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Abstract. The paper describes aspects of integrating relational resources
in an object-oriented data intensive grid with extensive description of a
grid architecture. The presented solution is generic and allows utilizing
native query optimizers of a relational resource (indices, fast joins, etc.),
which can be effectively combined with an object query language (SBQOL)
optimization.

1. Introduction

A grid is a novel technology widely researched by many academic and
industrial institutions. Formerly “a grid” referred only to computational
networks, however, due to the rapid evolution of the Internet, Internet
communities and the increase of a worldwide business information exchange
there have arisen further expectations. Simultaneously, new opportunities has
opened for data and service integration. Grids with we deal are conceptually
similar to computational ones. Our research is devoted to a distributed parallel
database content processing, where various data and service resources residing
in separate locations can be virtually available through their global
representation. This technology is referred to as a data-intensive grid or just a
data grid.

Such a global representation (view) should abstract its users from all the
technical aspects of the process of integration (location, heterogeneity,
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fragmentation, replication, redundancy, etc.), which is referred to as a
transparency. The effect of transparency requires enveloping (wrapping) the grid
resources with dedicated programmatic structures — wrappers.

The paper describes object-to-relational wrapper concepts for distributed,
heterogeneous and redundant data resources that are to be virtually integrated
into a centralized, homogeneous and non-redundant whole. Our data grid
concerns higher forms of distribution transparency plus some common
infrastructures build on top of the grid, including the trust infrastructure
(security, privacy, licensing, payments, etc.), web services, distributed
transactions, workflow management, etc. [2].

Integration of dozens or hundreds servers participating in a grid requires
different design processes in comparison to the situation when, e.g. a single
object-oriented application has to be connected to a relational database. A
common (canonical) database schema is the result of many negotiations and
tradeoffs between business partners having incompatible (heterogeneous) data
and services. The processes should take into account data models of the
resources, but first of all the global canonical schema is influenced by the
business model required by global applications (operating on top of a grid).
Therefore a development of an object-relational wrapper for a grid is much more
constrained than in a non-grid case. On one hand, the wrapper should deliver the
data and services according to the predefined object-oriented canonical schema.
On the other hand, its backend should work on a given (preferably arbitrary)
relational database.

The major problem with this architecture concerns how to utilize a powerful
native SQL optimizer. In all known RDBMSs the optimizer and its particular
structures (e.g. indices) are transparent to the SQL wusers. A naive
implementation of a wrapper causes generation of primitive SQL queries such as
select * from R, and then, processing the results of such queries by SQL cursors.
Hence, the SQL optimizer has no chances to work. Furthermore, such an
approach causes large amounts of excessive data to be retrieved from a relational
resource (bandwidth limitations, many IO operations) and then further
processed. It is exceptionally inefficient. Our experience has shown that direct
translation of object-oriented queries into SQL is infeasible for a sufficiently
general case.

The solution to this problem presented in this paper is based on the object-
oriented query language SBQL [1], virtual object-oriented views defined in
SBQL, query modification methods [3], and a mechanism capable of detecting
in a query syntactic tree patterns that can be directly translated to SQL-
optimizable queries. Such patterns match typical optimization methods that are
used by SQL query optimizers, in particular, indices and fast joins. Relatively
small partial query results returned from a relational database are then evaluated
in the whole query context (resulting from an already SBQL-optimized query
form). The concept of the two-stage optimization (object-oriented and relational)
is original and innovatory.
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The rest of the paper is organized as follows. In Section 2 we present a brief
state of art and the fundamental concepts of the described solution including
SBA, SBQL and updateable object views. Section 3 presents in details the data
grid architecture. Section 4 discusses an object-relational wrapper, its action and
an optimization procedure with an example. Section 5 concludes.

2. Motivation and Fundamentals of the Solution

Object-oriented wrappers build on top of relational database systems date to
late 1980s and were developed with federated databases. Their motivation was a
reduction of technical and cultural differences between traditional relational
databases and novel object-oriented paradigms. Recently, Web technologies
based on XML/RDF also require similar wrappers. Although object-oriented and
XML-oriented technologies are rapidly evolving and offering new fields of
application, people are accustomed and quite satisfied with relational databases
and there is a little probability that the market changes soon to other data store
paradigms. Furthermore, the market is saturated with (object-) relational DBMS-
s and costs of a software replacement and a data migration would be incredibly
high and software companies are not willing to develop and introduce new
technologies and reject existing ones, as a large demand for them still continues.

