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Abstract. Every company in today’s world faces the constant challenge of
cost reduction. For distribution and transport service providers, cost cutting
appears to be the main operational goal. The successful companies seek to
develop a optimal routes for their fleets to minimize the costs and guarantee
a timely delivery of the goods.

With a growing informatization of the industrial world, it is worth con-
sidering the use of intelligent systems as a possible way of solving various
types of decision problems, which in turn can contribute to the reduction of
costs incurred by a company. Such systems enable multidimensional data
analysis and to provide information useful in decision making.

The paper investigates the use of the genetic algorithm and the ants
colony optimization algorithm as a solution to the travelling salesman prob-
lem. It has been shown that both methods provide satisfactory results in solv-
ing the problem under examination.
Keywords: travelling salesmen problem, ant colony optimization, genetic
algorithm.
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1. Introduction

One of the key issues associated with logistics services is transport [1]. The
integration of transport processes is fundamental to the functioning of the national
and international supply chains. Those processes depend largely on the existing in-
frastructure: rail, road, sea or air [2]. It is the infrastructure that affects the creation
of supply chains and determines transport-related costs, which has a direct impact
on the quality and costs of logistics services.

The problem of distribution and transport can be classified into the category
of information technology logistics. Combinatorial problems which involve the
movement and handling of objects, with spatial, logical and time constraints im-
posed, are difficult to solve [3]. Due to their exponential computational complexity,
such problems can be solved with the use of heuristic algorithms.

The basic distribution and transport model is based on the case involving one
car and one type of goods [1, 2]. From a logistics perspective, it can be formulated
as follows:

The producer is engaged in the production of the same type of goods. The
goods are delivered at fixed intervals (for example, every day or once a week) to N
customers with a single vehicle (van).

In this model, the delivery times and the distance between the delivery points
(customers) are given. Each product is packed in standard containers. The orders
placed by particular customers are defined as the number of containers. The vehicle
has a capacity defined as the number of containers it can carry.

Given the above information, it is possible to determine:

• the number of tours,

• the goods to be transported in each tour,

• the duration of the tour, item the collection points for each tour,

• the vehicle route.

The above parameters must be set in such a way that the delivery time is as
short as possible and the cost of transport as low as possible. Minimizing the time/-
cost determines the optimization criterion for a given logistics problem. This is an
exemplary representation of the so-called travelling salesman problem.

The paper starts with presenting the general concept of the travelling sales-
man problem in Chapter 2. Chapters 3 and 4 discuss the concepts of the genetic
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Figure 1: The model of the travelling salesman problem

algorithm and the ant colony optimization algorithm, respectively, which are then
applied to the problem under examination. Chapter 5 describes the experiments
and discusses the results of a comparison of the two algorithms.

2. The Travelling Salesman Problem

The general concept of the travelling salesman problem (TSP) is as follows: a
salesman has to visit n cities (each exactly once) and return to the starting point
(the city) [4, 5]. His purpose is to cover a given route at the lowest cost. A sample
representation of the problem is shown in Figure 1.

TSP is one of the most popular and most extensively studied topics in computer
science and operations research [6]. It is an optimization problem related to the
graph theory which consists in finding a Hamiltonian cycle with the lowest weight
in the weighted graph G.

This problem can be divided into two basic types: symmetric and asymmetric.
In the symmetrical variant, the weighted graph is undirected, which means that the
edge between the nodes of the graph in both directions has the same weight. In the
asymmetrical variant, the weighted graph is directed — the weight edge for each
direction may be different or may not be connected in the second direction.

In the graph theory, the cities in the TPS are the vertices and the roads con-
necting these cities are edges with specific weights symbolizing, for example, the
travel distance, the travel time, and the cost of travel between the cities. There-
fore, the task is to determine the Hamilton cycle with the lowest total weight of the
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edges contained within the cycle.
A possible solution to this problem consists in searching the whole space of

the Hamiltonian cycles in the graph and selecting the one whose sum of weights
of all edges is the smallest. The main drawback of this approach is the exponential
computational complexity.

