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Abstract. This paper presents a novel extension to convolutional neural net-
works. While CNNs are known for invariance to object translation, changes
to the other parameters could make the image recognition tasks difficult –
that includes rotations and scaling. Some improvement in this area could be
achieved with embedded geometric transformations used inside the CNNs.
In order to provide a practical solution, which allows fast propagation and
learning of the modified networks, “fast geometric transformations” are in-
troduced.
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1. Introduction

Convolutional neural networks (CNNs) are a state-of-art solution to the image
classification problems. Solutions based on CNNs are regular winners [1, 2, 3]
of the image classification category of ImageNet Large Scale Visual Recogintion
Challenge [4]. It is a great example of how effective a relatively simple solution
can be – CNNs are easy to use, because the input is usually just a raw digital image,
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with optional very basic preprocessing (scaling, normalization, etc.) [1]. What is
more, CNNs are easy to understand, as the whole architecture is a modification of
multilayer perceptron (MLP) with reduced connections between layers and exten-
sive weights sharing [5]. The standard gradient-based backpropagation learning is
commonly used for training the CNN-based classifiers.

Biologically inspired by the visual cortex of a cat [6], CNNs are indifferent to
small changes in the recognized object, especially translations [7]. However, no
indifference to significant scale or rotation changes is provided by design – while
a network with sufficient number of neurons could simply learn multiple rotations
or scales. This approach is actively researched and improved [8]. However, some
specific methods of making rotation-invariant CNNs without excessive number of
neurons are pursued as well. One promising approach it to use transformation-
specific pooling mechanism (such as orientation-pooling introduced in [9]) and
use siamese CNNs which process multiple rotations in parallel branches [10].

The general reason why support for different rotations poses a problem to CNN
is related to the structure of the “visual fields”. Each output of a hidden CNN layer
is a result of processing a axis-aligned rectangular range of the previous outputs
(down to the input image). As result, the commonly used CNNs always learn to
recognize pixel patterns related to the Chebyshev metric. The relation between two
pixels is recognized only when both intersect with the same visual field, which is
simply a ball in Chebyshev space (fig. 1). In order to recognize another kinds
of patterns (which could be invariant to rotation, scaling, or both), another pixel
topology needs to be applied. Some of the recent research on that topic [11] is
very general, which makes it impossible to take the full advantage of actual hard-
ware. However, some custom topologies could be achieved by embedding addi-
tional transformations into CNN architecture, as it is proposed in this paper (fig.
2). This approach is more limited in terms of possible configurations, but leaves
the further processing to the optimized operations which are typical for CNNs.

This paper describes a possible solution to embed topology-changing geomet-
ric transformations into CNNs. “Fast geometric transformations” are intended so-
lution to performing the additional operations in a reliable time. Another advan-
tage of the proposed mechanism is a compatibility with standard methods of CNN
learning.
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Figure 1: Classical CNN: output map, shape of a visual field.

Figure 2: Logarithmic-polar transform + CNN: different topology makes it possi-
ble to achieve custom visual field shapes.

2. Fast geometric transformations

Image transformations such as translation, scaling, rotation, and cropping are
the classical examples of geometric transformations. This term could be easily
generalized to any transformation, where value (color) at each point of the output
is a convex combination of values at some input points. This approach easily cor-
responds with an intuition that “geometric transformation” should operate only on
the shape of image. However, pixels of the output image should only use colors
that were already present or transitions between them.

Using the direct formula for rotations or polar-logarithmic transform [12] is
noticeably slow, as trigonometric and exponential functions are called for each
pixel. As presented in this paper, this calculations could be simplified when a large
number of images is processed, and input and output sizes of a transformation
are fixed. As each pixel of the result is a linear combination of input pixels, the
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whole transformation is a linear operator. Caching the coefficients of this opera-
tor reduces the requirement of specific calculations to the preparation stage only,
making it possible to process the actual images with improved performance. Using
coefficients other than 0 or 1 is natural when the preimage of a single output pixel
intersects with multiple input pixels, but it is useful in the general case as well, as
it makes it possible to describe anti-aliasing.

