
JOURNAL OF APPLIED
COMPUTER SCIENCE
Vol. 25 No. 2 (2017), pp. 69-88

Resolving Classical Concurrency Problems
Using Outlier Detection

Mateusz Smoliński1

1Lodz University of Technology
Faculty of Technical Physics, Information Technology and Applied

Mathematics/Institute of Information Technology
ul. Wólczańska 215, 90-924 Lodz, Poland

mateusz.smolinski@p.lodz.pl

Abstract. In this paper outlier detection is used to determine anomaly be-
tween tasks to prevent occurrence of resource conflicts in prepared sched-
ule. Determined conflictless schedule bases on controlling access of tasks
to groups of shared resources. Proposed approach allows to prepare con-
flictless schedule of efficient parallel task processing without resource con-
flicts and is dedicated to environments of task processing with high con-
tention of shared resources. In this paper the outlier detection is used to
resolve two classical concurrency problems: readers and writers and dining
philosophers. In opposition to other known solutions of concurrency prob-
lems, proposed approach can be applied to solve different problems and do
not require to use additional mechanisms of task synchronization. The uni-
versality of proposed approach allows to prepare conflictless schedule even
in environments, where classical concurrency problems will be significantly
expanded and complicated.
Keywords: Resource conflict as outlier, mutual exclusion, deadlock avoid-
ance, cooperative concurrency control, adaptive conflictless scheduling.



70 Resolving Classical Concurrency Problems Using Outlier Detection

1. Introduction

Task processing in modern computer architectures is often performed in par-
allel. Taking the general task definition as sequence of instructions, which create
separate execution path that process data, that definition corresponds to many task
processing environments. For example, tasks can be determined as single process
thread, tasklet or transaction. If parallel processed tasks use disjoint resource sets,
there is no need to synchronize them. In the situation where two tasks executed
in parallel require to use the same instance of shared resource and at least one of
them perform write operation on this resource then conflict occurs [1, 2]. Then
program developer encounter difficulties, because he has to take into account all
dependencies between tasks and respectively includes them in controlling access to
shared resources. The software developer is responsible for the selection of proper
scheduling algorithm and synchronization techniques to the specific concurrency
problem. Also protection from task starvation or uneven allocation of shared re-
sources is the demanding job. Additionally in task processing environments, many
occurrences of resource conflict can cause the tasks deadlock, which is the worst
situation in task processing, because all tasks participating in deadlock have no
progress in execution. Along with the increasing the number of resource depen-
dencies between tasks the difficulty in development of correct program increases.

The developer can use adaptive conflictless scheduling, which is an alterna-
tive to existing synchronization techniques (i.e. Two Phase Locking or Hierarchy
of Resources [3, 4]) used in known solutions of concurrency problem to provide
parallel tasks processing without resource conflicts. The task execution plan de-
termined by adaptive conflictless scheduling guarantees that no resource conflicts
occur between tasks processed in parallel. The software developer, which uses
adaptive conflictless scheduling is only obligated to determine each task bound-
aries with all required by this task shared resources.

The concept of conflictless scheduling bases on binary representation of tasks
resources. The concept of rapid anomaly detection between tasks allows to prepare
the conflictless schedule for the specific state of environment. The global conflict-
less schedule is adaptive, because it is composed as a sequence of conflictless
schedule determined to the specific environment state. Therefore the effective de-
tection of resource conflicts in successive environment states is required to prepare
adaptive conflictless scheduling. To prepare adaptive conflictless schedule a ded-
icated model of task resources representation and additional data structures like
task classes or conflict array are required [5, 6]. This approach was extended by



M. Smoliński 71

using association rules [7]. Adaptive conflictless scheduling can be applied only in
task processing environments that meets all criteria presented in next section.

1.1. Outliers detection in high contention environment

The resource contention occurs when multiple tasks executed in parallel at-
tempt to use at least one of shared resources. This means that not all resource
contentions generate resource conflict. The resource conflict do not occur in con-
tention situation, when all operations requested by tasks on shared resource do not
change its state. Otherwise, the resource conflict occurs during the contention. In
task processing environment where tasks at the same time read and write the same
instance of resource, the higher level of contention causes more resource conflicts.
The conflictless task scheduling is recommended to use in task processing envi-
ronments with high level of contention and limited number of reusable, shared
resources, which state can be changed by tasks.