A database “tower of Babel” makes a database programming constrained to
a particular DBMS. Even flexible technologies like JDBC cannot cover SQL
irregularities and object-relational wrappers (e.g. Torque [4], OJB [5], Hibernate
[6]) are not efficient, especially in a grid case. Hardly do they allow effective
optimization (due to programming language runtime objects to SQL operations
transformation), either.

A grid integration requires a generic and effective data model mapping. The
mapping between a relational database and a target global object-oriented
database should not involve materialization of objects on the global side, i.e.
objects delivered by such a wrapper should be virtual. Materialization is simple,
but leads to many problems, such as storage capacity, network traffic overhead,
synchronization of global objects after updates on local servers, and (for some
applications) synchronization of local servers after updates of global objects.
Materialization can also be forbidden by security and privacy regulations.

If global objects have to be virtual, they are to be processed by a query
language and the wrapper has to be generic, we are coming to concept of virtual
object-oriented database views that do the mapping from tables into database
objects. In our opinion, the Stack-Based Approach and its query language SBQL
[1] offer the first and universal solution to the problem of updateable object-
oriented database views. In this paper we show that the query language and its
view capability can be efficiently used to build optimized object-oriented
wrappers on top of relational databases.

Currently, our team is working on a data grid solution developed under
international eGov-Bus project (contract no. FP6-IST-4-026727-STP). The
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project objective is to research, design and develop technology innovations
which will create and support a software environment providing user-friendly,
advanced interfaces supporting “life events” of citizen or enterprises —
administration interactions transparently involving many government
organizations within the European Community [7]. This objective can be
accomplished only if all existing government and para-government database
resources (heterogeneous and redundant) are accessible as a homogeneous data
grid.

It will be based on our own object-oriented query language SBQL, having a
precise formal semantics, which is a prerequisite for developing any automatic
transformations of queries into semantically equivalent forms. SBQL is already
implemented, including its typechecker and a query rewriting optimizer.
Furthermore, the system will be equipped with a powerful mechanism of object-
oriented virtual updateable views based on SBQL. Our views have the power of
algorithmic programming languages, hence are much more powerful than, e.g.
SQL views (partially implemented [9]). There are three basic applications of the
views:

e as integrators (mediators) making up a global virtual data and service

store on top of distributed, heterogeneous and redundant resources,

e as wrappers on top of particular local resources,

e as customization and security facility on top of the global virtual store.

The architecture assumes that a relational database will be seen as a simple
object-oriented database, where each tuple of a relation is mapped virtually to a
primitive object. Then, on such a database we define object-oriented views that
convert such primitive virtual objects into complex, hierarchical virtual objects
conforming to the global canonical schema, perhaps with complex repeated
attributes and virtual links among the objects. Moreover, because SBQL views
are stateful, have side effects and be connected to classes, one would be able to
implement a behaviour related to the objects on the SBQL side.

The major problem concerns how to utilize the SQL optimizer. Our
experience leads to a conclusion that static (compile time) mapping of SBQL
queries into SQL is infeasible. On the other hand, a naive implementation of the
wrapper, as presented above, leaves no chances to the SQL optimizer. Hence we
must use optimizable SQL queries on the backend of the wrapper.

The solution of this problem is presented in this paper. It combines SBQL
query engine with the SQL query engine. There are a lot of various methods
used by an SQL optimizer, but we can focus on three major ones:

e rewriting, for instance, pushing selections before joins,

¢ indices, i.e. internal auxiliary structures for a fast access,

e fastjoins, e.g. hash joins.

