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Abstract. This paper introduces an approach to outlier mining in the context
of a real-world dataset containing information about the mobile transceivers
operation. The goal of the paper is to analyze the influence of using different
similarity measures and multiple values of input parameters for the density-
based clustering algorithm on the number of outliers discovered during the
mining process. The results of the experiments are presented in section 4 in
order to discuss the significance of the analyzed parameters.
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1. Introduction

Outlier detection is a fundamental issue in data mining, it has been specif-
ically used to detect and remove anomalous objects from data. Data mining, in
general, deals with the discovery of nontrivial, hidden and interesting knowledge
from different types of data. With the development of information technologies,
the number of databases and their dimensions and complexity, has grown rapidly.
One of the basic problems of data mining is outlier detection. The identification of
an outlier is affected by various factors, many of which have become the subject of
practical applications such as in the public health or finance field. In the first case
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(public health), outlier detection techniques help to detect anomalous patterns in
patient medical data which could be symptoms of an ailment. In the second ex-
ample, outlier detection methods can identify suspicious credit card transactions.
Generally, outliers are the points which are different from or inconsistent with the
rest of the data. It can be novel, new, abnormal, unusual or noisy information thus
it is often more interesting than the majority of the actual data.

The article presents the analysis of the influence of different clustering param-
eters on the results of the final clusters’ structure and their ability to mine outliers.
Another important issue addressed in the experiments is the sampling of the dataset
and its effect on the clustering structure.

1.1. The structure of the article

The paper is organized as follows. In the next section related approaches to
outlier detection and their classification is presented. Moreover, the motivation for
detecting outliers in a real-world dataset containing information about the mobile
transceivers operation was stated.

In section 3 the reasons for selecting the DBSCAN density-based algorithm
were introduced. What is more the aspects of choosing optimal initial parameters
and the notion of clustering quality was discussed.

The next section focuses on the carried out experiments. The structure of the
dataset was described as well as the methodology of all experiments was presented.
All experimental results were commented in detail with regards to the clustering
structure, its quality and outlier presence.

The last section presents the summary and conclusions from the performed
experiments.

2. Related works

In the literature, there are a number of extensive reviews discussing anomaly
detection approaches [1, 2, 3]. A recent review of the anomaly detection prob-
lems, techniques, and application areas is presented in [4, 5]. The anomaly de-
tection techniques can be classified as statistical approaches and distance-based
approaches. The aim of the first type of techniques is to develop a statistical
model of the data and identify data that does not fit into the model, whereas the
aim of the second type (distance-based approaches) is to measure the distance
between data – anomalies are data for which the distance is greater than some
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given threshold. An example of an algorithm from the distance-based approaches
is DBS CAN (Density-Based Spatial Clustering of Applications with Noise) [6] -–
one of the most popular and effective algorithm for finding anomalies. The aim of
the DBS CAN algorithm is to discover abnormal points that do not fit any of the
clusters.

The authors for last few years have been working on real-life data containing
information about the mobile transceivers operation. The functioning of those de-
vices is regulated by a particular controller mounted typically in a base station.
In [7] the authors included the results of research which was based on the detec-
tion of the most problematic transceivers (characterized by a high average level of
unavailability and high number of registered events) using clustering algorithms
and visualization techniques. Based on the results, the mobile telephony provider
can optimize the network structure, which should directly translate into improving
the quality of offered services. Thus the possibility of detecting outliers as soon as
possible is so important in this area.

3. The DBSCAN algorithm

Authors of this paper have selected the DBS CAN density-based algorithm as
a basis for discovering trends and relations between objects (like network devices).
This method has several advantages over traditional hierarchical or partitioning
approaches like: the possibility to discover groups of irregular shapes and sizes,
resistance to outliers and a relatively low computational complexity1. Also pre-
liminary experiments on a dataset gathering information about mobile transceivers
(described in detail in [9]) confirmed that it is possible to apply the mentioned tech-
nique with success in an information retrieval task2. Unfortunately, when dealing
with large volumes of data, the DBS CAN algorithm can also create a large num-
ber of clusters, which makes their analysis difficult (in the context of knowledge
discovery or extraction). That is why the research process should be supported by
the usage of clustering visualization methods, which were analyzed by the authors
in pararell. The results of the research on using different techniques for clusters
visualization were included in previous authors’ research [7].

