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W artykule dyskutujemy przydatnosé rownan trzeciego stopnia w izyce poziomu
szkoty sredniej i pierwszego roku studidow wyzszych technicznych. Doswiadczenia
dydaktyczne wskazujq, ze metody rozwigzywania takich réwnarn nie sq¢ szczegd-
towo przedstawiane uczniom i studentom. Ten stan rzeczy usprawiedliwia sie
twierdzqc, zZe réwnania trzeciego stopnia pojawiajq sie raczej w zaawansowa-nych
zagadnieniach. Polemizujemy 2z tq tezq analizujgc dwa, do$é elementarne
przyktady.
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1. WSTEP

1.1. Réwnania trzeciego stopnia

Ogolne rownanie stopnia trzeciego ma postac,
azr® +bx? + cx +d =0, (1)

gdzie a, b, ¢ i d to wspdlezynniki rzeczywiste badz zespolone, a x to zmienna (rowniez
rzeczywista, badz zespolona). Zakltada sie, ze wspotczynnik a # 0, w przeciwnym razie
rownanie (1) staje sie rownaniem stopnia drugiego, ktérego sposoby na rozwiazanie
znane byty od starozytnosci.

Historia réwnan trzeciego stopnia siega zamierzchlej historii starozytnego Babilonu,
Egiptu i Grecji [1]. Jednak dopiero w XVI wicku udato si¢ skompletowaé metode ich roz-
wigzywania. Zawdzieczamy to wybitnym matematykom tamtych czasow, wsrod ktorych wy-
mienié¢ nalezy takich uczonych, jak: Scipio del Ferro, Antonio Mario Fiori, Niccolo Tartaglia
i Girolamo Cardano. Fascynujacej historii odkrycia sposobu na rozwiazywanie réwnan trze-
ciego stopnia, matematycznych ,pojedynkéw na zadania”, przekazywanych w zaufaniu for-
mul i - wreszcie - ,zdrady”, o jaka Cardano zostal przez Tartaglie oskarzony, nie bedziemy tu
przytaczac. Zainteresowanych odsytamy do tresciwego bloga P. Gladkiego [2].

Nie bedziemy w szczegélach przedstwia¢ algorytmu, ktéry pozwala na znalezienie
wszystkich pierwiastkow rownania trzeciego stopnia (wiadomo, ze kazde réwnanie
trzeciego stopnia ma przynajmniej jeden pierwiastek rzeczywisty). Przypomnijmy
jedynie, ze przez podstawienie: b

T=y-— o (2)
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rownanie (1) redukuje si¢ do tzw. postaci kanonicznej Cardano:

3 c b2 20 d b
- 2, —3pi=< - —2¢:= .
Y =3py+2q, —3p a 3a® = 5143 + a 3a? ®)

Rownanie (3) moze by¢ rozwiazane przy pomocy tzw.: wzoru Cardano

y=€/q+ q27p3+\3/q*vc12*p3 (4)

Szczegotowa dyskusje stosowalnosci wzoru (4) mozna znalezé w wielu pozycjach, np. w [3].

Wzor Cardano (4) pozwolil Rafaelowi Bombelliemu odkryé liczby zespolone (Algebra,
1572), ktorych obecna rola w matematyce i fizyce jest nie do przecenienia. Ot6z Bombelli
zauwazyl, ze nawet gdy ¢ — p® < 0, mozna ze wzoru Cardano uzyskaé¢ rozwiazanie rzeczy-
wiste. Bombelli postuzyt si¢ przyktadem x® = 15z + 4. Latwo odgadnaé, ze liczba 4 jest
rozwigzaniem tego rownania. Jednak wzor Cardano daje

r =2+ 11li + V2 — 114, (5)

gdzie 2 = —1. Bombelli zaproponowal algebraiczne reguly operacji na liczbach, ktore dzis
nazywamy zespolonymi. Otrzymat

Va¥ili=2+i, V2—1li=2—1, (6)

co w konsekwencji daje x = 4. W taki sposob odkryto liczby zespolone.