Assuming that the task execution time does not have to be known a priori and
shared resource states are changed as a result of not coordinated task executions
in high contention environment, then the resource conflict is a random event. This
event can be considered as a contextual outlier, which base on attributes like time
and resources representation for tasks. Therefore effective outlier detection allows
to prepare schedule, that assures task executions in parallel without resource con-
flicts. The conflictless scheduling approach requires additional assumptions for the
task processing environment, that are presented in the next section. The outlier de-
tection has many applications, this allows to determine anomaly or novelty in large
data sets [?, 8, 9, 10]. There is many techniques of outlier detection, but for de-
tection of resource conflicts in the high contention environment will be used the
dedicated binary model, which includes representation of dependencies between
tasks and shared resources. The usage for task the binary representation of all its
reuired shared resources provides rapid outlier detection.

Each task has dedicated representation of all its shared resources, which can be
assigned statically (i.e. by programmer) or dynamically (i.e. by software manager).
For each task the global resources representation includes two binary resources
identifiers IRW and IR. Each bit position in those binary identifiers represents the
other instance of shared resources. The binary identifier IRWi represents all shared
resources used by task ti that are read (does not change shared resource state) or
written (changes shared resource state). The binary identifier IRi represents all



72 Resolving Classical Concurrency Problems Using Outlier Detection

Figure 1: Task classes with queues.

shared resources used by task ti that are only read.
According to the binary identifiers IRW and IR tasks are grouped into classes.
Each requested task has to be assigned to one of task classes, when task class do
not exist the new one is created. A single class Ck (where k is class identifier)
groups all tasks that have the same values of binary resource identifiers IRW and
IR (def. 1).

Ck = {ti : IRWi = IRWk ∧ IRi = IRk} (1)

Therefore the task class Ci represents group of shared resources with operation
set that is performed on them (with a distinction between read-write, write-only or
read-only on each used shared resource). Each class Ci has also individual FIFO
queue Qi, which sets the local execution order between tasks belonging to this
class. Sample of task classes queues were shown in figure 1, where each superscript
index represents n − th point in time.

IRWiandIRW j = 0 (2)

There is no resource conflict between tasks ti and t j if condition 2 is satisfied.
Otherwise condition 3 has to be verified to detect resource conflict between tasks.
Verification of the condition 2 is recomended only due to performance reason,
because it is simplified in comparison with condition 3.

(IRWiandIRW j)xor(IRiandIR j) , 0 (3)



M. Smoliński 73

And at least one resource conflict between tasks ti and t j occurs, only if con-
dition 3 is satisfied. This condition defines also outlier as conflicted tasks. Applied
outlier detection in events using conditions 2 and 3 are used to create and update
the conflict array Mn. This data structure Mn is a representation of Wait For Graph
and stores all detected resource conflicts between existed classes in n − th point
in time. In the fields of the conflict array instead of storing a nonzero value de-
termined by condition 3, the logical time value of longest waiting task is stored
(only for task from fixed row class). This nonzero value represents at least one
resource conflict between task classes selected by the intersection of the row and
the column in Mn. Otherwise zero value is stored at the intersection of row and
column of conflict array, this stored zero value represents no resource conflicts
between those tasks classes. The conflict array is required to prepare conflictless
schedule S n, that determines from which class queues the tasks can be resumed to
execute them in parallel. Using the conflict array avoids duplications of the same
calculations every time, when conflictless schedule S n was prepared. It is worth to
mention, that prepared conflictless schedule S n is correct only for n − th point in
time, because it is corresponding to specific state of task processing environment.
Time points are determined by events that report a new task or finish one of ac-
tive tasks. Therefore right conflictless schedule has to be determined in each point
in time, their assembly creates adaptive conflictless task schedule S . The whole
problem of conflictless scheduling bases on proper management of class queues,
where is no occurrences of resource conflicts between active tasks.

