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Abstract. Adaprive Kuwahara filter produces very interesting results and
significantly improves the efficiency and performance of the original algo-
rithm in the context of noise reduction without blurring the edges. This doc-
ument contains the experimental and theoretical comparison of the compu-
tational complexity of the modified algorithm and the consideration of opti-
mization methods.
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1. Introduction

The issue of noise reduction in images is very important because noises can
appear during image acquisition, transmission or compression and decompression.
This is very complex matter and we still do not have perfect solution. The issue is
still up to date and new concepts are continuously created. Some new interested
approaches we can find in [1, 2, 3, 4]. Unfortunately, very often we have to deal
with situations when reading new paper where the author suggests new solutions
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or significant changes the upgrades are not described briefly enough. Unnecessary
mental shortcuts make the recipient not able to do computer implementation or to
suffer from serious technical problems. Even if he succeed, received results can be
very disappointing or differing from the original paper. It should be also noted that
the image analysis and processing operations are extremely compiled and require
vast amounts of calculations. Although we have powerful computers but we still
need more and more computing power. We cannot assume that in one day expec-
tations of users will stop to grow. On the contrary, we should assume that the users
expectations will grow continuously. In addition, growth of the computing power
is often the result of multicore processors. To take advantage of the latest capabili-
ties is necessary to adjust the algorithm to the multicore architecture. Usually, this
is not a trivial task and often in itself is very valuable, worthy sharing work. But
accordingly to Amdahl’s law [5] we can expect significant efficiency growth, es-
pecially when comparing with single core applications. All these arguments make
that the issue of implementation and optimization is crucial for usability. In this pa-
per are presented the results of further research conducted on Adaptive Kuwahara
Filter introduced in [6]. There will be presented concepts how to optimize the algo-
rithm and the real execution times for comparing the algorithms on a considerable
amount of sample data.

2. Description of the Adaptive Kuwahara filter algorithm

To ensure notation consistency to the next part of the article the Adaptive
Kuwahara filter [6] will be presented. The standard Kuwahara filter requires a
strictly defined window size. In the case of the proposed modification of the filter
the window size is changing, just as it did in the adaptive median filter, depending
on the local properties of the image. The initial window size is 3x3.

Step 1: The filter window should be divided into 4 areas by following the original
algorithm. Let us denote them as θk where k ∈ {0, 1, 2, 3}. Initially, each of these
areas will consist of 4 pixels. For the purposes of this algorithm, let us call these
four areas the basic areas.

Step 2: For each of these areas the values of mean mk and variance δ2
min are cal-

culated. As before, the value of a specific pixel can be the value of color intensity,
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brightness, or any other calculated value. The mean and variance are calculated
according to the formula:

mk =
1

Nk
∗

∑
(x,y)∈θk

ϕ
(
f (x, y)

)
(1)

δ2
k =

1
Nk
∗

∑
(x,y)∈θk

[
ϕ
(
f (x, y)

)
− mk

]2
(2)

where:
k ∈ {0, 1, 2, 3},
f is the source image function,
ϕ is a function calculating the value of a particular pixel,
Nk is the number of pixels in the current area, in the first cycle the value is 4.

Step 3: Each of the basic areas is considered separately. For the chosen area the
size of the window is increased by 1. Next, for the new window size, mean mk

and variance δ2
k have to be calculated according to the formulas presented in the

previous step.

An example, how the resizing the filter window is performed, can be seen in
Figure 1. The filter window central element and the elements included in area θk

as it increases are highlighted.

Figure 1: Resizing the filter window and items included in the new area θk.

If the variance of the new area (δ2
k) is smaller than before the resizing of the
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filter window (δ2
k), then the mean and variance of the basic area k take the newly

calculated values:

mk := mk (3)

δ2
k := δ2

k (4)

Then we continue to increase the size of the window for the basic area selected
in the current step until its size reaches the maximum allowable size or until the
variance of the newly enlarged area is greater than that calculated in the previous
cycle of the algorithm. In this way the minimum variance and the corresponding
average value will be achieved for the basic area k. For further calculations, it is
not necessary to know the size of the window for which the variance and the mean
values were calculated.

The calculations shown in Step 3 must be repeated separately for each of the
four basic areas.

Step 4: Finally, we compare the variance of all four areas. At this stage each of
the basic areas can be made with different quantity of items. We are looking for an
index of the area for which the variance is the smallest.

δ2
min = min

k∈{1,2,3,4}

(
δ2

k
)

(5)

The resulting value of the output pixel is the average value of the basic area
for which the variance was the smallest. Figure 2 presents an example of possible
window size distribution for items included in the four basic areas and common
parts of these areas. The center pixel is marked with black color.

