
JOURNAL OF APPLIED
COMPUTER SCIENCE
Vol. 24 No. 2 (2016), pp. 39-54

GPU Assisted Self-Collisions of Cloths

Adam Wojciechowski1, Tomasz Gałaj2

1Lodz University of Technology
Faculty of Technical Physics, Computer Science and Applied Mathematics

Wolczanska 215, 90-924 Lodz, Poland
adam.wojciechowski@p.lodz.pl
2Lodz University of Technology

Faculty of Technical Physics, Computer Science and Applied Mathematics
Wolczanska 215, 90-924 Lodz, Poland

tomasz.galaj@gmail.com

Abstract. Nowadays, people expectations about high realism in games are
very high and computers have to make a huge effort to compute every simple
detail that occurs in a virtual 3D scene. Fortunately, we can use power of
Graphics Processing Units (GPU) to compute some part of the most com-
putationally heavy algorithms. In this paper, we present method to acceler-
ate computations on GPU using Compute Shaders based on cloth simula-
tion with self-collisions for big number of cloth’s model vertices (more than
2000).
Keywords: computations acceleration, accuracy of collisions resolving, com-
pute shaders, gpu, gpgpu, cloth simulation.

1. Introduction

Very common, complex and computationally heavy physics task is cloth sim-
ulation with self-collisions. Today’s games try to simulate it in a way that is very
similar to real world cloth behaviour - characters in games no longer use scripted



40 GPU Assisted Self-Collisions of Cloths

cloth animations that are played over and over, but they are simulated. What is
more, these simulations need to take into account collisions with other objects so
that cloth can not pass through player’s avatar or a wall and with itself to prevent
self-penetration. For an ordinary CPU this task is impossible to be performed in
real time for a huge amount of particles [1, 2, 3, 4, 5, 6]. However, with the proper
use of OpenGL, in-depth knowledge how does GPU work and with GPGPU tech-
nologies this task is by all means achievable in a real time system like a 3D game.

Most of the people focus on using OpenCL or CUDA as a mainstream GPGPU
technology for fast physics calculations or they use out-of-date programmable
pipeline using only Vertex and Fragment Shaders [7, 8, 9]. Though, in this article
we will use OpenGL’s Compute Shader which is a separate stage in a rendering
pipeline and does not need any interoperation and synchronization between two
APIs (like OpenGL and OpenCL would need), which cost is very high.

What is more, presented approach also shows that even naive self-collisions
algorithm can be done in real time for complex and high density cloths without
fancy algorithm optimizations.

2. Related work

The research in the field of cloth simulation extends back to 1980’s with several
authors focusing on this particular subject since then. However, many authors have
contributed to this field, not many of them used power of multi-threading on CPUs
or the immense power of GPUs.

In this section, we will present previous methods of simulating cloth mostly
with self-collisions. Most of them uses CPU to perform calculations. The crucial
aspect are self-collisions which can tremendously enhance the visual aspect of
cloth simulation. Unfortunately, these calculations are very time consuming and
needs a lot of computational power. In the next sections we will show our method
that harnesses the power of GPU to perform cloth simulation with self-collisions
for big number of vertices in real-time (16ms - it is the approximation of 60 Frames
Per Second which is the frequency that guarantees smoothness of the simulation)
which below methods do not guarantee.

2.1. Cloth simulation challenges

What is a bottle-neck in most cloth simulations is that time step between frame
n and frame n+1 must be very small to avoid numerical instability. Therefore, sim-



A. Wojciechowski, T. Gałaj 41

ulation have to be performed several times before rendering to be able to see effects
in real time on the screen. Baraff and Witkin [5] proposed a technique that is able
to handle large time steps (Figure 1). They successfully proved that using this tech-
nique - a combination of implicit integration methods with special enforcement to
cloth particle was stable even though the system underwent large time steps. Un-
fortunately, their solution was far from being able to perform in real-time for big
number of vertices. Others [10] also tackled this problem, but they did not applied
their theory to cloth simulations.

Figure 1: Cloth draping on a cylinder [5].