The direct formulas for some transformations (such as rotation) are likely to
suggest that the preimage of some output pixels exceeds the boundaries of input
image, so the result is undefined. In order to provide the best approximation for the
undefined regions, the weighted sum of the closest existing pixels could be used
instead. It guarantees the result to be smooth. This approach could be considered
equivalent to the infinite repetition of the input image bounding pixels.

Following the assumptions described above, it is possible to define the ap-
proximate linear operators for: translation, rotation, cropping and superposition of
any operators of such kind. What is more, for each of the operators mentioned
above, approximate inverse operator could be introduced – one possible applica-
tion is “inverse cropping”, which is easily achieved by the repetition of boundary
pixels. This is enough to suggest a formal definition of geometric transformation
operators. Let S be a vector space over R (it applies e.g. to digital image in RGB
or CIELAB). Any transformation of n × m into p × q map could be described as
f : S n×m → S p×q such that:

fT (A) =

n−1∑
t=0

m−1∑
u=0

Trstu · Atu


r=0...p−1, s=0...q−1

, (1)

where Trstu is 4-dimensional “matrix” [0; 1] (T ∈ [0; 1]p×q×n×m) which satisfies:

∀r=0...p−1, s=0...q−1

n−1∑
t=0

m−1∑
u=0

Trstu

 = 1. (2)

The property above states that each element of fT (A) is a convex combination of
elements of A.

Should the “matrix” T be once known for fixed transformation and image sizes,
the further calculation would involve only additions and multiplications, without
any need to calculate trigonometrical, exponential or logarithmic functions numer-
ically. What is more, since the preimage of each pixel has a surface which is much
smaller than the whole input image, matrices Trs for any r = 0 . . . p − 1, s =



P. Tarasiuk, M. Pryczek 37

0 . . . q − 1 are likely to be sparse – only small percentage of elements are anything
else than zero. As a result, the whole Trs matrices could be effectively approxi-
mated by some finite number of it’s elements with the highest coefficients. The
selected coefficients could be further normalized to make a proper convex combi-
nation, in case the sum of coefficients becomes less than 1.

The process of calculating T which describes the geometric transform (where
g : X → Y , [0; n]× [0; m] ⊆ X ⊆ R2, [0; p]× [0; q] ⊆ Y ⊆ R2 is a homeomorphism
from input image to output image) with anti-aliasing could be performed in the
following way:

∀r=0...p−1, s=0...q−1,t=0...n−1,u=0...m−1 Trstu =
(d((t, u), g−1(r, s)) + ε)−1(∑n−1

t′=0
∑m−1

u′=0(d((t′, u′), g−1(r, s)) + ε)−1
) ,

(3)
where ε > 0 is necessary to avoid division by 0 in case of a point which matches
the center of preimage perfectly. We consider d as any metric on R2 (the results
are clear and smooth for Minkowski space of power greater than 2, e.g. L3).

Instead of condirering the whole input image (t = 0 . . . n − 1, u = 0 . . . n − 1),
calculating Trs could be limited to points (t, u) such that:

dCh((t, u), g−1((r, s))) ≤
1
2
∨ dCh(g((t, u)), (r, s)) ≤

1
2
, (4)

where dCh is a Chebyshev metric on R2. This condition is intended to ensure that:

• each input image pixel affects at least one pixel of the output image,

• each output image pixel has nonempty preimage under simplified operator.

Additionally, as it was mentioned above, the number of considered Trs ele-
ments could be limited a priori with some constant number M ≥ 1 of elements
with the highest coefficients. All the other elements of Trs are approximated as
zeros.

For all the practically used geometric transformations (including translation,
rotation, scaling, cropping and polar-logarithmic transformation), the homeomor-
phism g is given by a direct formula, so a corresponding transformation T is guar-
anteed to exist. Additional properties which can be stated include that:

• for each homeomorphism g which could be described by operator T , the in-
verse function g−1 could be used to define an approximate “inverse operator”
T−1,
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Figure 3: Rings of exponentially growing width are transformed into horizontal
bard of equal height (limited resolution in the image center results in a noise).