3. Numerical optimization

A very important disadvantage of the adaptive median filter is its relatively
long execution time. One of the reasons for this is the fact that, in each increasing
window cycle, calculating the median value of the elements in the wider window,
there is no easy way to take into account the calculation obtained in the previous
cycle of the algorithm. The most complex operation is the re-establishing of the
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Figure 2: An example of possible window size distribution for basic areas.

proper order of the elements. In the case of the adaptive Kuwahara filter it is possi-
ble to use the results from the previous cycle, so one can significantly improve the
performance of the algorithm. More precisely, it comes to improve the calculation
of the mean and the variance after increasing the size of the basic area window.

Both the statistics and the probability theory provide that:

D2X = E(X − EX)2 (6)

This is just another notation of the formula used in step 2 of the presented
algorithm. Expanding this equation we get:

D2X = E(X − EX)2 = E(X2 − 2 ∗ EX ∗ X + (EX)2) = EX2 − (EX)2 (7)

It means that the formulas (1 and 2) used in step 2 can be written as:

mk =
1

Nk
∗

∑
(x,y)∈θk

ϕ ( f (x, y)) (8)

δ2
k =

1
Nk
∗

∑
(x,y)∈θk

[
ϕ ( f (x, y))

]2
−

 1
Nk
∗

∑
(x,y)∈θk

ϕ ( f (x, y))


2

(9)

For simplicity, we can note:

mk =
1

Nk
∗ S (10)

δ2
k =

1
Nk
∗ S 2 −

[
1

Nk
∗ S

]2

(11)
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where:
S =

∑
(x,y)∈θk

ϕ ( f (x, y)),

S 2 =
∑

(x,y)∈θk

[
ϕ ( f (x, y))

]2.

Using the second version of the formulas we gain the possibility to calculate
variance without knowing the mean value of the elements. Both values can be cal-
culated simultaneously. This property is very important because it allows to cal-
culate m2

k and δ2
k while reviewing elements of θk only once. This means reducing

the input and output operations which in computer calculations are always very
expensive. In addition, we gain the possibility to use the calculations from the pre-
vious cycle for calculating the values of the mean and variance after increasing the
area window size. Increasing the area window size entails increasing the number
of elements in θk. This means that in the next cycle the sums S and S 2 should be
supplemented with elements added to collection θk. In other words, when calcu-
lating the mean value (m2

k) and variance (δ2
k) for increased windows we can use

previously calculated values and each pixel will be processed only once for each
basic area considered separately.

An example of items that should be added to collection θk and to the sum S
and S 2 after resizing windows is given in Figure 3.

Figure 3: Items that should be added to θk after resizing windows.

Other concepts for improving the efficency
Another way for optimization is to comparing the variance of each area at an

earlier stage rather than continuing calculation separately (until its size reaches
the maximum allowable size or until the variance of the newly enlarged area is
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greater than that calculated in the previous cycle of the algorithm) and compare
them after completion. If one or more area, for a few window resizing cycles (on
the basis of experiments it seems that the value of three is sufficient) reaches scores
worse than other than with big probability we can exclude such area from further
calculation. Same as maximum allowable window size this value can be treated as
additional parameter for presented algorithm. An example was shown at the fig. 4.
More white means more resizing cycles were needed. The performed experiments
clearly demonstrate that such situations (when it was necessary to calculate the
number of cycles) occurs mainly at the edges.

Figure 4: Example of window resizing cycles occurrence.

During the implementation one should also be aware of the possibilities of
the latest computers and construct a particular implementation in a way that can
perform calculations on multiple cores. Detailed technical specifications and in-
structions how one can implement image processing algorithms with examples in
Microsoft .NET platform are included in [7]. The main concept assumes that the
image will be divided into disjoint areas and each area will be processed separately
on dedicated core. The amount of the areas depend on the number of available
cores.



14 Computational Complexity and Numerical Optimization of . . .

Table 1: Filter algorithms time comparison (in seconds) for 5 different images of
size of 190x220 on the processor Intel Core 2 Duo P8700 (2 cores, 2.54 GHz).

SN Kuwahara Filter
3x3

Kuwahara Filter
11x11

Adaptive
Median Filter

Adaptive
Kuwahara Filter

1 0.031 0.124 0.405 0.048
2 0.064 0.109 0.468 0.062
3 0.015 0.118 0.405 0.046
4 0.015 0.124 0.561 0.031
5 0.031 0.124 0.405 0.048

AVG 0.028 0.117 0.464 0.044
SD 0.021 0.008 0.065 0.013

4. Comparison of computational complexity

The algorithm discussed above has been implemented. In order to obtain simi-
lar results, implementation diligence in each of the compared algorithms was sim-
ilar. However, willingness to use the capabilities of the latest computers forced the
need to modify the algorithms in such a way as to be able to perform calculations
simultaneously on multiple-core processors.

