JOURNAL OF APPLIED
COMPUTER SCIENCE
Vol. xx. No xx (200x), pp. Xx-XX

Parallel implementation of a quantum
computing simulator

Marek Sawerwain, Jakub Pilecki

University of Zielona Gora
Institute of Control and Computation Engineering
Podgorna 50, 65-246 Zielona Gora
e-mail: M.Sawerwain@jissi.uz.zgora.pl
e-mail: J.Pilecki@weit.uz.zgora.pl

Abstract. In this paper the specialized software called quantum
computation simulator is presented. Basic properties of quantum
computation simulations are discussed. The algorithm of parallel
implementation of a vector state transformation is presented also. Some
examples of the presented software application are shown.

1. Introduction

The Quantum Computation is a new trend in the computer science. It is hard
to estimate the exact date of birth of this research area, but the paper [1] can be
seen as a first example of work where the quantum computation model is
discussed. Since then interest in the quantum computation began to grow
rapidly. Notably in 1985 David Deutsch used a quantum algorithm working
exponentially faster than any other known classical algorithm, to solve a
problem of checking whether a given function is constant or balanced. This rapid
development of the quantum computation theory exceeded technological
capabilities of the modern science. So far experiments are restricted to a very
small quantum register. Simulation of the quantum computation [5, 6, 7, 8] is
therefore one of main aspects of the quantum physics. This paper presents a
simulator of the quantum computation model (QCM). Our system is capable of
simulation utilizing distinctly different approaches such as CHP model,
computation model based on pure states and mixed states.

Content of presented paper is as follows: section 2 briefly discusses
computational cost of the quantum computation model simulation. A lemma
formalizing the Feynman’s remark [1] is included. In section 3 main Quantum
Computation Simulator (QCS) features are presented. The main problem of this

4 M. Sawerwain, J. Pilecki

paper is discussed in section 4, where a parallel algorithm for simulation of the
quantum computation model with pure states is introduced. We present a short
analysis of computational cost for some cases where our parallel algorithm
achieved very good results (the time of computation is divided by the number of
available nodes).

2. Simulations of the quantum computation model

In the paper [1] R.P.Feynman has argued that classical computers will never be
able to perform simulations of full behaviour of a quantum system in a polynomial
time. The original citation from Feynman’s paper [1] is as follows:

Can physics be simulated by a universal computer? [...] the physical world is
quantum mechanical, and therefore the proper problem is the simulation of
quantum physics [...] the full description of quantum mechanics for a large sys-
tem with R particles [...] has too many variables, it cannot be simulated with a
normal computer with a number of elements proportional to R [... but it can be
simulated with] quantum computer elements. [...] Can a quantum system be
probabilistically simulated by a classical (probabilistic, I'd assume) universal
computer? [...] If you take the computer to be the classical kind I've described so
far [...] the answer is certainly, No!

Feynman's remark can be formalized by formulation of the following lemma:

Lemma 1: Let us assume that there exists an algebra, which includes an
effective representation (with compression) of a quantum register with entanglement
between n qudits. Symbol § denotes special operators, which permits composition
of several qudits and preserve the entanglement between them:

W)= ¥)6 [¥,)e [¥s)e .6 |v,) (1)

Nevertheless, the compressed vector still contains exponential amount of data
describing the state of the quantum register. In the worst case, the process of

measurement needs O(n)= 2" classical operations, if compression property of the
vector state was lost.

Proof: The sketch of the proof is following: let T represent a classical Turing
machine. On the tape the state vector containing d-level qudits (even with com-
pression) is written. Its representation is contained in n fields of the tape.
Without compression, the tape has length equal to d"n complex values. We have
a register, which is not an equal superposition of states. The register can collapse
to one of d"n base states. It is necessary to look through all states to find the

maximum probability of amplitude what requires O(n)= 2" comparison opera-
tions.

Parallel implementation of quantum computation simulator 4

Thus, quantum computation simulators are only widely available tool known
today, suitable for quantum algorithms testing. Unfortunately, amount of classic-
al computation required, restricts simulations to length of the register not ex-
ceeding 20-26 qubits on a typical PC hardware. Physical experiments are very
expensive and difficult to perform, even in a typical university laboratory, there-
fore simulators of a quantum computation are very important, especially for edu-
cational and research purposes.