1.2. Adaptive conflictless task schedule

The adaptive conflictless scheduling fixes execution order for tasks involved in
shared resource conflict and in this way assures mutual exclusion between tasks in
access to shared resources. Presented scheduling takes into account all currently
executed tasks in parallel, that define set of active tasks Rn for n− th point in time.
The usage of adaptive conflictless scheduling requires the assumption that for each
task all set of its shared resources are known in advance and this resource set is
constant. The software developer is obligated to select in program code each task
boundaries, that each selected sequence of instructions specified as a task was as
short as possible [6]. This is similar to separation of critical sections in program,
what is often used in concurrent programming. After marking tasks boundaries in
program the conflitless scheduling can coordinate their executions whereby some



74 Resolving Classical Concurrency Problems Using Outlier Detection

of them, that are involved in shared resource conflict, have to be delayed. To pre-
vent task starvation the fairness rule is applied, so from two tasks that have resource
conflict the younger one is suspended. The suspended task is waiting for execution
in FIFO queue of class, to which this task belongs. However conflictless schedul-
ing guarantees for any suspended task that its execution starts in finite time [11].

The creation of conflictless schedule for n − th point in time requires to pre-
pare an conflictless schedule for each situation, when one of active task from Rn

will be finished. The number of prepared conflictless schedules for n + 1 point
in time is determined by number of tasks in active task set Rn. This is the result
of assumption that execution time of any active task is unknown in advance. Of
course, active task finish has to be reported, even this execution was finished with
error. The completed task free all used resources, so other waiting conflicted tasks
can be executed according to prepared conflictless schedule. Others conflictless
schedules prepared for the same moment of time are useless. Additional structures
like task classes and conflict array, that were presented in previous chapter, are
required to effective prepare conflictless schedule. The outlier detection has to be
used to assure consistency between required data structures and current state of
task processing environment.

Each prepared S n
k conflictless schedule determines classes from that tasks can

be released from FIFO queues, when active task from class Ck finish as a first its
execution in n − th point in time. According to class definition and values of its
binary resource identifiers some of them release only the oldest waiting task, but
the other class can release all waiting tasks from queues [6]. All tasks that release
class queues starts its execution immediately, after that they belongs to active set
Rn. The class, that task was released from its queue and starts its execution, will
be marked as active. In n − th point in time environment state includes set of ac-
tive task Rn that are executed and all tasks waiting for execution in Cn

k class FIFO
queue where k = {1, ...,Nn}, Nn represents number of task classes in n − th point
in time. Each finish of execution for one of active tasks determines next points in
logical time. The next (n + 1) − th point in time can not be determined in advance,
because task execution time is unknown before it is finished.

The algorithm for preparation conflictless schedule assures fairness and live-
ness for all waiting tasks. The prioritization of tasks is not supported in conflictless
scheduling. To prevent occurrence of the task starvation problem in conflictless
scheduling each task besides of two binary resource identifiers IRW and IR has as-
signed a timestamp of logical time. The conflictless schedule preparation includes
checking of logical time to determine the execution order for waiting conflicted



M. Smoliński 75

tasks. According to this rule the oldest conflicted task will be executed first. Ap-
plied rule prevents from the situation, that in next prepared adaptive conflictless
schedules tasks from fixed set of task classes begin execution, but other task classes
queues are never emptying. In some situations (some environments state) many al-
ternative conflictless schedule can exist. Then the arbitration rule choose one of
these alternative schedules. The arbitration rule prevents task starvation, because it
chooses to execution a subset with the oldest conflicted waiting task and that subset
of tasks has no resource conflict with each other. This assures that in conflictless
schedule preparation the oldest waiting task will be preferred than many other task,
that have conflict with the oldest task. This eliminate frequently repeated task set
in conflictless schedule and assures that each waiting task will be executed in finite
time. Taking into schedule all requested tasks causes many exceptional situations.
It is important to note, that adaptive conflictless schedules have to be prepared of-
ten and in parallel, because set Rn has usually many elements. Also minimization
of delays related with computation group of conflictless schedules is important,
therefore isolated computing environment GPGPU (General Purpose computing
on Graphic Processing Unit) was used. The most important feature of GPGPU
is massively parallel processing using GPU (Graphic Processing Unit) with its
memory and computing units. Using GPU as SIMD (Single Instruction Multiple
Data) architecture for scheduling task in SISD (Single Instruction Single Data) is
not novelty, ealier GPU was used for efficient schedule preparation for transaction
processing [12, 13, 14]. How to use GPU to create conflict array and determine
adaptive conflictless schedule with example performance results were presented in
other publications [5].