• if T and U are linear operators, then so is their superposition TU.

2.1. Polar-logarithmic transform

Polar-logarithmic transform [12, 13] is a useful utility for image analysis, when
invariance to rotation scale is pursued.

Each segment with an endpoint in the image center is transformed into a hor-
izontal segment of the output map, while each centered circle is transformed into
a vertical segment. As a result – columns are images of circular sectors (fig. 4), and
rows of the input matrix are images of centered rings. Width of a preimage rings
grows exponentially for the consequent rows (fig. 3).

Let us consider a polar-logarithmic transformation of w0 × h0 image into a re-
sult with w1 columns and h1 rows. The concise formula is easy to present when
you describe each (x, y) point on the plane as a complex number z = x + iy. The
transformation could be defined by g : C→ C with the following formula:

g(z) =

 ln (||z − c|| + ε)

ln
(

min{w0, h0}
2 + ε

) · (h1 − 1)

 + i
(
Arg(z − c) + π

2π
· (w1 − 1)

)
, (5)

where c is a center of the original image, given by c =
w0−1

2 + i h0−1
2 and ε is a

small positive number (illustrations in this paper were generated for ε = 1
4 . Too

big ε causes the central point to spill over notable amount of transformed image,
and too small epsilon makes the images of boundary pixels take too much space.
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Figure 4: Circular sectors of equal angle are transofrmed into vertical bars of equal
width.

Figure 5: Sample 128 × 128 image and the results of polar-logarithmic transform
for 1 (middle) and 100 (right) highest elements.

2.2. Benchmark results

The method described in the previous section was implemented in Python
[14] with numpy [15]. The numpy module allows all the matrix operations be im-
plemented with a single call which is performed on the low level – actually numpy
arrays are equivalent to dynamic arrays in C. As the result we get a concise im-
plementation without any typical disadvantages to performance which could be
expected in case of scripting languages.

2.2.1. Polar-logarithmic transform

Transforming 100 images of 128 × 128 size into polar-logarithmic transforms
(of 128 × 128 size as well) took:

• with direct function g formula used for each image: 88.40 s,



40 Geometric Transformations Embedded into Convolutional. . .

Figure 6: Sample image and the results of 30 degree rotation performed: using
Python Imaging Library (middle) and using the cached linear operator (right).

• with linear operator T which was only calculated once: 0.39 s.

To sum up, using the solution presented above brought 200x improvement in
calculation time in the example setup.

2.2.2. Image rotation: Python Imaging Library [16] vs proposed transforma-
tion description

Rotating 1000 images of size 128 × 128 by 30 degree:

• with Python Imaging Library: 1.2 s,

• with cached linear operator: 0.9 s.

The custom method with linear operators was slightly faster than the dedicated
solution from Python Imaging Library. However, image rotation is a relatively
simple operation. However, the proposed model of linear operators makes the cal-
culation time independent from the original formula. Especially, performing a se-
quence of rotations, translations and cropping with Python Imaging Library
would take time equal to the sum of times of each operation. The method presented
in this paper makes it possible to reduce the superposition of the whole sequence
to a single linear operator, which could be used with the same performance as a
single rotation. The same remark applies to single geometric transformations with
structurally complex formulas, such as polar-logarithmic transformations.
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3. Extended CNN architectures

Performing a geometric transformation on input data could be performed out-
side of the CNN, at the data preparation stage. However, since CNN input is a raw
image, the initial layers are known to perform very basic image filtering (Gabor-
like features detection) [17], which is known to reduce the noise. What is more,
the denoising achieved in convolutional neural networks is adjusted specifically to
the learning objective, because the convolutional filters are adapted in the learning
process.

In order to keep the advantage of specifically-trained initial CNN layers, the
proposed architectures involve geometric transformations on the hidden layer out-
puts. That means that with each iteration transformation needs to be applied to
all output channels. Repeating the same transformation so frequently is the reason
why fast geometric transformations is a key requirement for this method. Direct
approach to geometric transformations would be more complex than any standard
CNN layer, while applying cached linear operator takes less operations than the
convolutional layer. As result, the introduced method is unlikely to become a bot-
tleneck in either propagation or learning process.