Concerning rewriting, our methods are perhaps as good as SQL ones, thus
this kind of optimization will be done on the SBQL side. Two next optimizations
cannot be done on the SBQL side. The idea is that an SBQL syntactic query tree
is first modified by views [3], thus we obtain a much larger tree, but addressing
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a primitive object database that is 1:1 mapping of the corresponding relational
databases. Then, in the resulting tree we are looking for some patterns that can
be mapped to SQL and which enforce SQL to use its optimization method. For
instance, if we know that the relational database has an index for Names of
Persons, we are looking in the tree the sub-trees representing the SBQL query

such as Person where Name = "Doe". After finding such a pattern we
substitute it by the dynamic SQL statement exec_immediately (select * from
Person where Name = "Doe") enforcing SQL to use the index. The result

returned by the statement is converted to the SBQL format. Similarly for other
optimization cases. In effect, we do not require that the entire SBQL query
syntactic is to be translated to SQL. We interpret the tree as usual by the SBQL
engine, with except of some places, where instead of some sub-trees we issue
SQL execute immediately statements.

2.1. The Stack-Based Approach and Updateable Object Views

In the stack-based approach (SBA) a query language is considered a special
kind of a programming language. Thus, the semantics of queries is based on
mechanisms well known from programming languages like the environment
stack (ENVS). SBA extends this concept for the case of query operators, such as
selection, projection/navigation, join, quantifiers and others. Using SBA one is
able to determine precisely the operational semantics (abstract implementation)
of query languages, including relationships with object-oriented concepts,
embedding queries into imperative constructs, and embedding queries into
programming abstractions: procedures, functional procedures, views, methods,
modules, etc.

SBA is defined for a general object store model. Because various object
models introduce a lot of incompatible notions, SBA assumes some family of
object store models which are enumerated MO, M1, M2 and M3. The simplest is
MO, which covers relational, nested-relational and XML-oriented databases. MO
assumes hierarchical objects with no limitations concerning nesting of objects
and collections. MO covers also binary links (relationships) between objects.
Higher-level store models introduce classes and static inheritance (M1), object
roles and dynamic inheritance (M2), and encapsulation (M3). For these models
there have been defined and implemented the query language SBQL, which is
much more powerful than ODMG OQL [15] and XML-oriented query languages
such as XQuery [16]. SBQL, together with imperative extensions and
abstractions, has the computational power of programming languages, similarly
to Oracle PL/SQL or SQL-99.

SBA assumes the object relativism principle that makes no conceptual
distinction between objects of different kinds or stored on different object
hierarchy levels. Everything (e.g. a Person object, a salary attribute, a procedure
returning the age of a person, a view returning well-paid employees, etc.) is an
object. SBQL respects the naming-scoping-binding principle: each name
occurring in a query is bound to the appropriate run-time entity (an object, an
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attribute, a method, a parameter, etc.) according to the scope of its name. The
principle is supported by means of the environment stack (ENVS). The concept
of the stack is extended to cover database collections and all typical query
operators occurring, e.g. in SQL and OQL.

Due to the stack-based semantics, the full orthogonality and
compositionality of query operators have been achieved. The stack also supports
recursion and parameters: all functions, procedures, methods and views defined
in SBQL can be recursive by definition. Rigorous formal semantics implied by
SBA creates a very high potential for the query optimization. Several
optimization methods have been developed and implemented, in particular
methods based on query rewriting, indices, removing dead queries, and others
[8].

SBQL is based on the principle of compositionality, i.e. semantics of a
complex query is recursively built from semantics of its components. In SBQL
each binary operator is either algebraic or non-algebraic. Examples of algebraic
operators are numerical and string operators and comparisons, aggregate
functions, union, etc. Examples of non-algebraic operators are selection (where),
projection/navigation (the dot), join, quantifiers (V,3), and transitive closures.
The semantics of non-algebraic operators is based on a classical environmental
stack, thus the name of the approach.

The idea of SBQL updatable views relies in augmenting the definition of a
view with the information on user intentions with respect to updating operations.
The first part of the definition of a view is the function, which maps stored
objects onto virtual objects (similarly to SQL), while the second part contains
redefinitions of generic operations on virtual objects. The definition of a view
usually contains definitions of subviews, which are defined by the same
principle [10, 11, 12].

The first part of the definition of a view has the form of a functional
procedure. It returns entities called seeds that unambiguously identify virtual
objects (usually seeds are OIDs of stored objects). Seeds are then (implicitly)
passed as parameters of procedures that overload operations on virtual objects.
These operations are determined in the second part of the definition of the view.
There are distinguished several generic operations that can be performed on
virtual objects:

e delete removes the given virtual object,

e retrieve (dereference) returns the value of the given virtual object,

® navigate navigates according to the given virtual pointer,

® update modifies the value of the given virtual object according to a

parameter, etc.