2. Resolving classical concurrency problems using adaptive
conflictless scheduling with outlier detection

The adaptive conflicteless scheduling in universal approach and can be used to
to solve many concurrency problems. The programmer using conflictless schedul-
ing does not have to choose dedicated synchronization mechanisms or algorithm
for allocation shared resources to executed task. The conflictless scheduling guar-
antees that task execution is realized without interruption due to resource access.
For every one considered in subchapters classical concurrency problem that was
solved using conflictless scheduling will be presented:



76 Resolving Classical Concurrency Problems Using Outlier Detection

• task boundaries,

• binary resource identifiers assigned for tasks.

• task classes and conflict array,

In all considered scenarios the binary resource identifiers are statically assigned
for tasks, also created conflict array is static. All presented concurrency problem
are solved by using adaptive conflictless scheduling in standard and extended con-
figuration of environments.

2.1. Readers and writers concurrency problem

The classical readers and writers concurrency problem was formulated by
Courtois et al. [15]. This classical problem will be presented in two variants: stan-
dard and extended, in both of them the adaptive conflictless scheduling will be
used to solve them.

2.1.1. Solution of standard concurrency problem of readers and writers

In this concurrency problem definition the processing environment has two
type of tasks: readers and writers and single instance of shared resource, known
as a data source. Tasks belonging to readers group are defined as read operation
on the data source. Whereas tasks from writers group determines write operation,
which change state of the data source. It have to be noted, that parallel executions
of writer task with any other task is not possible due to resource conflict, but par-
allel executions of reader tasks is permitted.

According to task definition in classical readers and writers concurrency prob-
lem, there will be distinguished two task classes: readers task class Cr and writers
task class Cw. For determined two task classes resource conflict are detected using
presented outlier detection and stored in conflict array. The conflict array created
for those classes is static, so no updates of this data structure occurs in further
processing. Each new requested reader or writer task has to be verified, to which
class this task belong. Then basing on conflict array shown on the figure 2 the set
of active tasks Rn is determined for any n− th point in time. Those active tasks can
be executed in parallel without resource conflict. Therefore for n− th point in time
only one from two classes can be active and the active class has always at least one
executed task. Always for n− th point in time only single conflictless schedule has



M. Smoliński 77

Figure 2: Conflict array for standard readers and writers concurrency problem.

to be prepared, even in situation where there are many active tasks. This is due to
the fact, that in readers and writers problem all active tasks belong always to the
same class.

The control which of two FIFO queues, that are related respectively with task
class Cw and Cr, should be emptying base on the prepared conflictless schedule.
For readers task class Cr binary resource identifiers IRWr = IRr, so executions
of all waiting in this queue Qr readers tasks will be resumed at once. For writers
task class Cw, where resource binary identifiers IRWw , IRw, therefore only the
longest waiting task can leave class queue and start execution. The longest waiting
task can be determined in simple way, because each queue for task class is man-
aged by FIFO algorithm.

All resources conflict reveals conflict array, which is presented of figure 2.
Prepared conflictless schedule for (n + 1) − th point in time bases on detected re-
source conflicts between classes and analysis of logical time values determined for
the oldest waiting tasks in each class queues that has resource conflict with finished
active task. Preparation of conflictless schedule for (n + 1) − th point in time have
to be done for two mutually exclusive cases. The first case, when active task from
set Rn have one or many readers tasks. The second case, where the active task set
Rn has only single writer task.