Another way how the proposed definition of fast geometric transformations
makes them useful for CNNs is existence of approximate inverse transformations.
This fact is used in back-propagation learning – applying an inverse transforma-
tion to the gradient data makes it possible to propagate the errors correctly to the
previous layers.

The simplified application of the geometric transformations is described in
fig. 7 (“variant I”). In order to avoid combining matrices from different topologies,
the processing of different transforms could be separated – resulting in a siamese
network denoted as “variant II” (fig. 8).

In both variants of the extended CNN architecture, different sets of geometric
transformations could be considered. The results presented in this paper include:
multiple rotations and polar-logarithmic transform.

3.1. Results

The experiments were performed on datasets based on Street View House
Numbers [18]. This dataset consists of house number digits cropped from Google
Street View images. As house numbers usually consist of multiple digits, only the
digit in a center of the cropped region is considered in the related image classifica-
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Figure 7: Embedding geometric transformations into CNN: “variant I” (simpli-
fied): results of geometric transformations form additional channels for the further
convolutional layers.

tion task. Different colors and variable context make this problem difficult, so there
is no known machine learning method that performs the classification without er-
rors. The original version consists of 73257 training images and 26032 images in
a test set. All the images have fixed size 32 × 32.

However, in order to analyze the suggested models in terms of rotations invari-
ance, additional random rotations were added to both training and test subsets. The
“±22.5◦” dataset was generated by replacing each image from SVHN by the result
of it’s three random rotations, with angle chosen uniformly from [−22.5◦, 22.5◦]
range. The other variant – “±45◦” – was generated in a similar way, but with twice
wider range of possible rotations.

Diagrams presented on figures 7 and 8 use some common labels. The explana-
tion and relation to the actual neural network model is presented below.

• CNNpre consists of convolutional layers used in the initial processing of
a raw image. In all the presented experiments CNNpre was a single convolu-
tional layer with 5 × 5 filters and 200 output channels.
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Figure 8: Embedding geometric transformations into CNN: “variant II” (siamese):
parallel branches of the network process results of different transformations, in
order to be used together as a classifier input.

• GEOMk are geometrical transformations. The experiments involve 0-2 units
of this kind embedded into the network.

• CNNk are sequences of convolutional layers used for further processing, typ-
ical for convolutional neural networks. In the performed experiments each
unit labeled this way consists of 5 consequent convolutional layers with 5×5
filters and 100 output channels each.

• flat concat is simply a vector concatenation. Numbers from different bot-
tom layers can be stored together in order to be propagated further.

• classifier is just a multi-layer perceptron. It contains a hiddent fully-
connected layer with 2000 neurons and uses Dropout [17] with coefficient
p = 0.5. The next layer is simply output – a layer with 10 neurons, where
Softmax function can be used to determine the classification results.

For each dataset the tests were performed on a few network architectures:
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• “basic” – just a plain CNN. It actually fits both “variant I” and “variant II”
when the number of geometric transformations is 0.

• “variant I/II + rotations” – for each variant, the network architecture with
two rotations (GEOM1 and GEOM2) was tested. Rotations angles are α and
−α, where α is adjusted to the dataset (15◦ for “±22.5◦” dataset and 30◦ for
“±45◦” dataset). Since the identity (0◦ rotation) is present in both variants,
the selected values guarantee that result of some of the three outputs will be
close to the unrotated sample (the maximal possible difference is α/2).

• “variant I/II + logpolar” – the only geometric transformation involved is
GEOM1 – polar-logarithmic transform.

The results are presented in table 1. In case of ±22.5◦ dataset, both variants
worked quite well with embedded rotations – considering three rotations seems to
be sufficient to cause a notable improvement in case of this range. Using polar-
logarithmic transform in case of this dataset resulted in some improvement when
compared to the basic CNN, but the results were not as good as in case of rotations.