1When using index structures, like R-trees[8], the average computational complexity is about
O(log n), where n is the number of instances [6].

2Other approaches to the problem of clustering large volumes of complex data were discussed
by authors of this paper in [10].
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3.1. Parameter estimation

Every data mining task has the problem with choosing the right initial values of
input parameters. Every parameter influences the algorithm in a specific way. For
the DBS CAN algorithm, two parameters – ε and MinPts – are needed. The first
one (ε) has a big impact on how coherent the clusters are (that is how similar are
the objects inside one cluster) and the second parameter (MinPts) controls how
big the created clusters should be. The main idea of the DBS CAN algorithm is
based on the ε-neighborhood concept (see definition 1).

Definition 1 The ε-neighborhood of object p (denoted by Nε(p)) is defined as:

Nε(p) = q ∈ D|dist(p, q) ≤ ε, (1)

where D is the dataset, dist(p, q) states the dis-similarity between object p and q,
whereas ε is the maximum neighborhood radius. The ε-neighborhood of object p
thus are all those objects q, which distance from p is less or equal than the given
threshold ε.

The definition 1 can lead to a conclusion that to form a valid cluster by us-
ing the DBS CAN algorithm, there should exist at least MinPts objects in a given
ε-neighborhood. This is only partially true, as one can distinguish two types of ob-
jects in a cluster: a so called core and border point. Core points are objects in the
center of the cluster and border points are objects on its border. It is obvious that the
ε-neighborhood of a core point contains more objects than the ε-neighborhood of
a border point. And therefore the DBS CAN algorithm uses the notions of density-
reachable and density-connected points to form a cluster. This definitions are dis-
cussed in detail in [6], but still relay greatly on the values of ε and MinPts which
must be specified by the user.

Another very important aspect is the distance or similarity measure between
objects used in every step of the clustering algorithm. The choice of a particular
distance function is tightly coupled to the choice of ε values, and has a major
impact on the results. In general, it will be necessary to first identify a reasonable
measure of dissimilarity for the dataset, before the optimal values of ε parameter
can be chosen. In this research two, well known distance measures are used: Gower
and Hamming. The first mentioned measure can be expressed as follows:

GowerDistance(pi, p j) = 1 −
∑n

k=1 si jkwi jk∑n
k=1 wi jk

, (2)
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where p j and pi are analyzed objects, n is the number of attributes, wi jk expresses
the weight connected with the particular attribute and si jk is dependent on the at-
tribute type. The weight (wi jk) is always set to 1, because all the attribute values
are known and have the same importance in the clustering process. For qualitative
the si jk equals 1 if compared objects do not differ by the analyzed attribute value
or 0 otherwise. For quantitative data si jk is expressed as:

si jk = 1 −
|xik − x jk|

Rk
, (3)

where xik and x jk are values of the k-th attribute for both objects, and Rk is the
difference between the maximal and minimal value of the k-th attribute.

The Hamming distance was defined as follows:

HammingDistance(pi, p j) =

n∑
k=1

si jk (4)

where p j and pi are analyzed objects, n is the number of attributes, and si jk equals
0 if compared objects do not differ by the analyzed attribute value or 1 otherwise.

Therefore, the main goal of this research is based on the evaluation of different
values of the DBS CAN input parameters which have an influence on the clustering
efficiency. The aspects analyzed in this research are as follows:

• clustering parameters for DBS CAN algorithm: ε and MinPts,

• different similarity measures.