Independently for both cases, if the oldest waiting task belongs to writers class
Cw, then after finished execution of active tasks the execution of writer task will be
started. Otherwise, if the oldest waiting task belongs to readers class Cr, then more
readers tasks will be executed in parallel. This choice is determined by time values
of oldest waiting task in queues Qr and Qw denoted respectively as T n

r and T n
w. If

T n
w > T n

r then after finished active writer task another writer task begin execution,
otherwise all waiting readers tasks start execution after writer task execution will
be finished. Those choice prevents task starvation, which theoretically could occur
in situation, when only tasks from the same class will be run. Adaptive conflictless



78 Resolving Classical Concurrency Problems Using Outlier Detection

Figure 3: The example of adaptive conflictless schedule for standard readers and
writers tasks.

schedule guarantees that tasks from all class queues will be regularly released. This
ensures liveness of any task that is controlled by adaptive conclitless schedule.

It should be noted that all finished task executions should be notified, even
where this is the result of the task processing error. Adaptive conflictless schedule
is constructed as a sequence of selected conflictless schedules, each of them is cho-
sen according to finished execution one of active tasks. Every finish of active task
fixes time points, in which according to the prepared conflictless schedule tasks
executions are started.

The figure 3 presents sample adaptive conflictless schedule determined for
readers and writers concurrency problem. Presented tasks belongs to readers class
Cr or writers class Cw and task subscript index shows its logical time value. It
should be noted, that some of presented in figure 3 conflictless schedules are empty
collections i.e. S n+3

r , S n+4
r , S n+5

r . This is a result of logical time verification for
waiting tasks. It is also shown, that many tasks from readers class Cr can be exe-
cuted in parallel, but when writer task is executed, all other tasks have to wait.

The conflictless scheduling guarantees that there is no resource conflict be-
tween parallel executed tasks. Each active task can execute without any additional
delays associated with obtaining access to the required resources. The suspension
of conflicted task causes additional delay, but this is the result of elimination of
resource conflicts between readers and writers.



M. Smoliński 79

Figure 4: Conflict array for extended readers and writers concurrency problem with
three data sources.

2.1.2. Solution of extended concurrency problem of readers and writers

In extended concurrency problem definition the types of tasks remain un-
changed, but there are many independent data sources in task processing envi-
ronment. Each task has statically assigned data source on which performs its read
or write operation. The number of data sources limits the length of binary resource
identifiers IRW and IR.

Then in extended problem definition, the number of task classes doubles the
number of data sources that exists in extended environment of readers and writ-
ers task processing. Reader tasks classes are marked as Cr1, Cr2, ... CrN and for
writers tasks classes are indicated as Cw1, Cw2, ... CwN , where N is number of data
sources. The number in class subscript represents data source identifier, so resource
conflict occurs between each classes Cr and Cw with the same subscript number.
All conflict dependencies between classes are presented in conflict array prepared
for extended classical concurrency problem definition of readers and writers (fig.
4).

Just like in standard classical concurrency problem, definition management of
class queues bases on adaptive conflictless scheduling. For n − th point in time
conflictless schedules are prepared, each one for situation when other one active
task finish execution. However in extended problem definition active tasks can
come from different classes. It is even possible that active tasks from set Rn include



80 Resolving Classical Concurrency Problems Using Outlier Detection

Figure 5: The example of adaptive conflictless schedule for extended readers and
writers tasks with three data sources.

both readers and writers tasks, if only they perform operations on different data
sources. Example of adaptive conflictless schedule for three data sources presents
figure 5.

2.2. Dining philosophers concurrency problem

The classical dining philosophers problem was formulated by Dijkstra, origi-
nally as five computers competing for five tape devices. Dining philosophers prob-
lem was reformulated by Hoare at al. in present form [15, 16].

2.2.1. Solution of standard concurrency problem of dining philosophers

The classical dining philosopher concurrency problem is defined for five phi-
losophers which sit at a round table with forks. Each fork lies between two other
neighboring philosophers. Every philosopher has to change its state form eating to
resting and then again from resting to eating. The philosopher state changes rep-
resents its processing progress, in any state philosopher stays only in finite time.
Before eating each philosopher requires to access two nearest forks, each of them is
exclusive resource. After eating philosopher immediately releases two forks (they
are returned on table) and then philosopher changes his state to resting. In resting
state philosopher does not require any resources.