The total number of possible Hamiltonian cycles (all routes) for a symmetric
problem in the weighted graph is:

l =
(n − 1)!

2
(1)

where:
l - the total number of Hamiltonian cycles,
n - the number of cities.

The total number of possible Hamiltonian cycles (all routes) for the asymmet-
ric problem in the weighted graph is:

l = (n − 1)! (2)

The travelling salesman problem is NP-hard - there are no known algorithms
of a polynomial computational complexity capable of solving it.

In practice, this problem is solved by using approximate algorithms, i.e. those
which find the solution approximately equal to the optimum in a short time.

Approximate algorithms are not always able to find the optimal solution. Some-
times, they can return a solution which is much worse than optimal. The applica-
tion of this type of algorithms is associated with the need to choose between com-
putational speed and solution quality. Usually, it is assumed that the approximate
solution is not worse than a certain factor away from the optimal solution / does
not differ from the optimal solution more than by a certain value.

3. Ant Colony Optimization Algorithm

The ant colony optimization algorithm is one of the probabilistic optimization
methods for solving combinatorial problems [7]. First presented by Marco Dorigo
in 1992, it was originally intended to be applied to the problem of finding the
optimal path in the graph.

Ant colony optimization falls within the field of intelligent computing. More
specifically, it is a class of optimization algorithms based on the principle of swarm
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Figure 2: The behaviour of ants foraging for food – pheromone trails
Source: http://chessprogramming.wikispaces.com/Jan+Kozak

intelligence. By definition, an algorithm should always return a correct solution.
Since ant colony algorithms are not always capable of finding an optimal solution,
they are applied to problems where it is sufficient to find a ”near optimal” solution,
which is presented as a set of consecutive steps. Therefore, formally, ant colony
optimization algorithms are classified as heuristics.

In the natural environment, ants communicate indirectly by leaving pheromones
on the path they follow. An ant foraging for food does not have any knowledge
about the surrounding world. It relies on the local perception of its immediate
environment. Firstly, the ant moves randomly. If it encounters a food source, it re-
turns to the nest leaving a pheromone trail on the path. Other ants leaving the nest
in search for food make decisions about their movement direction on the basis of
the pheromone trace left by the previous ants. Of course this choice is conditioned
by a certain probability — Figure 2.

The higher the intensity of pheromone, the greater the probability that an ant
will select a given path. Each pheromone trail evaporates with time. The strength
of the fragrance is affected by two factors:

• the distance from the nest to the food source — on long routes the pheromone
fades quickly –– the time needed to reach the food source and return to the
nest is long. If the distance is small, the pheromone does not have time to
evaporate. Thus, the number of ants following that route increases, reinforc-
ing the trail;

• the frequency at which the ants select a specific part of the path — on rarely
frequented routes, the pheromone evaporates, whereas on highly frequented
routes the trail is reinforced.
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Figure 3: The flowchart illustrating a general scheme of the ant colony optimiza-
tion algorithm

The discrete search space is the space of permutation of a set of n elements [8].
The general principle of the algorithm is as follows [7, 9]:

1. Initialization:

• each ant takes a random permutation,

• the pheromones matrix is filled with the value t0.

2. Generate solutions [10]:

• draw the start node,

• each ant, according to the corresponding probability, selects another
node.

3. Compare the solutions obtained and choose the best.

4. Update pheromones according to the best solution.

Figure 3 presents a diagram illustrating the steps of the algorithm.
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4. Genetic algorithm

The genetic algorithm is a method for solving optimization problems which
mimics the natural evolutionary processes leading to the adaptation of organisms
to particular environmental conditions [11, 12].

The task of the genetic algorithm is to search the space of possible solutions via
adaptive procedures based on the mechanisms of natural selection and inheritance
using the principle of survival of the fittest individuals.