3.2. The pseudocode of DBSCAN algorithm

The general operating principle of the DBS CAN algorithm can be presented
in following points:

1. Select an object p from the dataset.

2. Determine all density-reachable objects from the current one, with regard to
the ε and MinPts parameters:

(a) if p is a core point, form a cluster,
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(b) if p is a border point and no other object is density-reachable from p,
select another object from the dataset (and continue from the second
step).

3. Continue from the first step until all objects from the dataset are analyzed.

The first step in the algorithm is to draw the object p, and to designate all
objects that are density-reachable from the object p (given ε – the maximum radius
of the neighborhood and MinPts – the minimum number of objects in a group). If
p can be considered as a core point, this results in the creation of the first cluster.
If p is a border point, that means that no object is density-reachable from p and
so the algorithm chooses another object from the dataset. This process is repeated
until all objects from the input data collection are analyzed. Objects not classified
to any cluster are marked as information noise [6].

3.3. The quality of created clusters

In order to determine the optimal input parameters for the density-based algo-
rithm, several clusterings were created, each with different values of ε and MinPts
parameters. The quality of the generated clusterings was rated based on the fol-
lowing cluster evaluation measure:

clustering quality =

∑m
i=1

∑
p∈Ci dist(p,ui)
|A|·|Ci |

m
(5)

where m – number of generated clusters, Ci – ith cluster, dist(p, ui) – distance [11]
between an object p (belonging to cluster Ci) and the cluster’s representative ui, |A|
– number of attributes in the dataset, |Ci| – number of objects belonging to cluster
Ci.

The formula expressed in equation 5 measures cluster cohesion. Values closer
to zero represent a better clustering (in terms of overall quality), whereas values
closer to one designate the opposite. Because the density based algorithm can (for
specific values of input parameters) generate clusters consisting of single objects
(which can be regarded as outliers), in such case the distance of the object to its
cluster representative is set as maximum. This way, the formula will not promote
such clusters (consisting of only one object).

Cluster cohesion is only one of several other internal3 cluster validity mea-
3Internal indexes (criteria) are used to measure the quality of a clustering structure without re-

spect to external information like externally supplied class labels.
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sures. One could also measure separation (to detect how distinct or well-separated
a cluster is from others), but authors believe that cohesion is even more important,
because it allows to check whether the data (objects) within groups are really well
assigned to clusters – if there is a sufficient level of similarity between objects
belonging to the same cluster. In the domain literature [11, 4] there are defined
several cluster validity measures based on cohesion and separation (like Sum of
Squared Error or the Silhouette Coefficient) and could be used in addition to the
measure presented in equation 5.

4. Experiments

In this section the structure of the analyzed cell_loss dataset and the method-
ology of the carried out experiments were described. Furthermore the obtained
experiment results were presented and discussed in detail.

4.1. Structure of the cell_loss dataset

The dataset being analyzed in this work for outliers contains information about
the mobile transceivers operation. Those devices are called cells and their function-
ing is regulated by a particular controller mounted typically in a base station. The
information was gathered for a period of 9 months, starting April 2010. This re-
sulted in creating 143486 objects (records), described by 19 attributes, saved in
one database table. As such, each cell has assigned a particular vendor, controller,
geographic location and its degree of availability, work orders (like for mainte-
nance) and measurement date and time tracked. The structure of one data record
was described in detail in our previous work [7]. For the purpose of the experi-
ments carried out in this work, 14 attributes were selected in the clustering process
(based on the domain experts suggestion) – the cell and event identifiers, start and
end event times and degree of inaccessibility expressed as a real number were
omitted. More details for an analyzed dataset is included in the [7].

Another important issue addressed in the experiments is the sampling of the
dataset. Several clustering algorithms (including CLARA [11] and CURE [12])
reduce the size of input by drawing a random sample from the entire dataset to
discover groups in large datasets. Unfortunately the reduction in input data due to
sampling can affect the efficiency of a cluster analysis algorithm (in terms of clus-
tering quality). Even the creators of CURE state that „since we do not consider the
entire dataset, information about certain clusters may be missing from the input.
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As a result, our clustering algorithms may miss out certain clusters or incorrectly
identify certain clusters” [12].