The following section presents the real execution times and theoretical consid-
erations of the maximum computational complexity for comparing the algorithms.

The results obtained are presented in Tables 1-7. The practical experiment
shows that the proposed modification is very effective and the modified filter can
be up to 10 times faster than the adaptive median filter.

Tables 1-3 present a comparison of the execution times for sample images of
different sizes. In addition, Tables 4 and 5 show the results of an experiment in-
volving comparison of execution times for a large quantity sample images. The
results obtained clearly demonstrate the very considerable advantage of the pro-
posed filter.

In order to better explore the possibilities and to verify the capabilities of the
proposed algorithm in comparison to the other noise reduction solutions, a sec-
ond experiment was conducted. As previously, two noise algorithms were used.
The first one was salt and pepper noise (adding white and black pixels) with uni-
form distribution on a specified percentage of the image surface. The second, more
sophisticated, added noise to a specified percentage of the image with random in-
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Table 2: Filter algorithms time comparison (in seconds) for 5 different images of
size of 768x576 on the processor Intel Core 2 Duo P8700 (2-core, 2.54 GHz).

SN Kuwahara Filter
3x3

Kuwahara Filter
11x11

Adaptive
Median Filter

Adaptive
Kuwahara Filter

1 0.156 0.702 16.239 0.608
2 0.249 0.686 15.943 0.546
3 0.187 0.670 15.990 0.468
4 0.109 0.904 15.865 0.405
5 0.109 0.686 15.679 0.421

AVG 0.162 0.730 15.943 0.490
SD 0.059 0.098 0.203 0.086

Table 3: Filter algorithms time comparison (in seconds) for 5 different images of
size of 1779x2473 on the processor Intel Core 2 Duo P8700 (2-core, 2.54 GHz).

SN Kuwahara Filter
3x3

Kuwahara Filter
11x11

Adaptive
Median Filter

Adaptive
Kuwahara Filter

1 1.338 7.238 48.438 3.884
2 1.076 7.394 48.890 3.822
3 1.138 7.222 50.185 3.744
4 1.435 6.942 49.865 4.056
5 1.284 6.957 49.078 3.902

AVG 1.254 7.151 49.291 3.882
SD 0.147 0.196 0.718 0.115

Table 4: Filter algorithms time comparison (in miliseconds) for 197 different im-
ages of size of 550x413 (0.23 Mpx) on the processor Intel Core 2 Duo P8700
(2-core, 2.54 GHz).

SN Kuwahara Filter
3x3

Kuwahara Filter
11x11

Adaptive
Median Filter

Adaptive
Kuwahara Filter

AVG 62.479 358.071 1091.716 230.279
SD 8.091 23.251 226.006 27.220



16 Computational Complexity and Numerical Optimization of . . .

Table 5: Filter algorithms time comparison (in miliseconds) for 166 different im-
ages of size of 3072x2304 (7 Mpx) on the processor Intel Core 2 Duo P8700
(2-core, 2.54 GHz).

SN Kuwahara Filter
3x3

Kuwahara Filter
11x11

Adaptive
Median Filter

Adaptive
Kuwahara Filter

AVG[ms] 2140.029 13773.827 40688.238 7142.506
SD[ms] 340.706 2762.262 3417.319 530.776

tensity, which either lightened or darkened a specific pixel.

A single test procedure was as follows:

• noise was added to the original image
• the original image was compared with the noised image and statistics of this

comparison were collected
• the noised image was filtered by the various algorithms, the results of these

operations were compared with the original image and statistics of the com-
parisons were collected
• the test was performed for each image

Comparing two images we get the following information:

• the average error, the average intensity differences of each pixel for the entire
image
• the variance and the standard deviation
• the amount of modified pixels against the original image
• the time taken to complete the operation and the comparisons

In Table 6 were placed aggregated statistics obtained in second experiment.
While in Table 7 placed the same results as in Table 6 but in the percentage view,
comparison of the performance of individual algorithms to proposed solution. Ob-
taining rate over 100% means higher performance (for particular aspect) achieved
by the proposed filter.

For complete evaluation of the proposed solution, apart from the presentation
of experimental data also the theoretical calculations of the maximum computa-
tional complexity have to be performed.
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Table 6: Filter algorithms aggregated statistics (in seconds) obtained in second
experiment for 68 different images of size of 3072x2304 (7 Mpx) on the processor
Intel Core i5 3210M (2-core, 2.5 GHz).