Zauwazmy jeszcze, iz posrod wszystkich rownan wielomianowych, ogolne metody ich roz-
wiagzywania mozliwe sa do sformutowania jedynie dla stopni < 4. Rozwiazan réwnan stopnia
piatego i wyzszych nie da sie juz niestety okresli¢ w skoriczonej liczbie krokéw, bazujacych
na wzorach zbudowanych ze wspotczynnikoéw rownania i wykorzystujacych cztery podstawo-
we dzialania arytmetyczne oraz pierwiastki stopni naturalnych. Dowodu tego niezwyklego
faktu dostarcza tzw. twierdzenie Abela-Ruffiniego, szeroko oméwione np. w [4].

1.2. Rownania szescienne w dydaktyce fizyki i matematyki

Doswiadczenia zebrane przez autoréw w trakcie pracy nauczyciela akademickiego dowodza,
ze zagadnienie rownan szedciennych (jak i rownan czwartego stopnia), nie jest zagadnieniem
szeroko poruszanym na ¢wiczeniach z matematyki i fizyki. Réwnania wielomianowe stopni
wyzszych niz drugi rozwiazywane sa juz raczej na ¢wiczeniach z metod numerycznych, gdzie
odpowiednie pierwiastki znajduje si¢ np. przy pomocy metody Newtona-Raphsona. Podejscie
takie usprawiedliwia sie twierdzac, ze rownania szescienne nie pojawiaja sie w zagadnieniach
fizycznych poruszanych na lekcjach w szkole §redniej i na wykladach na pierwszych latach
studiéw technicznych.

Nie jest to prawda. Faktycznie, problemy wymagajace umiejetnosci rozwiazywania row-

nan stopnia trzeciego nie sa powszechne, ale z cata pewnoscia wystepuja i to w zagadnieniach,
ktorych fizyczne p odstawy nie wykraczaja p oza zakres szkoly $redniej.
Jednym z najprostszych i najbardziej klasycznych probleméw, w ktorym naturalnie poja-
wia sie rownanie szeScienne, jest zagadnienie dwoch, zawieszonych naprzeciwko siebie, jed-
noimiennie natadowanych kul. Odpowiednie zadania mozna znalez¢ np. w kultowych juz
pozycjach pod redakcja M.S. Cedrika [5] i [6]. Sciste rozwiazanie takiego zagadnienia przed-
stawiamy w paragrafie 2.1. Bardziej wyrafinowanego przykladu dostarcza zagadnienie ruchu
ciala w polu grawitacyjnym przy obecnosci statych sit oporu powietrza — opisujemy je w para-
grafie 2.2.
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Wspomnijmy jeszcze, ze z rownaniem wielomianowym trzeciego stopnia spotkamy sie
takze na gruncie termodynamiki. Omawiane na pierwszym roku studiéow technicznych tzw.
rownanie Van der Waalsa stanu gazu rzeczywistego, zapisywane dla jednego mola tradycyjnie
w nastepujacy sposob:

a
(p + W) (Vin — b) = RT, (7)

mozna przeciez przeksztalci¢ do postaci:
pVi3 — (bp + RT)V2 + aV,, — ab = 0. (8)

Jest ono zatem réwnaniem wielomianowym trzeciego stopnia ze wzgledu na objetosé molowa.
Biorac pod uwage rzad wielkosci empirycznych wspolezynnikow a i b [7] oraz realne warto-
$ci ciS$nienia p i temperatury 7', otrzymamy zawsze jedno rozwiazanie rzeczywiste takiego
rownania (z uwagi na dodatni wyréznik postaci kanonicznej). Mamy zatem np. mozliwosé
obliczenia analitycznie objetosci molowej gazu dla innych niz normalne warunkoéw cisnienia
i temperatury.

2. PRZYKLADY

2.1. Zadanie 1: dwie natadowane kulki

Klasyczny problem, w ktéorym pojawia sie réwnanie trzeciego stopnia, to problem dwoéch
natadowanych cial. Rozwazmy dwie male metalowe kulki o jednakowych masach m powie-
szone na niciach o dlugosci I, zaczepionych w tym samym punkcie. Kulki te poczatkowo
stykaja sie ze sobg. Nastepnie dostarczamy im tadunek elektryczny 2¢, ktory rozktada sie na
nich po réwno, a w efekcie odpychanie kulombowskie rozdziela kulki tworzac z ich srodkow
i punktu zawieszenia trojkat rownoramienny o podstawie = (rysunek 1). Zadanie polega na
znalezieniu wspomnianej odleglosci z, na jaka kulki oddala si¢ od siebie.