The operation of the classical genetic algorithm is based on duplication of
chromosomes and replacement of their subelements [13]. It is composed of the
following steps [11, 12, 13, 14, 15, 16]:

1. Initialization –– a random selection of a fixed number of chromosomes and
the creation of an initial population. Different chromosomes coding methods
can be distinguished, e.g. depending on the alignment in the genes or the
values stored in genes.

2. Adaptation assessment —- the calculation of an evaluation function for each
chromosome.

3. Selection —- the selection of individuals from the current population to the
parent population. The individuals characterized by the largest value of fit-
ness function are selected and subjected to genetic operations aimed at cre-
ating a new population. There are many methods of selection.

4. Crossover and mutation — the application of genetic operators to a group of
chromosomes involving gene chromosomes recombination. The crossover
occurs more frequently than a mutation.

5. New population –– the chromosomes obtained by crossover and mutation
are used to create a new population. The previous population of chromo-
somes is replaced by a new one, which in the next iteration (generation)
becomes the new current population.

6. Derivation of the best individual —- the chromosome with the highest value
of the evaluation function is the best solution.

The above steps are presented in Figure 4.
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Figure 4: General scheme of the genetic algorithm

5. Experiments

This section presents the results of the experiments and their analysis. More
details about the factors for the algorithm parameters applied in this study can be
found in [17] for the genetic algorithm and in [18] for the ant colony optimization
algorithm. The criteria adopted for both algorithms were as follows:

• input data — the number of random cities equal to 10, 30;

• the parameter values for each algorithm.

The analysis of algorithms includes the number of iterations required, the com-
putation time and the length of the solution (path) obtained.

Each experiment was performed five times. Then, an arithmetic mean value
of the number of iterations, the computation time and the path length was calcu-
lated. The results are presented in the tables. Cities, as input data, have random
coordinates. Therefore, an optimal solution is not known.

The maximum number of 5000 iterations was adopted as the end of the loop. In
order to avoid unnecessary iterations and reduce the computation time, the number
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of iterations returning the same result were limited to 500.
Moreover, for a more accurate comparison of the results the standard Oliver30

benchmark from TSPLIB was used, for which the optimal solution is 420 [19].

5.1. Experiment 1 for Ant Colony Optimization Algorithm and Ran-
dom Data

Determination of the appropriate parameters for the ant colony optimization
algorithm is not a simple task. It often happens that a given set of parameters is
suitable for a certain set of data, whereas for another one the results are far from
optimal.

In order to determine the appropriate parameters, a series of tests were per-
formed for the specified data sets. The following experiment was based on the
optimized parameters returning acceptable results: an importance pheromone rate
α = 1, the weighting edge visibility rate β = 1, the pheromone evaporation coeffi-
cient ρ = 0.01. There were two changing variables, namely the number of ants, 10
or 30, and the constant pheromone growth factor Q, which was set as 100 or 500.

As demonstrated by the results in Table 1, the best average solution for 10
cities is equal to 700 units. This result was obtained for all possible combinations
of parameters in this experiment. In addition, the exact solutions obtained in every
single test did not differ from the average. The only apparent difference was the
number of iterations required –– the higher the number of ants and the greater the
value of Q, the lower the number of iterations.

For 30 cities, the smallest average path length found was equal to 1025 units.
The other average solutions found differed from the best average result by about
1%. The smallest number of iterations (237 iterations) was obtained for 30 ants
and parameter Q equal to 100 and for 10 ants and Q equal to 500.