All procedures, including the function supplying seeds of virtual objects are
defined in SBQL and can be arbitrarily complex [10, 11, 12].



Integration of relational resources in an object-oriented data grid with an example

3. A Data Grid Architecture

The main idea of a data grid is based on a virtual repository for database
services [6]. A virtual repository and the basic mechanisms of a grid are shown
in Fig. 1.
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Fig. 1: Architecture of a data grid

A virtual repository is an interface to distributed data residing at each local
data provider. The general goal of virtual repositories is a simplification of an
access to distributed, heterogeneous and redundant data. Our goals are:
designing a platform where all clients and providers get access to thousands of
distributed resources without any complications of a data maintenance, building
a global schema of accessible data resources, designing a transport platform for
a free data and information exchange. A big advantage of our conception is that
data and services need not be copied, replicated and maintained at a global
applications' side (in a global schema) — they live at their autonomous sites and
are locally supplied, stored, processed and maintained [13].

Further simplifications can be achieved with additional mechanisms
contained within our main virtual repository using an object-oriented database
with the Stack-Based Approach (SBA) [1].

The principal problem is how to join local clients and resource providers as
parts of a global virtual repository with free bidirectional data processing. Our
conception defines wrappers and adapters as media which can transport
available data inside a grid. These mechanisms exploit other services available at
resource providers and build an access bridge between an original structured
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content and our second principal mechanisms called mediators and views. These
mechanisms are responsible for a data formalization of unstructured content for
a local schema which is a well formalized part of a global virtual repository. A
local schema is a programmatic expression providing bindings between a
formalized data representation and an original data service. It means that a local
schema is only in a virtual and non-materialized state. As a result we get
collections of business objects (fragmented or not) without redundancies, but
with a direct access to proper data/service replications. A global schema is a
principal mechanism which envelopes all local resources into one global data
structure. Physically, it is a composition of contribution schemata which can
participate in a grid. A global schema is responsible for managing grid contents
through access permissions, discovering data and resources, controlling location
of resources, indexing whole grid attributes. A global view is responsible for
mapping data from local resources into a global schema. Such mappings consist
of enclosing into a global schema particular contribution schemata residing at
local sites, created earlier by local participants (resource providers). As a global
client we understand a software implementation at a global client side. It enables
accessing a global repository according to a trust infrastructure including
security, privacy, licensing and non-repudiation issues. Global infrastructures
and a global virtual object and service store are a collection of routines defining
a whole virtual network infrastructure, covering physical network mechanisms
compatibly with some trust infrastructure issues. A virtual network
simplification relies on a peer-to-peer technology. A grid designer represents a
person or a software team or a consortium determining primary dependencies
and attributes of a grid. At the beginning they create a global schema which later
can be contributed during a participation of clients and providers. They also
define a metabase structure. Next, a grid designer defines a main contribution
schema and an integration schema according to a grid data structure intention. A
grid designer creates also a contributory schema. It represents the main rules for
a data formalization schema for any local resource. Basing on this, local
resource providers create their own contributory schemata adapted to an unique
data structure present at their local sites. A contributory schema is generated for
each resource by a local resource administrator. It contains formalization rules
based on a contributory schema with an adaptation for a data structure and
services accessed from a local site. A resource formalization represented in such
a form becomes a part of a global schema. A contributory view is a query
language definition for mapping a local schema to a contribution schema. A well
defined contributory view becomes a part of a global view. The very important
element of a virtual repository is an integration schema. It contains additional
information about a method of resource integration into a grid, e.g. how to
merge inside a virtual repository fragmented relational data structure where
some parts of them are placed in separated resources. A grid designer must be
aware of fragmentation issues, which is unnecessary for a local sites
administrator. A wrapper is a mechanism for importing and exporting data
between two different data models, e.g. our object-oriented grid solution at one
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side and a relational data structure on the other side. A representation of data and
a services' composition for each of grid participants is a local server, where a
local schema describes a local resource data model and can be presented in an
original data structure (e.g. relational, XML, HTML). It cannot be directly
connected to a virtual repository.

