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Abstract. An outlier is an observation (or measurement) that is different
with respect to the other values contained in a given data set. Outliers can
occur due to several causes. The measurement can be incorrectly observed,
recorded or processed or otherwise is correctly measured but represents a
rare event. In this paper it is shown that observed data can contain values
that differ from expected ones and can be interpreted as an outlier, but in fact
are caused by a specific physical phenomenon.
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1. Introduction

Outlying observations may be errors, or they could have been recorded under
exceptional circumstances, or belong to another population [1, 2, 3]. Consequently,
they do not fit the model well. It is very important to be able to detect these out-
liers [4, 5, 6, 7, 8, 9]. Outlier detection is related to, but distinct from noise removal
and noise accommodation, that both have to deal with unwanted noise in the data.
Noise can be defined as a phenomenon in data which is not of interest to the ana-
lyst, but acts as an obstacle to data analysis. Noise removal is dictated by the need
to remove the unwanted objects before any data analysis is performed on the data.
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Removing such errors can be important in data mining and data analysis tasks.
However, removing noise can lead to the removing of the important data.

Scattering of acoustic or electromagnetic waves by several objects has im-
portant applications in remote sensing, non-invasive diagnostics in medicine and
non-destructive testing. The received signal can be used to determine some of the
geometrical and physical properties of the scatterer. Solutions for recognised prob-
lems including half-plane, cylinder or sphere are apparently essential regarding the
diffraction theory. The strip is considered to be one of the most important famil-
iar structures due to its geometry, strips are usually accustomed to investigate the
multiple diffraction phenomenon.

In this paper we consider two acoustic waves scattering problems: wave scat-
tering by a hard strip and scattering by a hard partially debonded strip. It is shown
that the observed total cross-section (TCS) data for both problems are similar. The
corresponding TCS data deviation is proportional to the Gauss error function. This
leads to the situation when observed TCS data for a hard partially debonded inclu-
sion can be interpreted as TCS data with noise for a hard inclusion, despite the fact
that we are dealing with two different physical problems.

2. Problem Formulation

Let us consider a thin hard plane inclusion which occupies a domain

S = {|x1| < a, −h < x3 ≤ 0, |x2| < ∞} ,

that is located in an acoustic medium. Here h is the inclusion thickness.
A plane, incident wave of the form

ui(x) = exp[ik(l, x)], x = (x1, x3) (1)

impinges on the inclusion (the time factor of the form e−iωt is omitted throughout
the analysis, where ω is the circular frequency). Here l = (sin θ0,− cos θ0) is the
direction of sounding, k is the wave number and typical wavelength kh satisfies the
condition kh << 1 (see Fig. 1).

The scattering problem of time harmonic waves is described by the wave equa-
tion

(∆ + k2)u (x) = 0, x ∈ R2\S

and the following condition along the boundary S of the inclusion:

u (x) = 0, x ∈ S. (2)
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Figure 1: Geometry of the wave scattering by a hard strip problem.

Figure 2: Geometry of the wave scattering by a hard partially debonded strip prob-
lem.

The total wave u = ui + us is decomposed into the given incident wave ui

and the unknown scattered wave us, which is required to satisfy the Somerfield
radiation condition at infinity, from which it follows that

us (x) =
eik|x|+iπ/4
√

8πk |x|
f (k; l, ν) , |x| → ∞, (3)
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where f (k; l, ν) is the complex amplitude or far-field pattern of the scattering wave,
ν = x/|x| = (sin θ, cos θ) is the direction of observation and TCS is determined as
σ(θ0) = k−1Im f (k; l, l).

Using Green’s theorem, the integral representation of the scattering field can
be obtained as

us (x) = k
∫ a

−a

[
g (x, y) Φ1 (y1) − k−1 Φ3 (y1)

∂g (x, y)
∂y3

]
y3=0

dy1, (4)

g (x, y) = −
i
4

H(1)
0 (k |x − y|) , y =

(
y1, y3

)
,

Φ3 (x1) = u+ (x1) − u− (x1) , kΦ1 (x1) =
∂u+

∂x3
−
∂u−

∂x3

∣∣∣∣∣
x3=0

, u±(x1) = u(x1,±0).

Here H(1)
0 is the Hankel function of the first kind.

From Eqs. (3) and (4) for the scattering amplitude we have

f (k; l, ν) = −k
∫ a

−a
{Φ1 (y1) + iν3Φ3 (y1)} e−ikν1y1dy1. (5)

Let’s use the Fourier integral representation of the cylindrical wave H(1)
0 through

the plane waves:

H(1)
0 (|x − y|) = −

i
π

∫ ∞

−∞

e∓(x3−y3)γ+iα(x1−y1)

γ(α)
dα, γ(α) =

√
α2 − 1, (6)

where radical branch γ is defined by the condition Imγ < 0 for |α| < 1, sign plus
in the formula (6) corresponds to the case x3 > y3, and sign minus corresponds to
the case x3 < y3. This allows to deal only with symbols of corresponding pseudo-
differential operators. As a result, from (1)-(6) we can obtain a singular integral
equation relative to Φ1 (y1)

k
∫ a

−a
Φ1 (p) K3 (k |x1 − p|) dp = −2 exp (ikl1x1) , |x1| < a, (7)

K3 (|z|) = −
1

2π

∫
Γ

γ−1 (α) e±iαzdα,

σ(θ0) = −Im
∫ a

−a
Φ1

(
y1

)
e−ikl1y1dy1,
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where the contour Γ coincides with the real axis everywhere except for the branch-
ing points α = ±1. The contour Γ passes these points below in the right-hand
semi-plane of complex variable α and above in the left-hand one according to the
limiting absorption principle. In addition, the point α = 0 is situated below the
contour Γ and for |α| < 1 the radical γ(α) is defined by the condition Imγ < 0.