To use conflictless scheduling task has to be defined as philosopher eating
phase and forks are examples of shared resources. The philosopher represents a



M. Smoliński 81

Figure 6: The conflict array for standard concurrency problem of five dining
philosophers

sequence of tasks that requires identical set of resources. Next task reported by
the same philosopher requires finish of resting phase, which in turn requires finish
of previously reported by him task. According to concurrency problem definition
each fork is shared only by tasks reported by two neighboring philosophers. There-
fore never two tasks reported by neighbor philosophers can eat simultaneously.

In concurrency problem of dining philosophers the number of resource groups
is identical with the number of philosophers. Therefore in solution of five dining
philosophers using conflictless scheduling only five resource class presents. The
minimal length of binary resources identifiers is determined by the number of used
shared resources, which is always identical with the number of philosophers. Each
task class Ck represents group of two forks, which are identified in IRWk binary
representation. Example of binary resource identifiers values for five task classes
Ck, k = 1..5 : IRW1 = (10001)b, IRW2 = (11000)b, IRW3 = (01100)b, IRW4 =

(00110)b, IRW5 = (00011)b. The second binary resources identifier IRk = 0 for
Ck, k = 1..5, because in this concurrency problem there is no shared resources that
are accessed in read only manner. Therefore resource conflict detection between
two task classes is verified using the simplified condition 2.

The conflict array for standard dining philosophers problem is determined for
task classes Ck, k = 1..5 and this structure will be used in preparation of conflict-
less schedules. The determined conflict array in n − th point in time for standard
problem of five dining philosophers is shown on the figure 6. Each class queue has



82 Resolving Classical Concurrency Problems Using Outlier Detection

maximally one task. In n − th point in time the state of task class FIFO queue is
denoted Qn

k and the longest waiting task in FIFO queue Qn
k is marked as T n

k .
The active task set Rn can include tasks belonging to many classes, except for

the task couples that are from directly next classes. To prevent any task starvation
in FIFO queue for each active class Cn

k the class C∗nk has to be determined that
FIFO queue includes the oldest conflicted task. Determination of the class C∗nk re-
quires to find the lowest value of logic time T n

k in column of conflict array that
is assigned to the active class Cn

k . When class C∗nk is determined for each active
class Cn

k , k = 1..count(Rn), then any conflictless schedule S n+1
k does not include

any task, that class has resource conflict with any one of determined classes C∗nk .
This rule assures liveness for all tasks requested by philosophers. Therefore the
deadlock situation, when five parallel tasks reserve only one fork, never occurs.

The example adaptive conflictless schedule for standard concurrency problem
of dining philosophers problem presents the figure 7. On this figure each task is
representing eating phase of selected philosopher and there is no representation
of resting phase for dining philosophers. The presented subscript index for task
determines its logical time value and its class Ck subscript represents philosopher
identifier k = 1..5. Some of conflictless schedules presented on the figure 7 is
empty i.e. S n+3

3 , S n+6
2 . The schedule S n+4

1 includes only task from class Cn+4
2 be-

cause waiting task execution from class Cn+4
4 is blocked by running conflicted task

from active class Cn+4
5 . Therefore execution of task from class Cn+4

4 is running just
in n + 5 point in time after finished execution of task from class Cn+4

5 .
Another important aspect in conflictless scheduling presented on the figure 7

is the number of conflictless schedules that have to be prepared for each point in
time. For n + 1 point in time two schedules S n+1

2 and S n+1
4 should be prepared, but

only one of them will be chosen to execution. For n + 2 point in time also two con-
flictless schedules need to be prepared S n+2

2 , S n+1
5 and for n + 3 point in time three

conflictless schedules are required S n+3
1 , S n+3

3 , S n+3
5 e.t.c.. Generally from prepared

conflictless schedules for n − th point in time only one is used. It should be noted,
that running task sequence is not always consistent with order of its logical time
values. In n + 1 point in time execution of task from class Cn+1

5 is started, that has
logical time value lower than task from class S n+2

3 which execution is started later.
According to conflictless scheduling in some environment situations longer wait-
ing task can be executed later that task from other class.



M. Smoliński 83

Figure 7: The example of adaptive conflictless schedule for standard concurrency
problem of five dining philosophers.