The presented architecture of a data grid is fully scalable, as growing and
reducing grid contents is dependent on a state of global schemata and views.

The approach to a data grid defines a query language as a main mechanism
with a high-level access to original data covered behind a virtual repository. It
specifies a conceptual, declarative, macroscopic and free from physical details
access to distributed, heterogeneous and redundant data available in the whole
grid [10, 11].

The approach should specify a security, privacy and non-repudiation
infrastructure built on top of a virtual repository. It should be independent of
clients' security and privacy models and designed for a grid transaction
processing model. Parts of these aspects are covered within our transport
platform.

3.1. A Virtual Repository Concept

The solutions exploiting virtual repositories currently available in the field
implement particular solutions hard to be reused for other organizations and
business goals. Processing in a virtual repository comprises some complex
issues. One of them is updating virtual data seen through a virtual repository, the
state of research about this problem is open, practically unexplored. Similar
problems concern security and global transaction infrastructures that are built
over of a virtual repository. Another problem concerns performance issues, in
particular, a global query optimization concerning our object oriented database
query language as a user interface for a virtual repository.

Problems described above as a result raise an issue of developing generic
methodologies, environments, tools and languages that support a quick
development of a grid with a virtual repository aiming at a particular application
integration goal. This problem can be solved with an architectural idea of the
grid components presented in Fig. 1 and with developing concrete technical
solutions concerning particular components:

e developing a canonical model and a schema according to global user
requirements (several directives like a business contract, a standard, law
regulations, etc.). The model and the schema should be implemented in a
corresponding language having both human and machine interpretations,

e developing local models and schemata of providers for participating
local data and service resources in terms of a canonical model and a
schema, i.e. showing how particular local providers contribute to the
global schema,

e developing assumptions concerning export wrappers for particular
providers sharing their resources,
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developing an integration schema exploiting a local schema and a global
schema which shows dependencies between local resource providers and
the global view and dependencies between the local providers
(redundancies, replications, etc.).

The principal development and implementation goal is proper defining a
global integrator of the virtual repository, which maps all local data and
resources to the global view.

Virtual repository

Global repository administration and security infrastructure

Global transaction processing

Global integrator

Local data & Metadata Ontology Access

service manasement manasement support

Communication, transport & service invocation protocol

Fig. 2: Virtual repository

Refined vision of the virtual repository node is presented in Fig. 2. It
includes other important architectural components:

a global repository administration and a security infrastructure built on
top of global virtual data and services, it is responsible for an
administration of global resources and granting privileges to particular
clients and resource providers,

a global transaction processing is responsible for a synchronization of a
concurrent access to distributed resources,

a global integrator prepares a fragmented data integration into virtual
wholes, resolves heterogeneities into reusable schemata, binds
redundancies and replications for a virtual whole, employs access
support mechanisms, and does other actions necessary to achieve
assumed transparency forms,

a metadata management keeps global and local schemata and
interdependencies between local and global resources and between
particular local resources,

an ontology management keeps all user-oriented meta-resources
concerning a classification, a categorization, dictionaries, a topic and
knowledge maps, etc. The meta-resources have direct associations with
the resources, allowing users to discover, retrieve and process them
according to some conceptual patterns,
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® an access support management consists of indices and query
optimization mechanisms that support a performance, an availability and
a scalability.

Some concrete technical goals, which include many issues, are implemented
in the currently developed object oriented platform ODRA for web and grid
applications which is the leading mechanism in our development:

e developing a powerful object-oriented database model able to cover all
aspects occurring during an integration of heterogeneous resources
having various data formats. The model will be supported by a schema
language that can be used to specify a global schema and local schemata
of participating resources,

e developing a powerful object-oriented query language, as API for
processing resources,

e developing a mechanism of updateable object-oriented views used for
several purposes: as global integrators, as schema’s organizers on top of
local servers, as first-class interfaces being the subject of administrative
decisions concerning user privileges, and as an additional security
mechanism based on overloading generic operations on virtual objects
and supporting security policy changes,

e developing a communication, transport and service invocation protocol
that would physically integrate resource providers with a virtual
repository corresponding to other platform for a data transportation,

e developing a methodology disciplining the processes of manufacturing a
virtual repository for a given business goal with well defined,
measurable and controllable steps.