Another, more common bottle-neck is cloth’s self-collision. It is important for
cloth simulation to avoid penetration between two parts of the same cloth model,
otherwise the simulation will not look realistically. The naive approach of check-
ing these collisions is to perform polygon intersection tests for every section of the
cloth which has at least O(n2) complexity and can significantly reduce the simu-
lation’s performance. To avoid the penetration, Lv et al. [6] implemented pruning
method based on the strict constraints to prune most of the unwanted particles in
self-collision detection. They also have applied constraints to enhance visual qual-
ity of the cloth in mass-spring model where edges of the cloth are undesirably
stretched that cloth starts to resemble a rubbery material than a cloth one (Figure
2). Despite the fact that this method is very efficient, it only works on a CPU and
therefore game programmers are limited to perform any other complex operations
on the CPU. The limitation of this method was that it could not achieve real-time
performance for more than 2000 cloth’s particles.

Volino and Thalmann [4] proposed another efficient method for detecting self-
collisions. They extended their former algorithm [11] in a way that they consider
that self-collisions may occur within a surface region only if that region is curved
enough (Figure 3). Therefore, self-collisions should not be checked for within flat
surfaces. Again, this method runs only on CPU and could not perform cloth simu-
lation in 16 ms for large number of cloth’s particles.



42 GPU Assisted Self-Collisions of Cloths

Figure 2: Cloth looking like a piece of rubbery [6].

Figure 3: Self-collision may only occur in curved surfaces [4].

Another algorithm to speed up cloth self-collisions was proposed by Bridson
et al. [1]. They focused on the simulation of self collisions of the cloth using an
AABB tree to optimize the neighbour search. Moreover, they also put an emphasis
on maintaining folds and wrinkles of the cloth when in contact with rigid objects
(Figure 4). The drawback of this method is that it works only on CPU and therefore
it is not applicable for modern computer games.

Figure 4: Cloth draped over a sphere [1].

Fuhrmann et al. [2] presented a solution of realistic cloth simulation using a
combination of parameterized particle’s internal and external forces. Their strat-
egy was able to produce a robust algorithm which could handle large time steps.
Also, an efficient collision avoidance was applied to enhance the realism of the



A. Wojciechowski, T. Gałaj 43

simulation. Figure 5 shows several situations of cloth modelling being explored by
Furhman et al. [2]. We can see that in the images a) and b) self-collision detection
is on, whereas on the c) and d) is off. Although this method works really well,
increasing number of particles beyond 1600 slows down the algorithm too much
due to self-collisions.

Figure 5: In (a) and (b) self-collisions are enabled. In (c) and (d) are disabled [2].

Visually plausible method was presented by Selle et al. [3] to handle high
resolution cloth objects while keeping a collision history. This method allows for
simulations of cloth objects with up to two million triangles (Figure 6). They used
CPU parallelism to enhance the speed of their algorithm. But again, this is only
CPU method which could be hard or even impossible to rewrite on GPUs and it
does not perform cloth simulation in real time.

Figure 6: Cloth with two milion triangles draped over a wardrobe [3].

Another solution is presented by Rodriguez-Navarro et al. [9] which is a GPU
implementation. It extends Finite Element Method (FEM) which was based on de-
formabled objects presented by another paper from Muller et al. [12]. This method
is more physically accurate than the mass-spring one because it directly models
elasticity theory and it can handle models with arbitrary structures such as trian-
gular meshes or even volumetric models (Figure 7).



44 GPU Assisted Self-Collisions of Cloths

Figure 7: Cloth self-collision response [9].

For cloth self-collisions they decided to implement on GPU an optimal spatial
hashing method [13] with difference that they make a local voxelisation for each
time step only in the space covered by the cloth. However, this method is efficient
(171 FPS for 64x64 cloth grid) it uses old fashioned GPU programmable pipeline
and a lot of tricks that makes this method cumbersome to implement. What is
more it uses a lot of GPU memory because it stores some results in texture buffers,
where in today’s games this memory could be spent for other effects (e.g. fancy
post-processing).

Nvidia was also working on GPU based cloth simulations [8] for square pieces
of cloth. They also used a lot of additional memory (three texture buffers - one
stores previous timestep’s positions, one current position and one is a temporary
texture used for calculations). Moreover, they did not support self-collisions. Si-
miliar issue is with Ken Arthur’s solution [7]. He used only Vertex and Fragment
shaders and therefore he had to used a lot of additional memory to perform cloth
simulation.