Applying the Wiener-Hopf technique to a solution of the integral equation (7)
(since the details on the approximation may be found elsewhere [10], only a brief
summary is given here) we have

fg(k; l, ν) = 4i cos θ0
sin x(l1 − ν1)

l1 − ν1
+ O

(
x−3/2

)
, x = ka, x >> 1. (8)

Let us assume now that a strip is partially debonded from the surrounding
matrix (see Fig. 2). In this case we have the following boundary conditions:

Φ3(x1) = 0, d < x1 < a,

u+(x1) = 0,
∂u−(x1)
∂x1

= 0, −a < x1 < d,

where ± denote the upper and lover faces of the strip.
For this problem we can obtain a system of hypersingular integral equations

for determination of Φ1(x1) and Φ3(x1) as follows [11]:

Φ1 (x1) + k
∫ a

−a
Φ3 (p) K1 (k |x1 − p|) dp = q1 exp (ikl1x1) , −a < x1 < d, (9)

Φ3 (x1) + k
∫ a

−a
Φ1 (p) K3 (k |x1 − p|) dp = q3 exp (ikl1x1) ,

k
∫ a

−a
Φ1 (p) K3 (k |x1 − p|) dp = −2 exp (ikl1x1) , d < x1 < a,

K1 (|z|) =
1

2π

∫
Γ

γ (α) e±iαzdα, q1 = −2i cos θ0, q3 = −2.

The scattering amplitude has a form

f (k; l, ν) = −k
∫ a

−a
Φ1(y1) + e−ikν1y1dy1 − kν3

∫ d

−a
Φ3 (y1) e−ikν1y1dy1. (10)
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The asymptotic expansion of solutions of integral equation (9) we seek in the
form Φβ(x1) = Φ+

β (x1), β = 1, 3 for k(a + d) >> 1 and Φ1(x1) = Φ−1 (x1) for
k(a − d) >> 1, where function Φ+

β (η) = Φβ(−a + ηk−1)eixl1 and Φ−1 (η) = Φ1(a −
ηk−1)e−ixl1 satisfy the convolution equations

Φ+
1 (η) +

∫ ∞

0
Φ+

3 (ζ)K1(|η − ζ |)dζ = q1 exp(iηl1), 0 < η < ∞, (11)

Φ+
3 (η) +

∫ ∞

0
Φ+

1 (ζ)K3(|η − ζ |)dζ = q3 exp(iηl1),∫ ∞

0
Φ−1 (ζ)K1(|η − ζ |)dζ = q3 exp(iηl1).

The Fourier transform can be employed to reduce the integral equations (11)
to the Wiener-Hopf equations. As follow from results obtained previously [12] the
explicit expression for Φ−1 (x1) and Φ+

β (x1) read

Φ−1 (x1) = Φ+
1 (x1) = q1eikx1 sin θ0 ,

Φ+
3 (x1) = q3D

eik(a+x1)
√

k(a + x1)
,

D =
1

2
√

2π
eiπ/4e−ixl1

[
cos φ
1 − ν1

cos θ0 + sin φ
]
, φ = 1/4(π/2 + θ0),

where D is the diffraction coefficient at the left inclusion end.
Thus for the scattering amplitude f (k; l, ν) (10) as k(a + d) >> 1 and x >> 1

we have

f (k; l, ν) = fg (k; l, ν) + 4iν3Deixν1
1

√
1 − ν1

∫ √
x(1+δ)(1−ν1)

0
eit2dt, δ = d/a. (12)

3. Results

On Figs. 3 and 4 the frequency dependence of the normalised TCS σ∗ =

σ(0)/2a for δ = 0 and δ = −0.5 correspondingly are plotted. The solid curve
presents the numerical results obtained from Eq. (7) using the complete system of
the Chebyshev polynomials of the first kind to determine the unknown function
Φ1(x1) [10].
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Figure 3: The normalised TCS versus x for θ0 = 0 and δ = 0.

Figure 4: The normalised TCS versus x for θ0 = 0 and δ = −0.5.

At the same time σ∗ = 2 for x >> 1 as follows from the Eq. (8). The cor-
responding numerical results (dashed curve) for partially debonded inclusion are
obtained using the formula (12). It is easy to notice that these results with high
probability can be interpreted as one-dimensional dataset with some noise for a
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hard inclusion in high frequency domain. At the same time, these deviations are
the contribution of the edge waves in TCS data for the debonded inclusion.

4. Conclusion

In many signal processing applications the noise is irrelevant or erroneous data.
Usually noise is the result of an imperfect data collection process. Data derived
from sensors may contain measurement errors. Removing the noise is an impor-
tant task in data cleaning process as noise hampers most types of data analysis.
However, in some applications the outlying data can be interpreted as the noise,
but in reality are caused by a specific physical phenomenon.

In this paper the study of high-frequency scattering of acoustic plane waves
by a hard strip and debonded hard strip is used to show that the one-dimensional
datasets (TCS data) for both problems are similar in the high frequency domain and
the use of different filters in signal processing for removing outliers and smoothing
the input data is not always justified.
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