Although the literature contains many works concerning the above issues
and problems, the field is rather in a premature stage, far from a complex and
universal solution. Our research based on generic object-oriented database
model with updateable views focused on unifying query languages and
updateable views to design well defined grid mechanisms creates a big chance to
receive significant theoretical and practical results much beyond the current state
of art.

The technical aspects of realization of the described idea assume an
existence of several cooperating technologies nearby. The principal aspect is a
good design of a virtual repository platform corresponding with two other
aspects which are responsible for data resources maintenance
(wrappers/adapters) and a business data exchange including a grid security and
its management (a transport platform). The concept concerns existing individual
software modules with interconnectivity mechanisms enabling a restricted and
specified participation of data processing. It has an original and general
tendency. The modules may be developed and implemented according to the
idea of a project’s architect.

Our concept assumes the following strategies:
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e a virtual repository — physically available with applications based on the
previously described architecture. Parts of a repository will be a client
and a provider application and a management application.

e import/export adapters and wrappers — mechanisms supporting a grid
architecture to import and export local resources which may contribute
to a virtual repository. They are software modules enabling a resource
provider’s services exploitation. Each of grid clients and providers will
be equipped with user selected or corresponding to a grid contribution
schema modules, which can discover local data and thanks to the views
mechanisms grant access as a part of a virtual repository [11].

e a transport platform [I13] - determines independent software
environment responsible for free distributed transaction processing. The
platform particularly should grant an unlimited physical access to a grid
network for clients and resource providers (units) and an assurance of a
well formed protocol for an information interchange. It is based on a
centrally managed peer-to-peer network infrastructure. The following
P2P features should assure operations such as: unit unique identifying,
unit naming, units’ interconnections, a network security, etc. Other
important aspects are keeping a resources location transparency for
acting units, a scalability of a network, an independence of a physical
network configuration and naming. All these aspects can be developed
using a multiprotocol, fully programmable P2P platform of the JXTA
project [14].

3.2. A Grid Approach and a Peer-to-Peer Network

The principal technical difference between P2P and grid technologies is
located in the field of data resources. In P2P, network processing consist of a
defined in advance data exchange where the same physically data come from
multiply resources. If more resources contain the same data then clients can
easily contribute to this data. An accessibility of different data is the most
important for a grid technology. There is a lot of data containing different
information or similar information differently structured or combined. Looking
at processing of business information, grid organizations need more data
information accessible by an individual resource rather than more of the same
data information better accessible by multiply resources. This attribute is bound
with a global schema represented by data managed in a virtual repository in grid
networks. They contain all formalized content accessible inside a grid and come
from individual resource providers. P2P networks do not need a global schema
because their content is imposed by an order of a superior authority.

In the presented concept P2P networking can be used as a grid transport
platform for services and data interchange and a security layer.
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4. A Wrapper Architecture and an Optimization Procedure

SBQL front-end query Business model
i (object oriented)

i front-end SBQL query tree Jl

______________ —

External wrapper (updatable
views + query modification)

Rewriting query optimizer i

MO representation

Internal wrapper (convertion of

v

/_ back-end SBQL query tre L of relational model

parts of the tree to SQL
exec_immediately)

Dynamic SQL

_____________ T_______________ l (ODBC, JDBC, ADO,...)

Relational model

Fig. 3: Wrapper architecture

Fig. 3 presents the architecture of the wrapper. The general assumptions are
the following:

externally the data are designed according to the object-oriented model
and the business intention of the global schema — the frontend of the
wrapper (SBQL),

internally the relational structures are presented in the MO model
(excluding pointers and nesting levels above 2) [11] — the backend of the
wrapper (SBQL),

the mappings between frontend and backend is defined with updatable
object views. They role is to map backend into frontend for querying
and frontend onto backend for updating (virtual objects),

for global queries, if some not very strict conditions are satisfied, the
mapping form front-end into back-end query trees is done through query
modification, i.e. macro-substituting every view invocations in a query
by the view body.

In other words, the wrapper is a middleware between the top SBQL engine
and the bottom (resource) relational engine.