5.2. Experiment 2 for Ant Colony Optimization Algorithm and
Olivier30 Data

For comparison purposes, the ant colony algorithm was tested using Oliver30
benchmark data set, for which the optimal solution is 420 units. The results of this
experiment are summarized in Table reftabExperiment2. The best average result,
obtained for 30 ants and value of Q equal to 100, with an average of 330 iterations,
was equal to 422 units. With those parameter settings, the ant colony optimization
algorithm was able to equal the best solution found so far –– 420 units.
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Table 1: The results of experiment 1

Algorithm parameters 10 cities 30 cities
Number
of ants

α β ρ Q Number
of iter-
ations

Time
[ms]

Path
length

Number
of iter-
ations

Time
[ms]

Path
length

10 1 1 0.01 100 43 20 700 484 438 1025
30 1 1 0.01 100 17 56 700 237 958 1027
10 1 1 0.01 500 37 19 700 237 319 1035
30 1 1 0.01 500 17 56 700 252 973 1027

Table 2: The results of experiment 2

Algorithm parameters Oliver30 — TSPLIB
Number
of ants

α β ρ Q Number
of iter-
ations

Time
[ms]

Path
length

10 1 1 0.01 100 342 358 428
30 1 1 0.01 100 330 1045 422
10 1 1 0.01 500 410 380 427
30 1 1 0.01 500 391 1118 423

For other configurations (10 ants and Q = 500) the average solution deviated
from the best average by up to 1.4%.

The parameters of algorithm analyzed in this experiments may be accepted as
the optimal parameter setting.

5.3. Experiment 3 for the Genetic Algorithm and Random Data

All experiments of the genetic algorithm were performed with the crossover
rate equal to 1, the population size of 50, 100 and 200, and with the variable mu-
tation rate equal to 0.015, 0.1, 0.3, and 0.7.

As shown in Table 3, for a population of 50, it is possible to obtain relatively
good results with low values of the mutation factor. For 10 cities, the smallest
medium path length of 700 units is obtained, with a mutation rate of 0.1 and 0.3. It
should be also noted that at a mutation rate equal to 0.015 the result was also good.
It is important that the higher the mutation rate, the greater requirement to increase



J. Ochelska-Mierzejewska 61

Table 3: The results of experiment 3

Algorithm parameters 10 cities 30 cities
Size
of the
popu-
lation

Mutation
rate

Number
of iter-
ations

Time
[ms]

Path
length

Number
of iter-
ations

Time
[ms]

Path
length

50 0.015 7 19 707 304 74 1167
50 0.1 34 23 700 945 154 1269
50 0.3 112 28 700 192 76 2346
50 0.7 572 53 708 514 125 2467
100 0.015 6 39 702 105 115 1118
100 0.1 8 39 700 1359 387 1319
100 0.3 61 48 700 760 285 2182
100 0.7 425 89 706 804 329 2438
200 0.015 7 77 700 119 238 1103
200 0.1 8 81 700 1450 822 1246
200 0.3 151 114 700 159 300 2233
200 0.7 263 148 700 269 392 2406

the number of iterations. The lowest average number of iterations equal to 7 was
obtained at the mutation rate equal to 0.015. For 30 cities, the shortest path, with a
length of 1167 units, was achieved at the mutation rate equal to 0.015. The higher
the mutation rate, the worse the result. As for the average number of iterations, the
results are different than those obtained for the 10 cities. For the shortest path, the
algorithm needed 304 iterations; for the path about 100 units longer the algorithm
required an average of 945 iterations.

Table 3 shows the beneficial impact of increasing the size of population from
50 to 100 on the average length of the solution, with the mutation rate of 0.015.
However, with larger values of the mutation rate, the results deteriorated slightly.
The best solutions obtained for 10 and 30 cites, were 700 and 1118 units, respec-
tively. The results were better than those obtained for a population of 50. For 10
cities, fewer iterations were required to achieve the reported results. For 30 cities,
the number of iterations decreased only for the mutation rate equal to 0.015. A
higher mutation rate increased the computational requirements of the algorithm.

When the population size was increased to 200, further improvements could
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be observed in almost all of the specified configuration parameters. The only ex-
ception were the results obtained for 30 cities at the mutation rate of 0.3 — for
30 cities the result was worse than that of the experiment performed on a pop-
ulation of 100. The number of iterations needed to obtain the results presented
was varied. For small values of the mutation rate (0.015 and 0.1) the number of
iterations required was slightly higher. If the mutation rate was equal to 0.3, the
number of iterations required was a little higher for 10 cities, whereas for 30 cities
this number decreased. For the mutation rate equal to 0.7, the number of iterations
decreased in each case. Consecutively, for 10 and 30 cities the best solutions were
obtained, namely 700, 1103 and 1559 units, as compared to the results obtained
from a population of 50.