3. Method

To harness the full power of the GPU to perform cloth simulation with self
collisions Compute Shader was used. During the first step of the above algorithm,
the compute shader is dispatched several times since time step of the simulation is
very small. It of course, slows down the simulation a bit cause the cloth simulation
has to be performed several times per frame, but it is a price that needs to be paid
if we want to observe the simulation in a reasonable time.

In order to make algorithm as easy as possible, we decided not to use shared
memory in compute shader. Therefore, we had to create 4 shader storage buffers



A. Wojciechowski, T. Gałaj 45

objects - two for positions and two for velocities. During multiple times when
compute shader is being invoked we read the initial positions and velocities from
the first position and velocity buffers, modify these data and save them to the other
two position and velocity buffers (so the newest position and velocity data are
in second buffers) via compute shader and after calling glDispatchCompute(), we
issue a glMemoryBarrier() call to make sure that all shader writes have completed.
Then, we swap buffers so in the next compute shader dispatch we will read data
from second pair of the buffers and write to the first pair and so on.

The pseudo-code of this algorithm is presented in the Listing 1.

Listing 1: Final algorithm pseudo-code.
1 void main()
2 {
3 input: position p
4 velocity v
5 index idx of the global invocation ID that is responsible for processing
6 this particle
7

8 output: position out p
9 velocity out v

10

11 set force to gravity * particle mass
12

13 for each neighbour of the particle
14 set r to neighbour pos − p
15 set force to force + norm(r) * spring k * (length(r) − rest spring length)
16

17 set force to force − damping * v
18 set acceleration a to force * 1.0 / particle mass
19

20 // Apply simple Euler integrator
21 set p to p + v * delta t + 0.5 * a * delta t * delta t
22 set v to v + a * delta t
23

24 check if there was a self−collision
25 adjust p and v using algorithm in Listing 2
26

27 check if there was a collision with a plane
28 adjust p and v
29



46 GPU Assisted Self-Collisions of Cloths

30 check if there was a collision with a sphere
31 adjust p and v
32

33 out p = p
34 out v = v
35 }

In lines 3-9 we define our inputs and outputs. For each particle we provide
it’s position, velocity and index of the global invocation ID that is responsible for
processing this particle.

In lines 13-15 we calculate forces that neighbouring particles are adding to
the particle we currently processing. This is strictly based on a well-known mass-
spring model [1].

Then, in lines 20-22 we are applying simple Euler integrator [14] to particle’s
position and velocity based on ∆t.

Next, in lines 24-31 we are checking if our particle collides with any other
particle in cloth mesh (self-collisions described in subsection 3.1) or a plane or a
sphere. If it collides we calculate the adjusted position and velocity for this particle.
In other words, we are taking backward the currently processed particle to avoid
the collision.

Finally, in lines 33-34 we are returning the calculated new position and velocity
for a currently processed particle.

3.1. Self-collisions

Cloth self collisions are much more complicated and much more time consum-
ing than collisions with simple objects (like sphere or plane) that can be described
with simple mathematics. However, they highly increase the realistic factor of cloth
simulation since cloth will not pass through itself.

A simple solution to this problem is check if two regions of the cloth are too
close to each other, apply repulsive force to the vertices around this region to en-
courage separation as shown in [5]. However, this method is simple it can lead to
some problems because of the definition of "too close", the choice of time step, the
choice of repulsive forces and can further contribute to numerical instability.

Another solution is to check any intersections that happened. If there was a
collision, modify position and velocity of the particle in such a way that collision
no longer occurs. This method is not very hard to implement, it is effective and it



A. Wojciechowski, T. Gałaj 47

guarantees that no collision will occur. However, it is very time consuming since
we have to check triangle-point intersections for every particle and triangle.

The inspiration for the algorithm that we use comes from [14], where there is
only a brief description of the solution to this problem without any pseudo-code
or implementation details. We can imagine that every particle is surrounded with a
virtual marble and what we get is a set of connected marbles. These marbles are not
considered to be touching if their associated particles are connected by a spring.
Therefore, we can set the radius of a marble larger than the distance between two
particles. Then the algorithm looks as follows: if the distance between the particles
is less than twice the marble radius then we know that collision has occurred.
Then we need to back the particles up such that this collision has not occurred and
slightly decrease their velocity. The pseudo-code of this algorithm is presented in
the Listing 2.