The presented architecture assumes retrieval operations only, because the
query modification technique assumed in this architecture does not work for
updates. However, the situation is not hopeless (although more challenging).
Because in SBQL updates are parametrized by queries, the major optimizations
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concern just these parameters, with the use of the query modification technique
as well. There are technical problems with identification of relational tuple
within the SBQL engine (and further in SQL) for updating operations. Not all
relational systems support tuple identifiers (tids). If tids are not supported, the
developers of a wrappers must relay on a combination (relation_name,
primary_key_value(s)), which is much more complicated in implementation.
Tids (supported by SQL) simply and completely solve the problem of any kind
of updates.

In Fig. 3 we have assumed that the internal wrapper utilizes information on
indices and fast joins (primary-foreign key dependencies) available in the given
RDBMS. In cases of some RDBMS (e.g. MS SQL Server) this information
cannot be derived from the catalogues. Then, the developers are forced to
provide an utility allowing the wrapper designer to introduce this information
manually. As stated in section 4, our solution is aware of this situation.

The query optimization procedure (looking from wrapper's frontend to
backend) for the proposed solution can be divided into several steps:

1. A query modification is applied to all view invocations in a query,
which are macro-substituted with seed definitions of the views. If an
invocation is preceded by the dereference operator, instead of the seed
definition, the corresponding on_retrieve function is used (analogically,
on_navigate for virtual pointers). The effect is a monster huge SBQL
query referring to the MO version of the relational model available at the
backend.

2. The query is rewritten according to static optimization methods defined
for SBQL [3] such as removing dead sub-queries, factoring out
independent sub-queries, pushing expensive operators (e.g. joins) down
in the syntax tree, etc. The resulting query is SBQL-optimized, but still
no SQL optimization is applied.

3. According to the available information about the SQL optimizer, the
back-end wrapper's mechanisms analyse the SBQL query in order to
recognize patterns representing SQL-optimizable queries. Then,
exec_immediately clauses are issued.

4. The results returned by exec_immediately are pushed onto the SBQL
result stack as collections of structures, which are then used for regular
SBQL query evaluation.

As a short example consider an SBQL query: R where A = v. If there is a
SQL index on A column in R relation in the relational database, it is substituted
(in the syntax tree) with exec_immediately clause invoking appropriate SQL
query: exec_immediately(“select * from R where A = v”). Similarly, the
pattern representing primary-foreign key can be found, the SBQL subquery can
be substituted with exec_immediately(“select * from R1, R2 where
R1l.PrimaryKey = R2.ForeignKey").
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4.1 An Integration and Optimization Example

DocR WardR
1D (PK) [f—Of Manager  (FK)
Name Name
Specialization 1D (PK)
WardId (FK)

Fig. 4: Example of a relational schema

As the optimization example consider a simple two-table relational database
containing information about doctors DocrR and wards wardr, “R” stands for
“relational” to increase the clearness (Fig. 4).

The relational schema is wrapped into an object schema shown in figure 4
according to the following view definitions. The pDocR-wardr relationship is
realized with worksIn and manager virtual pointers:

create view DocDef {
virtual objects Doc {return DocR as d;}
virtual objects Doc (DocId) {return (DocR where ID == DoclId)
as d;}
create view nameDef
virtual_ objects name{return d.name as n;}
on _retrieve {return n;}
}
create view specDef ({
virtual objects spec {return d.specialization as s;}
on _retrieve {return s;}
}
create view worksInDef ({
virtual pointers worksIn {return d.wardID as wi;}
on_navigate {return Ward(wi) as Ward;}
}
}
create view WardDef ({
virtual objects Ward {return WardR as w;}
virtual objects Ward(WardId) {return (WardR where ID ==
WardId) as w;}
create view nameDef {
virtual objects name {return w.name as nj;}
on _retrieve {return n;}
}
create view managerDef ({
virtual pointers manager {return w.menagerID as b;}
on_navigate {return Doc(b) as Doc;}

*» worksIn
Doc [1..*] Ward [1..*]
name name

spec

manager <

Fig. 5: Example of a corresponding object-oriented schema (wrapper's front-end)
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Consider a query appearing at the front-end (visible as a business database
schema) that aims to retrieve names of the doctors working in the “cardiac
surgery” ward having the specialization the same as Smith's specialization. The
query can be formulated as follows (we assume that there is only one employee

with that name in the store):
((Doc where worksIn.Ward.name = "cardiac surgery") where spec =
(Doc where name = "Smith") .spec) .name;

The information about the local schema (relational model) available to the
wrapper that can be used during the query optimization is that name column is
uniquely indexed in either relation and there is a primary-foreign key integrity
between Wardld column (DocR table) and ID column (WardR table).