5.4. Experiment 4 for the Genetic Algorithm and Olivier30 Data

Experiment 4 was aimed at exploring the performance of the genetic algo-
rithm for a known data set, namely Oliver30 from TSPLIB. The results are sum-
marized in Table 4. The reference point was the optimal solution for Oliver30,
which amounts to 420 units.

The best average score was obtained for a population of 200 and the mutation
rate equal to 0.015 — 471 units. Note that this result was obtained with the smallest
number of iterations. For this population the best exact result was also achieved —
436 units in 41 iterations.

After increasing the mutation rate to 0.1, the average solution improved slightly
for small populations and deteriorated slightly for the largest population tested ––
the best average path length for this mutation rate was 492 units, with a population
of 50. Other average results did not differ much –– 493 units for a population of
100 and 501 units for a population of 200.

After increasing the mutation rate to 0.3, the average solution deteriorated sig-
nificantly — the best average path length was 791 units for a population of 50.
Although the number of iterations decreased, the results were not satisfactory.

An increase of the mutation rate caused a slight deterioration of results, which
was accompanied by a considerable increase in the number of iterations required.

5.5. Comparison of Algorithms

After comparing both algorithms, it was found that the best results were ob-
tained by the ant colony optimization algorithm, which also usually required a
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Table 4: The results of experiment 4

Algorithm parameters Oliver30 — TSPLIB
Size of the
population

Mutation
rate

Number of
iterations

Time
[ms]

Path
length

50 0.015 538 103 503
50 0.1 1703 219 492
50 0.3 547 114 791
100 0.015 372 160 495
100 0.1 1668 441 493
100 0.3 452 243 827
200 0.015 218 266 471
200 0.1 1863 976 501
200 0.3 532 462 821

smaller number of iterations. An increase in the size of the population led to ob-
taining better results by both algorithms.

The best medium-length paths:

• 10 cities:

– the ant colony optimization algorithm: 700 units,

– the genetic algorithm: 700 units.

• 30 cities:

– the ant colony optimization algorithm: 1025 units,

– the genetic algorithm: 1167 units.

Figures 5 and 6 show the shortest paths in a graph form as designated by the
algorithms.

6. Summary

Every company struggling with economic problems tries to reduce the oper-
ational costs and, consequently, increase its competitiveness. Multi-dimensional
data analysis, forecasting and delivery of critical business information are the key
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Figure 5: The result of the algorithms in the graph form for 10 random cities

Figure 6: The result of the algorithms in the graph form for 30 random cities

processes that underpin effective decision making and provide insight into certain
trends. As a result, a company is able to reduce the costs and become more com-
petitive.

The analysis of a constantly increasing amount of data is a challenge faced by
many companies today. It requires the use of information systems which provide
the ability to process large volumes of data in a desired manner.

As demonstrated by the results of this study, decision support systems can
be very useful in solving the type of transportation and logistics problems under
examination. The implementation of the genetic algorithm and the ant colony op-
timization algorithm has shown that the use of information technology is able to
satisfy the needs of a logistics company, which searches for an optimal path in the
transport process.

From an information technology perspective, the basic model of the transport
problem can be represented as the travelling salesman problem. Both algorithms
implemented and tested in this paper have proved to be a great tool for determin-
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ing the optimal solution to this problem. However, the ant colony optimization
algorithm seems to be more applicable to this task, since it provides slightly bet-
ter solutions. It also outperforms the genetic algorithm as regards the computation
time and the number of iterations needed to find the optimal solution. The greatest
difficulty of this method lies in the choice of appropriate parameters, which is not
a trivial task, often dependable on the input data.
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