4.2. The methodology

The goal of the experiments was to check whether choosing of different sim-
ilarity measures and/or clustering parameters influences the possibility of finding
outlier-type data. Thus, in this section, experimental evaluation of two similarity
measures and different values of two input parameters of the DBS CAN algorithm
(ε, MinPts) and their influence on the success of discovering outliers in data is
presented. The experiments are provided for one dataset, which was preprocessed
in order to get smaller pieces of data. In order to do that, the whole dataset (100%
of data) is divided and compared to its 1%, 10%, 25% and 50% chunk. This step
resulted in the creation of 5 different (considering their size) datasets. During the
experiments, the authors examined the strength of the significant differences in the
values of the number of created clusters, the number of discovered outliers, and
others valueable information about the outliers in a given dataset, when a particu-
lar similarity measure and/or values of ε and MinPts parameters were used.

To evaluate the effect of the ε and MinPts parameters on discovering anoma-
lies, we set them to different values and analyzed the results. As ε strongly depends
on the similarity measure, its set of possible values is {1, 2, 3, 4} for the Hamming
measure or {0.1, . . . , 0.9} (with a step of 0.1) for the Gower similarity measure.
The MinPts value is always one of the following: {1, 2, 3}. It means that for each
of the datasets (1%, 10%, 25%, 50% and 100%) there were 27 experiments for the
Gower’s measure and 12 for the Hamming’s measure 4.

During the data mining process a lot of interesting information was recorded:
how many outliers are in the data, what is their percent in the whole data, how
many clusters are below the given threshold, how many objects are included in
such clusters (below a given threshold), how many of them are so called singletons
(a cluster with only one object inside of it) and how many small clusters contain at
least two objects but less than a given threshold, and last but not least, the quality
of created clusters. All these information were examined in this research and the
results of the experiments are presented in Tables 1 and 2. The definition of the
rows in Tables 1 and 2 are as follows:

427 is the number of all possible combinations calculated by using 9 values for ε and 3 values for
MinPts, while 12 is the number of all possible variations of using 3 values for MinPts and 4 values
for ε.
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• S ingleton – number of clusters containing only one object,

• S ingleton% the percentage of singleton clusters in the whole dataset,

• #C_ltT – the number of the clusters which size is below a given threshold,

• #C_ltT% – the percentage of the clusters which size is less than a given
threshold,

• #OiC_ltT – the number of objects in clusters which size is less than a given
threshold,

• #OiC_ltT – the percentage of the number of objects in clusters which size
is less than a given threshold,

• #C_ltTwoS – the number of clusters which size is below a given threshold
excluding singleton clusters,

• #C_ltTwoS – the percentage of the number of clusters which size is below
a given threshold excluding singleton ones,

• CQ – the quality of created clusters.

4.3. Results

Table 1 presents the results of the comparison of using two different similarity
measures for the DBS CAN algorithm used in the outlier mining process. N denotes
the number of cases in which a given measure was used.

It is possible to see that there is a statistically significant difference between
used similarity measures (Gower, Hamming) in values of such parameters like the
number of created clusters (#C), the number of so-called singleton data (S ingleton),
the number of discovered anomalies (Out, Out%) as well as the number of clusters
noted as too small (because their size is smaller than a given threshold T ) to be
a cluster (#C_ltTwoS ) and the number of instances inside the clusters which are
too small (#OiC_ltT ). When the Gower measure is used, the smaller number of
clusters as well as anomalies are created. This similarity measure leaves smaller
number of instances as singletons after the clustering process (what means that
more instances are noticed as similar to others and belong in one group).
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Table 1: Similarity measures vs. examined clustering parameters for the cell_loss
dataset