Listing 2: Cloth self-collision pseudocode.
1 void clothConstraint(ref particle in p, ref velocity in v)
2 {
3 set marble radius to min(restLengthVert, RestLengthHoriz) * 0.45f;
4

5 for each particle p in particles do
6 if distance(in p, p) < marble radius * 2 AND in p is not the same as p
7 back in p up such that collision has not occurred
8 slightly decrease in v velocity
9 }

4. Results

The demo application has been tested on computer with the following specifi-
cation:

• CPU: Intel Core i5-4690K @ 3.50GHz

• RAM: 16GB

• GPU: Nvidia GeForce GTX 970

• Operating system: Windows 10 Pro (64 bits)



48 GPU Assisted Self-Collisions of Cloths

Within the application testing collisions with other objects (sphere, plane) and
cloth self-collisions were implemented. This method has been tested under vi-
sual plausibility and efficiency under different circumstances. The example cloth
model’s topology that was used in the experiments is presented in Figure 8 (this
model has 3600 particles).

Figure 8: The example of cloth model’s topology with 3600 particles.

4.1. Visual results

The visual results of the implemented cloth simulation using OpenGL Com-
pute Shader are presented in the below Figure 9. We can see that cloth without
self-collision is far from reality whereas cloth with self-collisions looks more real
and its visual results are satisfactory.

Figure 10 presents visual comparisons between cloth simulations on CPU and
GPU. As it can be seen on the below figures, the visual results of both versions
are very similar. However, in the Figure 10 in images b) and c) row (from top to
bottom) GPU version gives more visually plausible results.

4.2. Performance results

Efficiency comparison of cloth simulated using Compute Shader is presented
in Table 1. On the other hand, Table 2 presents efficiency comparison between
cloth with self-collisions and without self-collisions simulated on CPU. The results
were made using different cloth mesh densities and with self-collisions turned on



A. Wojciechowski, T. Gałaj 49

a)

b)

c)

d)

Figure 9: Comparison between cloth with self-collisions (left column) and without
self-collisions (right column). Model contains 50x50 particles.



50 GPU Assisted Self-Collisions of Cloths

a)

b)

c)

d)

Figure 10: Comparison between CPU version (left column) and GPU version (right
column). Both models contain 20x20 particles (Number of particles is low because
of CPU limitations.



A. Wojciechowski, T. Gałaj 51

and off. Collisions with other objects like sphere and plane are so easy and efficient
that they do not contribute to the final performance result.

Table 1: Efficiency comparison between cloth with self-collisions and without self-
collisions on GPU.

Number of
particles

Self-collisions
ON [ms]

Self-collisions
OFF [ms]

Self-collisions
ON [FPS]

Self-collisions
OFF [FPS]

100 1.967 0.517 502 1935
400 6.408 0.517 156 1935
900 13.700 0.542 73 1846
1600 23.950 0.542 42 1846
2500 36.900 0.542 27 1846
3600 53.108 0.542 19 1846
4900 72.308 0.550 14 1818
6400 94.575 0.575 11 1714
8100 121.400 0.608 8 1621
10000 151.325 0.658 7 1519

Table 2: Efficiency comparison between cloth with self-collisions and without self-
collisions on CPU.

Number of
particles

Self-collisions
ON [ms]

Self-collisions
OFF [ms]

Self-collisions
ON [FPS]

Self-collisions
OFF [FPS]

100 3.708 1.033 269 962
400 45.358 3.942 22 254
900 216.533 8.942 5 112
1600 673.783 15.708 2 64
2500 1625.892 24.458 1 41
3600 3350.125 35.254 ∼0 28
4900 &4000.000 48.208 ∼0 21
6400 &4000.000 62.908 ∼0 16
8100 &4000.000 80.016 ∼0 13
10000 &4000.000 98.508 ∼0 10



52 GPU Assisted Self-Collisions of Cloths

5. Conclusions

As the results show, cloth simulation with self-collisions simulated on GPU
performs really well despite the use of the naive algorithm for checking this con-
straints and integration method that forces us to evaluate the same compute shader
50 times. Moreover, cloth simulation on GPU even for high cloth mesh densi-
ties without self-collisions simulates very fast. On the other hand, simulation per-
formed on CPU has not so great performance. From 70x70 mesh dimension with
self-collisions, there was impossible to measure the performance because of the
lack of the computational power of CPU.