Noise
type

No
Filter

Kuwahara
Filter 3x3

Kuwahara
Filter 11x11

Kuwahara
Median
Filter

Adaptive
Kuwahara
Filter

1%
salt and
pepper

Sum of
AVG 26714.26 702.77 1466.61 921.95 580.23
Sum of
SD 12845.12 2088.07 3539.43 2808.80 1755.19
Sum of
Time[s] 12679 123424 672597 4044551 437120

5%
salt and
pepper

Sum of
AVG 26714.26 702.77 1466.61 921.95 580.23
Sum of
SD 12845.12 2088.07 3539.43 2808.80 1755.19
Sum of
Time[s] 12679 123424 672597 4044551 437120

5%
additive
salt and
pepper

Sum of
AVG 6247.97 523.96 1151.93 815.69 475.35
Sum of
SD 3598.03 1442.64 2873.89 2483.09 1419.51
Sum of
Time[s] 12127 122265 676171 3212945 428545

25%
additive
salt and
pepper

Sum of
AVG 6249.06 1038.79 1276.62 1759.85 732.30
Sum of
SD 3598.06 1711.57 2870.67 3129.58 1491.86
Sum of
Time[s] 13832 122175 672745 2438302 460966
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Table 7: Percentage view of aggregated statistics obtained in second experiment,
comparison of the performance of individual algorithms to proposed solution.

Noise
type

Kuwahara
Filter 3x3

Kuwahara
Filter 11x11

Adaptive
Kuwahara
Filter

1%
salt and
pepper

Sum of
AVG 121,12% 252,76% 158,89%
Sum of
SD 118,97% 201,66% 160,03%
Sum of
Time[s] 28,24% 153,87% 925,27%

5%
salt and
pepper

Sum of
AVG 208,53% 257,54% 119,51%
Sum of
SD 187,14% 187,98% 157,29%
Sum of
Time[s] 25,57% 142,79% 618,02%

5%
additive
salt and
pepper

Sum of
AVG 110,23% 242,33% 171,6%
Sum of
SD 101,63% 202,46% 174,93%
Sum of
Time[s] 28,53% 157,78% 749,73%

25%
additive
salt and
pepper

Sum of
AVG 141,85% 174,33% 240,32%
Sum of
SD 114,73% 192,42% 209,78%
Sum of
Time[s] 26,5% 145,94% 528,95%
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Comparing the computational complexity of algorithms, we can skip the part
related to the size of the image because the calculations must be performed for
each pixel for each algorithm and therefore have a linear effect on the calculation
execution time.

The most significant impact will, therefore, be that of the size of the window
for which the calculation is performed. The minimum size is 3x3, and the maxi-
mum we define as (2 ∗ kmax + 1) ∗ (2 ∗ kmax + 1) where kmax is a natural number.

Kuwahara Filter
In the case of this filter the most complicated operation is the calculation of the

mean and variance, therefore:
Θ ( f (kmax)) = 4 ∗ (3 ∗ (kmax + 1) ∗ (kmax + 1)) ≈ Θ

(
12 ∗ kmax

2
)

Adaptive median filter
The adaptive median filter calculates the median value and, therefore, requires

to sort the items. Then the size of the window may be increased up to the maximum
value, therefore:

Θ ( f (kmax)) =
kmax∑
k=1

(2 ∗ k + 1)2 =
kmax∑
k=1

(
4 ∗ k2 + 4 ∗ k + 1

)
=

= 4 ∗ kmax∗(kmax+1)∗(2∗kmax+1)
6 + 4 ∗ kmax∗(kmax+1)

2 + kmax ≈ Θ
(
4/3 ∗ kmax

3
)

Adaptive Kuwahara filter
This filter requires the determination of the average and variance for the in-

creasing windows sizes. In an extreme situation, the computational complexity
will be equal to:

Θ ( f (kmax)) = 4 ∗
kmax∑
k=1

3 ∗ (2 ∗ k + 1) = 12 ∗
kmax∑
k=1

(2 ∗ k + 1) =

= 12 ∗
(
2 ∗ kmax∗(kmax+1)

2 + kmax
)

= 12 ∗
(
kmax

2 + 2 ∗ kmax
)
≈ Θ

(
12 ∗ kmax

2
)

Comparing the computational complexity it can be concluded that the compu-
tational complexity of the Adaptive Kuwahara filter, in terms of the order of mag-
nitude, is comparable with the standard Kuwahara filter, and much smaller than
that of the Adaptive median filter. This does not quite reflect the real execution
time of the algorithm, but says only about its maximum value. It is important to
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also take into consideration the actual data from the experiment, where the Adap-
tive Kuwahara filter advantage is even more apparent. These data were presented
in the earlier part of this work.

5. Summary

Very important aspect, as was mentioned previously, is the optimization of
computational complexity. On the basis of the presented experiments and theo-
retical considerations obtained results allow to maintain the claim that Adaptive
Kuwahara Filter can be successfully used. It is very fast in operation, especially
compared to the adaptive median filter. To fully demonstrate that thesis the direc-
tion for further research should be a detailed Image Quality Assessment with other
filters.
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