Parameter Gower (N=108) Hamming (N=87)
#C 71.74 ± 119.66 805.71 ± 1648.59
Out 57.12 ± 115.37 564.74 ± 1266.00
%Out 0.01 ± 0.04 0.04 ± 0.13
#C_ltTwoS 70.68 ± 119.68 801.16 ± 1642.65
#C_ltTwoS % 0.53 ± 0.47 0.79 ± 0.35
CQ 0.82 ± 0.23 0.75 ± 0.20
#OiC_ltT 283.69 ± 482.07 6393.54 ± 15180.32
#OiC_ltT% 0.02 ± 0.04 0.13 ± 0.21
T 577.25 ± 564.11 479.69 ± 433.31
#C_ltT 70.68 ± 1119.68 801.16 ± 1642.65
#C_ltT% 0.53 ± 0.47 0.79 ± 0.35
S ingleton 20.04 ± 58.42 206.89 ± 655.34
S ingleton% 0.004 ± 0.02 0.02 ± 0.08

What is also important, there is a statistically significant difference in the qual-
ity of created clusters between the results achieved for the Gower measure in com-
parison to the Hamming distance. It can be said that the usage of the Gower mea-
sure results in creating better clusters in the terms of quality (CQ). The comparison
of using these two similarity measures is presented in the figure 1.

Figure 1: Comparison of results obtained by using the Gower and Hamming dis-
tance.
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The aim of the second experiment (which results are presented in Table 2)
was to determine the effect of sampling on the values of the size and the number
of created clusters as well as the number of outliers discovered in the clustering
process (which can be important e.g. in the task of searching through a cluster
structure). In order to achieve this, four new datasets were created by reducing the
original dataset (cell_loss) to respectively 1%, 10%, 25% and 50% of instances.
To each one of the datasets a density based clustering algorithm was applied.

The only statistically significant difference can be seen in the quality of created
clusters (CQ) and the number of instances in the clusters for which the size was
smaller than a given threshold (#OiC_ltT ). Obviously the number of instances in
the dataset for which the clusters are built has a significant impact on the quality
of created clusters: the smaller the dataset is the higher is its clustering quality. It
can be easily explained. When we have a small number of instances from a given
area, they are usually quite coherent, so the quality of the clusters which would be
created from such data would be high enough. When the number of instances is
too big, there is a bigger chance that some noise in data would appear, which def-
initely decreases the quality of the formed clusters. The explanation for achieving
a smaller number of instances in the clusters smaller than a given threshold is also
quite simple. The more instances we have in general to explore and to process, the
more instances can be noticed as dissimilar to others and included in separate clus-
ters what results in creating many small clusters (with size is smaller than a given
threshold).

It was very important, during this research, to find the optimal values for ini-
tial clustering parameters as ε and MinPts. The authors, taking into account the
specification of the domain data, decided to examine three values of the MinPts
parameter. Value higher than 3 would probably result in a greater number of single-
ton clusters, and thus the number of anomalies, discovered in such data. Having too
many outliers discovered in data, it would be problematic to finally decide which
of them are real outliers and which of them were marked as outliers because of
poorly chosen input parameters (and not because they would really be anomalies).

Table 3 contains information about clusters and outliers, discovered by the
DBSCAN algorithm and using different values of the MinPts parameter. In the
first row of the Table 3 values: 1,2 and 3 for parameter MinPts are given.

The statistically significant difference between given values of the MinPts pa-
rameter can be seen in the number of outliers (#Out), the number of instances that
created a singleton clusters (S ingleton) as well as in the quality of the created
clusters (CQ). The greater the value of the MinPts is, the greater the number of
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Table 2: The size of the dataset vs. examined clustering parameters