Furthermore, in the Figure 9 we can see that proposed naive algorithm for
checking cloth self-collisions gives visually plausible results and it makes cloth
"more real". When comparing visual results from CPU and GPU versions, it can
be seen that results are very similar. However, in the Figure 10 in 2nd and 3rd row
(from top to bottom) cloth simulated on GPU looks more realistically.

Above results show that optimization of rendering complex scenes using OpenGL
Compute Shaders can speed up a lot of things that an ordinary CPU had problems
with and in most cases it was a bottle-neck. The use of the new shader stage is
something new and not seen in previous papers and has a lot of potential and does
not have drawbacks of OpenCL/CUDA that has to interoperate with OpenGL to
exchange data (synchronization) which has a huge impact on performance.

To conclude, the GPU based cloth simulation method presented in this article
works perfectly for real time applications like computer games. It is really fast
and it gives a lot of room to improvement and in our humble opinion it will be
the way in which modern simulations or algorithms will be developed and im-
proved. Presented method has a huge potential in further development. It is very
good and computationally efficient to simulate cloth meshes with huge number of
particles/vertices.

References

[1] Bridson, R., Fedkiw, R., and Anderson, J., Robust Treatment of Collisions,
Contact and Friction for Cloth Animation, ACM Trans. Graph., Vol. 21,
No. 3, July 2002, pp. 594–603.

[2] Fuhrmann, A., Groß, C., and Luckas, V., Interactive Animation of Cloth In-
cluding Self Collision Detection. In: WSCG, 2003.



A. Wojciechowski, T. Gałaj 53

[3] Selle, A., Su, J., Irving, G., and Fedkiw, R., Robust high-resolution cloth us-
ing parallelism, history-based collisions, and accurate friction, IEEE Trans-
actions on Visualization and Computer Graphics, Vol. 15, No. 2, 2009,
pp. 339–350.

[4] Volino, P. and Magnenat-Thalmann, N., Interactive Cloth Simulation: Prob-
lems and Solutions, In: Virtual Worlds on the Internet, IEEE Publisher, 1998,
pp. 175–192.

[5] Baraff, D. and Witkin, A., Large Steps in Cloth Simulation, In: Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’98, ACM, New York, NY, USA, 1998, pp. 43–54.

[6] Lv, M., Li, F., Tang, Y., and Bi, W., A fast self-collision detection method
for cloth animation based on constrained particle-based model, In: Digital
Media and its Application in Museum & Heritages, Second Workshop on,
IEEE, 2007, pp. 140–145.

[7] Arthur, K., GPU-Based Cloth Simulation and Rendering, Retrieved from
http://kenarthur.bol.ucla.edu/, 2008.

[8] Zeller, C., Cloth simulation, White paper NVIDIA, 2007.

[9] Rodriguez-Navarro, J. and Susin, A., Non structured meshes for Cloth GPU
simulation using FEM, "3rd Workshop in Virtual Reality Interactions and
Physical Simulation". Madrid: EUROGRAPHICS, 2006, p. 1-7, 2006.

[10] Gast, T. F., Schroeder, C., Stomakhin, A., Jiang, C., and Teran, J. M., Opti-
mization integrator for large time steps, IEEE transactions on visualization
and computer graphics, Vol. 21, No. 10, 2015, pp. 1103–1115.

[11] Volino, P., Courchesne, M., and Magnenat Thalmann, N., Versatile and Ef-
ficient Techniques for Simulating Cloth and Other Deformable Objects, In:
Proceedings of the 22Nd Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’95, ACM, New York, NY, USA, 1995,
pp. 137–144.

[12] Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B., Stable Real-
time Deformations, In: Proceedings of the 2002 ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation, SCA ’02, ACM, New York,
NY, USA, 2002, pp. 49–54.



54 GPU Assisted Self-Collisions of Cloths

[13] Teschner, M., Heidelberger, B., Müller, M., Pomerantes, D., and Gross,
M. H., Optimized Spatial Hashing for Collision Detection of Deformable
Objects. In: VMV, Vol. 3, 2003, pp. 47–54.

[14] Fisher, M., Cloth, Retrieved from https://graphics.stanford.edu/~mdfisher,
2014.