W uproszczonym wariancie opisywanym przez Cedrika [5] przyjmuje sig, ze kat rozwarcia
nitek jest bardzo maly, wskutek czego otrzymuje sie trywialne rownanie trzeciego stopnia

0 rozwiazaniu
2klq?
v= (=L (9)
mg

gdzie k to ,stala” elektrostatyczna, zas g to przyspieszenie ziemskie. W wariancie ,,bezkom-
promisowym” na podstawie rysunku 1 znajdujemy zwiazki:

. T kq?

0=—, tgh= . 10
s 2 B mgx? (10)

Eliminujac z nich nastepnie kat 6 otrzymujemy réwnanie:
m2g2aS + E2¢* (22 — 41%) = 0, (11)

ktore mozna przeksztalci¢ do postaci:
) 2,274 2

ay? +y—4=0, a:="19 =2 (12)

k2q4 v Y 12

Rownanie (12) ma jedno rzeczywiste rozwigzanie bez wzgledu na wartos¢ parametru a (jest
to fizycznie jasne, jako ze przedstawione zagadnienie moze mie¢ tylko jedno rozwiazanie).
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Rysunek 1. Dwie odpychajace sie kulki: Q — ciezar kulek, Fc — sita kulombowskiego odpychania
miedzy nimi, FN — sila naciagu nici. W stanie réwnowagi wypadkowa sil dzialajacych na kulke
Wynosi zero
Zrédlo: opracowanie wlasne.

Uzywajac do jego rozwiazania dostepnych online narzedzi (np. [8]), dostajemy:

/1842 + v/3v/108a* + a3 1
y = - —_— - .
av/9 ¥/33/18a2 + v/3v/108a% + a3

Nie majac dostepu do narzedzi bazujacych na pakietach do obliczen symbolicznych, uzy-
skanie rozwiazania (13) — bez znajomosci wzoru Cardano — jest praktycznie niemozliwe.

(13)

1
Jesli jednak znamy wzor Cardano, poréwnujac (3) z (12) tatwo zauwazy¢, ze 3p = —— oraz
a

4
2q = —. Z (4) dostajemy
a

T R T I E 14)
L Vs a?  27a3 a a?  27a3

Oczywicie rozwiazania (13) i (14) sa tozsame, co tatwo sprawdzi¢. Wracajac do podstawienia
ze wzordéw (12) otrzymujemy odlegtosé miedzy kulkami:

V18a2 + v/3v108a" + a® 1
av/9 \3/3{3/18@2 + v/3v108a* + a3

=1 (15)

2.2. Zadanie 2: pionowy ruch matlej kulki w polu grawitacyjnym ze stalymi
oporami powietrza
W poprzednim przykladzie rownanie trzeciego stopnia (12) zalezalo od jednego parametru

rzeczywistego a, ktory mogt przyjmowaé¢ dowolne wartosci dodatnie. Na réwnanie trzecie-
go stopnia, zalezne jedynie od ustalonych wspolczynnikow, natykamy sie przy rozwazaniu
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zagadnienia ciala wyrzuconego pionowo w gore w polu grawitacyjnym przy obecnosci sta-
tych sit oporu (pomirimy dyskusje, czy stala sila oporu powietrza zdarza si¢ w realnych
sytuacjach).

Sformutujmy zagadnienie: napisz rownania na predkosé i droge podczas ruchu ,,w gore”
i ,w dol” dla ciala wystrzelonego pionowo do gory z predkoscia poczatkowa o wartosci vo;
wyznacz czas wznoszenia i opadania, predkosé w chwili uderzenia o podloze i maksymalng
wysokos¢, na ktora ciato sie wzniosto. Zadanie rozwiaz w dwoch przypadkach:

e przy braku oporéw powietrza,

e jesli opory powietrza przyjmuja stalta wartosc.

W drugim przypadku przebadaj zaleznoéé catkowitego czasu ruchu oraz wartosci predkosci
od wartosci sity oporu powietrza.

2.2.1. Ruch bez oporu

Rozwazmy mjpierw pzypadek bez oporu (rysunek 2 z F=0).