2.2.2. Solution of extended concurrency problem of dining philosophers

Extended concurrency problem concerns the even number of philosophers.
Minimal environment settings considers two philosophers with two shared forks
located on table. Tasks are defined identically as presented in standard definition
of this concurrency problem, but task reported by other philosophers compete for
those two forks. Those forks have to be accessed in mutually exclusive manner.
Interesting is the fact that in this minimal problem definition environment there is
only single task class. This single class FIFO queue determines the tasks execu-
tions order, which is identical with task reporting order. Therefore this minimal
environment settings of dining two philosophers is trivial to analysis adaptive con-
flictless scheduling.

In extended variant of dining philosophers problem will be considered case
with ten philosophers. In this environment in opposite to the minimal problem
definition many tasks can be active. Each of philosophers reports tasks that repre-
sents its eating phase. Tasks reported by the differ philosophers has other shared
resource group, therefore each philosopher has own task class. In this task pro-
cessing environment usage of adaptive conflictless scheduling assures correctness
of task processing, lack of task starvation and no deadlock.

The conflict array presented on figure 8 has been prepared for ten task classes.
Any FIFO queue from that task classes holds tasks reported by the same philoso-
pher. Assuming regular task reporting and fixed resting and eating time for all



84 Resolving Classical Concurrency Problems Using Outlier Detection

Figure 8: The conflict array for extended concurrency problem of dining philoso-
phers

philosophers, the FIFO queues from task classes will be emptied alternately. This
can be observed in example adaptive conflictless schedule presented in figure 9.

If philosophers eating or resting time is different, then in the particular case
adaptive conflictless scheduling two tasks from the same class can be executed se-
quentially. This means that one of philosophers has two eating phases separated
by resting phase, when other was in resting phase. Also in this environment there
will be no task starvation. This fairness rule is a result of taking into account in the
conflictless schedule preparation a unique values of logical time, that are assigned
individually to tasks reported by philosophers.



M. Smoliński 85

Figure 9: The example of adaptive conflictless schedule for extended concurrency
problem of dining philosophers.

3. Conclusions

Event space analysis in task processing environments allows detection of pos-
sible outliers, each one is identified as resource conflict. The outlier detection bases
on dedicated model of task resource representation, this allows to rapid detection
resource conflict. The outlier detection was applied to prepare conflict array for
task classes, that is required to effective preparation of task schedule without re-
source conflict occurrences between tasks executed in parallel. Presented outlier
detection also help to eliminate deadlocks.

The conflictless schedule provides alternative coordination method of tasks
processed in high contention environment with limited number of shared resources.
In presented approach task definition is flexible, therefore software developer can
separate tasks in various task processing environments and prepare adaptive con-
flictless schedule. The adaptive conflictless scheduling was applied to eliminate
unnecessary events like resource conflicts to improve effectiveness of parallel tasks
processing, as a number of completed tasks in a unit of time.

This novel scheduling approach bases on management of FIFO queues, where
each one belongs to other task class. Task class represents group of shared re-
sources and way how task access them with distinction of read/write operations.



86 Resolving Classical Concurrency Problems Using Outlier Detection

Tasks waiting for execution in the same queue have identical shared resource ac-
cess pattern. This means, that execution each of them requires the same group of
shared resources with identical operations of those resources. For task that leaves
FIFO queue its execution is started immediately and becomes an active task. There-
fore adaptive conflictless scheduling bases on resource group allocation to tasks.
The adaptive conflictless schedule is a series of conflictless schedules, where each
one of them was prepared for next point in time. Those time points are determined
by next completed, active tasks. The number of simultaneous calculated schedules
for selected point in time is dependent of the number of active tasks.