The optimization procedure is performed in the following steps:

1. Introduce implicit deref function
((Doc where worksIn.Ward.deref (name)
deref (spec) = (Doc where deref (name) =
"Smith") .deref (spec)) .deref (name) ;

2. Substitute deref with the invocation of on_retrieve function for virtual

objects and on_navigate for virtual pointers

"cardiac surgery") where

((Doc where worksIn. (Ward(wi) as w).Ward. (name.n) = "cardiac
surgery") where (spec.s) = (Doc where (name.n) =
"Smith") . (spec.s)) . (name.n);

3. Substitute all view invocations with the queries from sack definitions
(((DocR as d) where ((d.wardID as wi).(((WardR where ID == wi)
as w) as Ward)) .Ward. ((w.name as n).n) = "cardiac surgery")
where ((d.spec as s).s) = ((DocR as d) where ((d.name as n).n)
= "Smith").((d.spec as s).s)).((d.name as n).n);

4. Remove auxiliary names s and n
(((DocR as d) where ((d.wardID as wi).(((WardR where ID = wi)
as w) as Ward)) .Ward. (w.name) = "cardiac surgery") where
(d.spec) = ((DocR as d) where (d.name) =
"Smith") . (d.spec)) . (d.name) ;

5. Remove auxiliary names d and w
((DocR where ((wardID as wi).((WardR where ID = wi) as
Ward) ) .Ward.name = "cardiac surgery") where spec = (DocR where
name = "Smith").spec) .name;

6. Remove auxiliary names wi and ward
((DocR where (WardR where ID = wardID).name = "cardiac
surgery") where spec = (DocR where name = "Smith").spec) .name;

7. Now take common part before loop to prevent multiple evaluation of a query
calculating salary value for the doctor named Smith

((((DocR where name = "Smith") .spec) group as s).(DocR where
((WardR where ID == wardID).name = "cardiac surgery")) where
spec = s).name;

8. Connect where and navigation clause into one where connected with and
operator
((((DocR where name = "Smith").spec) group as s).(DocR where
(WardR where (ID = wardID and name = "cardiac surgery")) where

spec = s).name;



Integration of relational resources in an object-oriented data grid with an example

9. Because name column is uniquely indexed (in pDocr), the sub-query (DocR

where name = "Smith") can be substituted with exec_ immediately clause

(((exec_immediately ("SELECT specialization FROM DocR WHERE name
= 'Smith'")) group as s).(DocR where (WardR where (ID = wardID

and name = "cardiac surgery")) where spec = s).name;

10.Because the integrity constraint with DocR.Wardid column and wardR.ID
column is available to the wrapper (together with information about the index
on WardR.Name), the pattern is detected and another exec_immediately

substitution is performed:
(( (exec_immediately ("SELECT specialization FROM DocR WHERE name

= 'Smith'")) group as s).(exec_immediately ("SELECT * FROM DocR
d, WardR w WHERE d.wardID = w.ID AND w.name = 'cardiac
surgery'") where spec = s).name;

Either of the SQL queries invoked by exec_immediately clause is executed in
the local relational resource and pends native optimization procedures (with
application of indices and fast join, respectively).

5. Conclusions

The presented approach to data grid concerning wrapping relational
databases to object-oriented business model with application of the stack-based
approach and updatable views is clear and implementable. A frontend SBQL
query can be modified and optimized with application of SBA rules and methods
within the wrapper (updatable views) and then powerful native relational
optimizers for SQL language can be employed. The amounts of data
subsequently processed by the wrapper are satisfactorily small.

The described optimization process assumes correct relational-to-object
model transformation (with no loss of database logic) and accessibility of the
relational model optimization information such as indices and/or primary-
foreign key relations (which can be read directly from the relational metadata or
manually entered in the wrapper's schema if not available directly). The SQL
optimization is out of the scope of the wrapper action and is assumed to be
efficient and reliable.

We have also elaborated a similar solution for semistructured data (XML)
basing on Lore system.
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