W perwszej fazie ruchu ,w gore” rownanie II zasady dynamiki Newtona ma postaé¢ mag,=—mg
z warunkami poczatkowymi s(0) =0, v4(0) =vo. W drugiej fazie ruchu "w dot" mamy maq=mg
o raz warunki po czatkowe s(0) =0, v4(0) =0. Ruch jest ruchem jednostajnie zmiennym i tatwo
znajdujemy zaleznosci:*

vg(t) = vo — gt; va(t) = gt (16)
gt? . gt?.

Sq(t) = t— ) sq(t) = )

solt) = vt =25 salt) =

Kiedy cialo osiaga maksymalna wysokosé¢ Hy, jego predkosé spada do zera. Oznaczajac przez
t4 czas wznoszenia, znajdujemy zaleznosci:
" (%) 1}(2)
= 0=5_;
Ty 29
W drugiej fazie ruchu, czyli w trakcie opadania w dol, cialo ma poczatkowa predkosé
rowng zero. Spada z wysokosci, na ktora wezesniej sie wzniosto, czyli z Hy. Czas opadania

tq znajdujemy zatem z warunku sq(tq) = Ho, otrzymujac:

=[50, (18)

Wykorzystujac zaleznosci (17) dostajemy
ty = ta. (19)

(17)

Predkosé uderzenia o podtoze v, = vq(tq), czyli
Vg = V- (20)

Predkos¢ uderzenia o podloze jest zatem rowna predkosci, z jaka cialo zostalo wystrzelone.
To zrozumiale, jako ze brak oporéw implikuje brak strat energii. Oznaczmy czas wznoszenia
i czas opadania w przypadku braku oporéw przez ty. A zatem

to = 2 = t, =t (21)

4 Bedziemy uzywa¢ indeksow ,,g” dla oznaczenia wielkosci w trakcie ruchu ,,w gore” oraz ,d” dla ruchu ,w dét”.
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-

F (sila oporu)

Q=myg Q=myg
H F' (sita oporu) H
w dot”
UO ”
\4 \ 4
Sw gore” (8
Rysunek 2. Ruch ciala w gére i w dot
Zrédlo: opracowanie wiasne.
Calkowity czas ruchu
te =ty +ta =2ty (22)

2.2.2. Ruch ze stalym oporem

Rozwazmy teraz sytuacje, w ktorej oprocz sity ciezkosci dziata sila oporu o statej wartosci
F > 0, takiej same]j podczas obu etapow ruchu (i zawsze przeciwnie skierowanej do chwilowej
predkosci ciala). Réwnania ruchu maja teraz postac:
mag=-—-mg—F = a;=—-g(1+2) (23)
mag=mg—F = aq=g9(l-2),

gdzie oznaczyliSmy x := —. Zauwazmy, ze sita oporu musi by¢ mniejsza od ciezaru cia-

ta. W przeciwnym razie w trakcie spadania ciala mogloby dojsé¢ do niefizycznej sytuacji,
w ktorej cialo pozostaloby nieruchome (lub w najlepszym przypadku spadalo ruchem jed-
nostajnym). Zaktadamy zatem, ze F' < mg, czyli x < 1. Oczywiscie, x > 0.

Stosujac rownania (23) znajdujemy

vg(t) = vo — (1 + 2)gt; va(t) = (1 - z)gt, (24)

t2 t?
= s =01-2)%

Podobnie jak w przypadku ruchu bez oporu, tatwo znajdujemy czas wznoszenia, wiedzac,
ze vy(tg) =0, co daje:

sg(t) =vot — (14 )

Vo t()
t =90 __0 25
g g(1+m) 1+$ ( )

Po czasie t, cialo wznosi si¢ na wysoko$¢ H = s4(t,), czyli:
1 U(Q) HO

H= 20 _ . 26
1+229 14z (26)

10
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tc(l')vt()

3.5

2.5

s 9 = (0,39661 ; 1,80536)

o 1/\/5 1 T

0 01 02 03 04 05 06 07 08 09 1 1.1

Rysunek 3. Wykres funkeji te(x)

Zrédlo: opracowanie wlasne.