When the rotations range was increased to ±45◦, some more interesting results
were achieved. Lack of rotation invariance of CNNs is clearly visible, as the results
are generally much worse than in ±22.5◦ case. In order to make the comparison
between datasets honest, the number of neurons was not increased for the second
dataset – doing so (and accepting multiple times slower propagation and learning)
would possibly lead to some better results.

The most interesting part is, however, comparison between the presented meth-
ods. Each of the proposed variants resulted in an improvement when compared to
“basic” CNN, so all those ways of increasing the rotation invariance are useful to
some extent. Considering only three rotations for such a large range wasn’t enough
to provide the best results in this category. The results of “variant I + logpolar” ar-
chitecture was pretty similar to those with rotations. That is already interesting,
since polar-logarithmic transformation changes the topology completely. Using
the resulting channels together with original ones is unlikely to make much sense
– this variant was tested only for the sake of completeness of the results. The sen-
sible option, which is “variant II + logpolar” was, however, significantly the best
solution for ±45◦ dataset. When the range of rotations is wide, a transformation
which represents rotations as translations (which CNNs naturally recognize well)
makes the classification notably easier. While using larger number of rotations can
have a positive impact on the results, it is only possible at the cost of additional
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Table 1: Summary of results.

Method Dataset Top-1 accuracy Top-3 accuracy
basic ±22.5◦ 83.767% 94.801%

I + rotations15 ±22.5◦ 86.529% 95.911%
II + rotations15 ±22.5◦ 86.115% 95.846%

I + logpolar ±22.5◦ 84.438% 94.954%
II + logpolar ±22.5◦ 84.870% 95.274%

basic ±45◦ 39.185% 69.964%
I + rotations30 ±45◦ 43.923% 71.384%
II + rotations30 ±45◦ 42.925% 71.086%

I + logpolar ±45◦ 43.937% 71.986%
II + logpolar ±45◦ 49.111% 73.784%

calculations. Remarkably, “logpolar” variants were actually faster than “rotations”,
since only one geometric transformation / branch was used instead of two.

4. Conclusions

Convolutional neural networks, successful as they are for general image classi-
fication tasks such as ILSVRC [4], can be improved when specific tasks are consid-
ered. One specific case is recognition of objects from the same class in different ro-
tations. Since the recognized patterns are closely related to the Chebyshev metric,
additional flexibility – such as invariance to rotation or scale – could be achieved by
processing the images in a different topology. In some cases this could be achieved
by embedding geometric transformations into the network architecture.

In order to make the extended architecture practical, geometric transformations
need to be calculated quickly. Since the parameters of the geometric transformation
(including input and output size) are likely to be constant, it could be approximated
by a linear operator with a sparse matrix. Caching the operator drastically reduces
the time needed to perform any further operations. What is more, after the linear
operator is calculated, it does not matter what it represents – complex transforma-
tions (such as polar-logarithmic) and superpositions of multiple transformations
perform equally fast as one simple transformation.

When geometric transformations are described as linear operators, the approx-
imate inverse operations can be calculated. This provides a way to describe the
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appropriate steps for back-propagation learning of CNNs with embedded transfor-
mations.

The achieved results show that additional channels which are not related to
the standard behavior of CNN are likely to improve the rotation invariance. Con-
sidering multiple image rotations is a good idea, but small number of transforma-
tions is likely to become insufficient when the range of possible rotations is large.
One possible solution to process the rotation-invariant patterns is to use embedded
polar-logarithmic transform.

In the further research it would be useful to compare the results of extending
the CNN by geometric transformation to simply increasing the number of neurons.
Another case worth testing is to propose a mixed architecture that uses both embed-
ded rotations and polar-logarithmic architecture. Last but not least, the properties
of fast geometric transformations could be used in even more extensive way when
superpositions of multiple transformations are considered. The last idea could be
used to propose a single model which combines advantages of “variant I” (using
CNN layers on maps of features related to different topologies) with “variant II”
(multiple dedicated CNN layers for each custom topology).
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