Parameter
Dataset size

1% 10% 25% 50% 100%
#C 34.78 ±

59.93
303.87 ±
812.84

426.79 ±
1122.97

452.31 ±
1214.49

649.79 ±
1684.24

#Out 56.04 ±

104.54
338.67 ±
909.02

383.64 ±
1118.35

330.04 ±
970.81

225.28 ±
781.24

%Out 0.04 ±

0.07
0.02 ±

0.06
0.01 ±

0.03
0.05 ±

0.16
0.001 ±

0.01
#OiC_ltT 70.41 ±

99.55
1058.64±
2508.52

2239.05±
5602.62

3129.31±
8884.75

7609.49±
19888.99

#OiC_ltT% 0.05 ±

0.07
0.07 ±

0.17
0.06 ±

0.16
0.09 ±

0.19
0.05 ±

0.14
#C_ltT% 33.52 ±

59.89
301.95 ±
810.91

424.10 ±
1118.85

448.96 ±
1209.51

646.56 ±
1677.93

#C_ltT 0.56 ±

0.45
0.64 ±

0.45
0.64 ±

0.45
0.71 ±

0.41
0.64 ±

0.45
T 14.0±0.0 143.31 ±

0.47
359.31 ±
0.47

551.59 ±
301.17

1435.0 ±
0.0

#C_ltTwoS 33.52 ±

59.89
301.95 ±
810.91

424.10 ±
1118.85

448.96 ±
1209.51

646.56 ±
1677.93

#C_ltTwoS % 0.56 ±

0.45
0.64 ±

0.45
0.64 ±

0.45
0.71 ±

0.41
0.64 ±

0.45
CQ 0.93 ±

0.08
0.87 ±

0.12
0.81 ±

0.16
0.76 ±

0.21
0.62 ±

0.29
S ingleton 19.56 ±

47.47
134.72 ±
519.36

139.92 ±
577.15

116.84 ±
461.41

76.03 ±

364.60
S ingleton% 0.01 ±

0.03
0.01 ±

0.04
0.01 ±

0.02
0.02 ±

0.10
0.0005 ±
0.003

outliers (probably because it was impossible to find at least MinPts neighbors for
a given instance what results eventually in marking it as an outlier). The greater the
number of MinPts is, the higher the quality of created clusters (which is obvious).

To examine the second clustering parameter, which is ε, it is necessary to ana-
lyze the results of changing its values, separately for both analyzed similarity mea-
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Table 3: The values of the MinPts parameter vs. examined clustering parameters

Parameter
MinPts value

1 2 3
#C 643.60 ± 1613.49 333.40 ± 948.10 220.62 ± 694.22
#Out 0.0 ± 0.0 310.2 ± 737.52 540.58 ± 1294.81
%Out 0.0 ± 0.0 0.03 ± 0.10 0.05 ± 0.13
#OiC_ltT 3291.40 ±

11102.86
2981.20 ±

10584.68
2756.26 ±

10133.85
#OiC_ltT% 0.09 ± 0.20 0.06 ± 0.14 0.05 ± 0.12
#C_ltT% 0.69 ± 0.44 0.65 ± 0.44 0.59 ± 0.43
#C_ltT 641.02 ± 1608.79 330.82 ± 943.43 217.92 ± 689.77
#C_ltTwoS 641.02 ± 1608.79 330.82 ± 943.43 217.92 ± 689.77
#C_ltTwoS % 0.69 ± 0.44 0.65 ± 0.44 0.59 ± 0.43
CQ 0.74 ± 0.23 0.74 ± 0.23 0.88 ± 0.15
S ingleton 310.2 ± 737.52 0.0 ± 0.0 0.0 ± 0.0
S ingleton% 0.03 ± 0.10 0.0 ± 0.0 0.0 ± 0.0

sures Gower and Hamming. The results for this research are included in Tables 4
and 5.

Both tables confirm the following conclusion: the greater the value of the ε
parameter, the smaller the number of created clusters, discovered anomalies in
data and all other parameters analyzed in the research. It can be also observed,
that there is such a moment during changes of ε when the differences are strongly
visible.

For the Gower measure, the most drastic change happens when the ε is in-
creased from 0, 3 to 0, 4 and from 0, 5 to 0, 6. For the Hamming measure, such an
important change is when we increase the ε from the value of 3 to 4.