Aby wyznaczy¢ czas opadania, wykorzystajmy fakt, ze sq(tq) = H, skad otrzymujemy

Vo to

:g\/lfa;2 - V=2

Cialo uderza o podloze z predkoscia v, = v4(tq), co daje:

1-=z
Uk.:U(”/1+r. (28)

Zauwazmy, ze t, < tg < tq. Dokladniej, zachodzi relacja

1+z
td:tﬂ’/lfz' (29)

Czas caltkowity wyraza sie z kolei wzorem:

ta

t()t<1+ 1) (30)
(z) = —t—.
¢ Ttz " Vi-z2
Wykres funkcji t.(z) jest przedstawiony na Rysunku 3.

Z wykresu funkcji t.(z) widzimy, ze dla pewnej wartosci zmiennej = czas caltkowity jest
taki sam, jak w przypadku ruchu bez oporéw. Aby znalezé¢ te warto$é, musimy rozwiazaé

rownanie t, = 2ty, ktore daje:
z(1—-22%) =0 (31)

11
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v(t)
Vo
0, 657300 4. / minimalny czas catkowity
\
A\
\\
\\
(\/5 — 1)1;0 \ .....
\ -
\ > g
\ - g
\ / -
\ Y //
\ y ////
\
\ )
( - \/5)1‘0 to 1,8054t, 2t,
Rysunek 4. Wykres predkosci w funkcji czasu v(t)
Zrédlo: opracowanie wlasne.
Rownanie to ma trzy rozwiazania, z ktorych pierwsze x = ——— nie ma sensu fizycznego,

drugie x = 0 odpowiada oczywistemu przypadkowi ruchu bez oporéw, a trzecie, najbardziej

2 2
nas interesujace, to z = ——. Zatem, jesli sila oporu ma wartos¢ F' = 5 ™y, czas ruchu

jest doktadnie taki sam, jak w przypadku braku oporéw. Oczywiscie w takim przypadku
cialo wznosi si¢ na wysokosé nizsza niz Hp, a dokltadniej réowna Ho(2 — /2), oraz uderza
w podtoze z predkoscia (v/2 — 1)vp.

Teraz rozwazmy zagadnienie, ktore doprowadzi nas do réwnania trzeciego stopnia. Za-
uwazmy, ze funkcja ¢.(z) ma minimum. Istnieje zatem taka wartosé sity oporu, dla ktorej
calkowity czas ruchu jest najkrotszy. Minimum funkcji ¢.(x) znajdziemy przyrownujac do
zera jej pochodna. Dostajemy réwnanie:

223 — 227 432 —1=0. (32)

Roéwnanie to ma jeden pierwiastek rzeczywisty, rowny

3
wo= L1y VALV 7 ~ 0, 39661, (33)

3 z 0/2(4 + 3\/78)

Jest to interesujacy wynik: jesli sita oporu wynosi F' ~ 0,39661mg, catkowity czas ruchu
jest najkrotszy. Dokladniej, dla x = x¢p mamy:

ty ~ 0,71602t0, tq~1,08934ty, t.~ 1,80534ty, v~ 0,6573ve, H =~ 0,71602H, (34)

Na rysunku 4 przedstawiony jest wykres wartosci wektora predkosci w funkcji czasu dla
kilku réznych wartosci parametru x.

12
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3. PODSUMOWANIE

Opisane w paragrafach 2.1 1 2.2 przyktady pokazuja, ze rownania sze$cienne pojawiaja sie na-
wet w prostych zagadnieniach fizycznych. Problem dwoch odpychajacych sie kul to zadanie —
na poziomie fizyki zagadnienia — stopniem trudnosci nie wykraczajace poza ramy programu
szkoly §redniej. Jednak nawet takie zadanie stawia przed rozwiazujacym je uczniem réwna-
nie stopnia trzeciego. Bez znajomosci metody analitycznej lub bez dostepu do pakietow do
obliczeri symbolicznych znalezienie rozwiazania (15) przez ucznia szkoly sredniej lub nawet
przez studenta pierwszego roku studiéow technicznych jest, naszym zdaniem, niemozliwe. Po-
dobnie jest z rozwiazaniem (33) bardziej wyrafinowanego problemu minimalnego czasu ruchu
dla ciala poruszajacego si¢ w polu grawitacyjnym w obecnosci statych sit oporu powietrza.

Podsumowujac, warto podkresli¢, ze metodom rozwiazywania rownan sze$ciennych po-
winno sie poswiecaé troche wiecej czasu, nawet jesli nie na poziomie szkoly sredniej, to
przynajmniej na pierwszych latach studiow technicznych.
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