The advantage of usage adaptive conflictless scheduling is simplification of
software developer work, because programmer only need to select in program
code tasks boundaries and set binary identifiers representing used by task shared
resources. If adaptive conflictless scheduling is used, there is no need to use any
other synchronization mechanisms for control tasks access to groups of shared re-
sources. Another advantage of adaptive conflictless scheduling is the versatility of
applications, because it can be used to solve various concurrency problems. This
approach was presented to solve two classical concurrency problems: readers and
writers and dining philosophers. Each of the two classical concurrency problem
was presented in two variants: the standard which has environment configured as in
problem definition and the extended environment with specific environment con-
figuration. The extended environment configurations have complex dependencies
between tasks and shared resources as standard problem definition. Extended vari-
ants of presented concurrency problems especially exposes the task starvation in
class queue and deadlock. Application of adaptive conflictless scheduling in both
classical concurrency problems provides in each of its variants correct order of task
execution without resource conflict. Therefore presented approach is universal and
flexible because its adapts to different variants of various task processing environ-
ments. In readers and writers problem the number of data sources was increased.
In dining philosophers problem usage of adaptive conflictless schedule is possible
regardless from the number of philosophers. Analysis of scheduling rules, when
conflictless scheduling is applied, shows lack of task starvation and avoidance of
deadlock in both presented classical concurrency problems. The adaptive conflict-
less scheduling also assures liveness and fairness for any controlled tasks. Each of
the class queues is regularly release tasks, it is performed in the fair manner. In
particular, this is evident in task processing environments with small number of
classes, like presented standard variant of readers and writers problem.



M. Smoliński 87

References

[1] Tanenbaum, A. S. and Bos, H., Modern operating systems, Prentice Hall
Press, 2014.

[2] Stallings, W., Operating systems, Internals and Design Principle, Pearson
Education, 2015.

[3] Pun, K. and Belford, G. G., Perfornance Study of Two Phase Locking in
Single-Site Database Systems, IEEE transactions on software engineering,
, No. 12, 1987, pp. 1311–1328.

[4] Bernstein, P. A. and Newcomer, E., Principles of transaction processing,
Morgan Kaufmann, 2009.

[5] Smolinski, M., Coordination of parallel tasks in access to resource groups
by adaptive conflictless scheduling, In: Beyond Databases, Architectures and
Structures. Advanced Technologies for Data Mining and Knowledge Discov-
ery, Springer, 2015, pp. 272–282.

[6] Smoliński, M., Conflictless task scheduling concept, In: Information Systems
Architecture and Technology: Proceedings of 36th International Conference
on Information Systems Architecture and Technology–ISAT 2015–Part I,
Springer, 2016, pp. 205–214.

[7] Duraj, A., Conflictless Task Scheduling Using Association Rules, In: Beyond
Databases, Architectures and Structures. Advanced Technologies for Data
Mining and Knowledge Discovery, Springer, 2015, pp. 283–292.

[8] Duraj, A. and Szczepaniak, P., Information Outliers and Their Detection,
Information Studies and the Quest for Transdisciplinarity: Unity through Di-
versity, Vol. 9, 2017, pp. 413.

[9] Chomatek, L. and Duraj, A., Multiobjective genetic algorithm for outliers de-
tection, In: INnovations in Intelligent SysTems and Applications (INISTA),
2017 IEEE International Conference on, IEEE, 2017, pp. 379–384.

[10] Emets, V. and Rogowski, J., Scattering of acoustical waves by a hard strip
and outlier phenomenon, In: INnovations in Intelligent SysTems and Appli-
cations (INISTA), 2017 IEEE International Conference on, IEEE, 2017, pp.
376–378.



88 Resolving Classical Concurrency Problems Using Outlier Detection

[11] Smoliński, M., Elimination of task starvation in conflictless scheduling con-
cept, Information Systems in Management, Vol. 5, No. 2, 2016, pp. 237–247.

[12] Bakkum, P. and Skadron, K., Accelerating SQL database operations on a
GPU with CUDA, In: Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, ACM, 2010, pp. 94–103.

[13] He, B. and Yu, J. X., High-throughput transaction executions on graph-
ics processors, Proceedings of the VLDB Endowment, Vol. 4, No. 5, 2011,
pp. 314–325.

[14] Smoliński, M., The GPU performance in coordination of parallel tasks in
access to resource groups without conflicts, Information Systems in Manage-
ment, Vol. 6, 2017.

[15] Courtois, P.-J., Heymans, F., and Parnas, D. L., Concurrent control with
“readers” and “writers”, Communications of the ACM, Vol. 14, No. 10,
1971, pp. 667–668.

[16] Dijkstra, E. W., Hierarchical ordering of sequential processes, In: The origin
of concurrent programming, Springer, 1971, pp. 198–227.