The experiments described in this section were to confirm that the choice of
optimal clustering parameter values is very important when we want to achieve
a structure of coherent clusters with the usage of an density-based algorithm like
the DBSCAN. The results presented in the Tables 1, 2, 3, 4 and 5 show that some-
times, badly chosen parameter values may produce too many small clusters which
will be marked as outliers, even if they are not anomalies at all. On the other hand,
choosing too large values of some clustering parameters, may produce too many
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Table 4: The influence of ε on outlier mining efficiency – the Gower measure

ε #C #Out S ingleton #C_ltT #OiC_ltT #C_ltTwoS CQ
0.1 215.6 ±

135.48
187.80±
179.74

61.93 ±
101.45

214.13±
136.12

829.60 ±
450.38

214.13 ±

136.12
0.67±
0.19

0.2 213.53±
138.44

171.07±
163.88

61.93 ±
101.45

212.53±
138.44

822.73 ±
461.42

212.53 ±

138.44
0.67±
0.19

0.3 213.53±
138.44

171.07±
163.88

61.93 ±
101.45

212.53±
138.44

822.73 ±
461.42

212.53 ±

138.44
0.67±
0.19

0.4 12.73 ±
13.79

14.8 ±

18.71
5.67 ±

12.20
11.73 ±
13.79

22.80 ±
15.94

11.73 ±

13.79
0.72±
0.22

0.5 12.73 ±
13.79

14.80 ±
18.71

5.67 ±

12.20
11.73 ±
13.79

22.80 ±
15.94

11.73 ±

13.79
0.72±
0.22

0.6 1.20 ±
0.77

0.40 ±

1.06
0.20 ±

0.77
0.20 ±

0.77
0.20 ±

0.77
0.20±0.77 1.00±

0.0
0.7 1.07 ±

0.26
0.13 ±

0.35
0.07 ±

0.26
0.07 ±

0.26
0.07 ±

0.26
0.07±0.26 1.00±

0.0
0.8 1.0 ±

0.0
0.0±0.0 0.0 ± 0.0 0.0±0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ±

0.0
0.9 1.0 ±

0.0
0.0±0.0 0.0 ± 0.0 0.0±0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ±

0.0

Table 5: The influence of ε on outlier mining efficiency – the Hamming measure

ε #C #Out S ingleton #C_ltT #OiC_ltT #C_ltTwoS CQ
1 3430.40±

2579.54
2358.67±
2231.80

865.27±
1372.85

3414.60±
2572.18

27949.33±
26431.52

3414.60 ±
2572.18

0.66±
0.20

2 939.47 ±
659.48

631.20±
603.58

230.13±
370.09

932.67±
661.41

8195.00±
7834.77

932.67 ±

661.41
0.66±
0.19

3 138.27 ±
101.07

125.07±
128.70

46.60 ±
81.67

137.27±
101.07

445.93 ±
185.84

137.27 ±

101.07
0.67±
0.20

4 9.13 ±

12.90
11.73 ±
17.09

4.80 ±

11.35
8.13 ±

12.90
13.87 ±

14.23
8.13 ±

12.90
0.82±
0.16

clusters, which usually are small, and in the case of clustering large datasets it may
hinder the task of searching through such a structure.
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5. Summary

This article presents the evaluation of using a density-based DBSCAN algo-
rithm in the context of outlier discovery in a real-world dataset containing infor-
mation about the mobile transceivers operation. Related works in the field of out-
lier detection and the motivation for choosing the density-based algorithm were
introduced. The issue of sampling of the dataset, optimal input parameter values
selection and their impact on the resulting clustering structure was discussed.

The results from the experiments clearly show that in order to achieve a struc-
ture of coherent clusters, one has to carefully select the proper similarity measure
(by considering multiple measures and examining the obtained results) as well
as pay much attention in choosing the optimal values of input parameters for the
given clustering algorithm. It is especially important because badly chosen param-
eter values may produce too many small clusters which will be marked as outliers,
even if they are not anomalies at all.
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