całkowity czas ruchu
jest najkrótszy. Dokładniej, dla x = x0 mamy:

tg ≈ 0, 71602t0, td ≈ 1, 08934t0, tc ≈ 1, 80534t0, vk ≈ 0, 6573v0, H ≈ 0, 71602H0 (34)

Na rysunku 4 przedstawiony jest wykres wartości wektora prędkości w funkcji czasu dla
kilku różnych wartości parametru x.

12

Rysunek 4. Wykres prędkości w funkcji czasu v(t)
Źródło: opracowanie własne.

Równania trzeciego stopnia w fizyce



BPAM Vol. 1, No. 1 (2025)

3. PODSUMOWANIE

Opisane w paragrafach 2.1 i 2.2 przykłady pokazują, że równania sześcienne pojawiają się na-
wet w prostych zagadnieniach fizycznych. Problem dwóch odpychających się kul to zadanie –
na poziomie fizyki zagadnienia – stopniem trudności nie wykraczające poza ramy programu
szkoły średniej. Jednak nawet takie zadanie stawia przed rozwiązującym je uczniem równa-
nie stopnia trzeciego. Bez znajomości metody analitycznej lub bez dostępu do pakietów do
obliczeń symbolicznych znalezienie rozwiązania (15) przez ucznia szkoły średniej lub nawet
przez studenta pierwszego roku studiów technicznych jest, naszym zdaniem, niemożliwe. Po-
dobnie jest z rozwiązaniem (33) bardziej wyrafinowanego problemu minimalnego czasu ruchu
dla ciała poruszającego się w polu grawitacyjnym w obecności stałych sił oporu powietrza.

Podsumowując, warto podkreślić, że metodom rozwiązywania równań sześciennych po-
winno się poświęcać trochę więcej czasu, nawet jeśli nie na poziomie szkoły średniej, to
przynajmniej na pierwszych latach studiów technicznych.
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