Another problem not discussed here is formulation of a theorem more general
than lemma 1, where it can be proved, that simulation of the general quantum
computation model has an exponential computational cost and the problem of
simulation belongs to the exponentially-complete class. Considering the Feynman’a
remark and lemma 1 the following hypothesis was formulated: the problem of
simulation of QCM on a classical machine belongs to the exponential class of
complexity:

EXP(n) = TIMEQ2"))
On other hand taking into consideration a more general definition of the

quantum information with qudits, the problem of simulation stills belongs the
exponential class and not fall into to the elementary class of complexity:

TIMER?) (3)

3. The quantum computation simulator

The quantum computation simulator (QCS) [3, 4] is being implemented at the
University of Zielona Gora since 2005 year. Several open source tools were used:
*Gnu Compiler Collection v4.x
*Python script language v2.4.x
*SWIG 1.3.29 wrapper generator
*LAPACK and BLAS linear algebra library
*MPI library for parallel implementation
The core library of QCS system is written in a pure ANSI C, programming
language permitting creation of ports to many other software platforms. The main
port of QCS is prepared in the Python language but port to Java exists also. For the
MPI version, a simple language similar to the classical assembler qasm (quantum
assembler) was prepared. This language makes writing scripts executing in a parallel
environment much easier. Generally, QCS is working mainly in Windows and Linux
operating systems in 32 and 64 bits environment. Figure 1 depicts a simple script for
Python language producing one of Bell states.

5 M. Sawerwain, J. Pilecki

import qcs r=qcs.QubitReg(4)
def makePsiPlus(r): r.Reset()
r.SetKet("0000") makePsiPlus(r)
r.HadN(0) r.Pr()
r.CNot(0,1) delr

Fig. 1. Elementary script in the Python language
which produce one of the maximally entangled states
(aka Bell states)

Implemented features of QCS system permits to approach a simulation of a
quantum system in a variety of ways:

*PQC -- pseudo quantum circuits which consist of two gates only: not
and cnot gates,

*CHP -- quantum circuits composed with following gates: cnot, hadam-
ard, phase change and single qubit measurement,

*QCM -- standard quantum circuit model,

*density matrices and several standard matrices tools like fidelity, eigen-
vector and eigenvalue functions and Schmidt decomposition.

We plan to improve the future version of our simulator with a one-way
quantum computation model based on teleportation and measurement opera-
tions. Another interesting feature could be an addition of some symbolic tools per-
mitting for the simulation of QCM in a symbolic way, similar to the software for
Mathematica [7, 8] but without usage of the specialised software.

4. The parallel implementation of QCS system

The basic engine designed for the one-processor architecture is presented in [3].
The designed parallel engine is effective, but not in sense of Nick class. In paper [2]
authors presents another algorithm for a massive parallel simulations of a pure state
quantum computational model. The approach presented in [4] however, sets some
important limits to the gate applying process. The number of control qubits ¢ and
target qubits ¢ must preserve the relation: ¢ < ¢ < 7 where # is total number qubits
in the register. The parallel version of QCS has no such limits. The QCS allow for
any order of steering and target lines.

For example the following table presents the result for a small script executed on
a one-processor machine:

register 10 | 20 | 21 22 23 24 25
size
timeinsec. | 0.0s | 1.5s | 3.1s | 6.5s | 13.5s | 28.2s | 58.7s

Obtained results confirm the observation that addition of one new qubit to the
quantum register doubles the time of a script execution. Comparison of our software

Parallel implementation of quantum computation simulator 5

with other quantum simulators like QCL [5] has revealed our algorithm to be more
efficient. In the case of 23-gbit quantum register, QCS used only 70MB memory
while QCL as much as 512MB. The simulation of two Hadamard gate application
used to create a superposition of the whole register took about 18secs with QCS and
about 100sec with the software developed by Bernard Omer.

Algorithm of the vector state transformation for one qubit gate has a very simple
description depicted in Figure 2. Two typical “for” loops and some invariants
introduced in Proposition 2 (presented later) are used. These invariants are used to
find an index of elements, which must be changed by the values taken from the gate
matrix u. The computational cost of execution of code from Figure 2 depends on
size of the quantum register and is given by the following relation:

2n-] 271-!
T(n)= ~Zo §0A= (1 271+ 2" 227 42 02, and A= (L.t tg.) | (4)
ip=0 i=

The symbol A denotes the computational requirements of the instruction in the
second loop inner code, . represents the cost of executing of trivial operations

implementing »/ and 2 variables, and . is the execution cost of oper on_rows

function.

m=pow(2, n-1); step =pow(2, n-1t)-1;
p=pow(2, t-1); vstep = pow(2, n) / p;
irow = 0;
foc ip = 0 ; ip < p ; iptt) {
forfl i = 0 ; 1 < step + 1 ; i++) {
rl=irow+i;
r2=irow-+i+step+ I;
oper on rows(q reg, rl, 12, u);
}
irow = irow + vstep;

}

Fig. 2. Pseudo-code describes an algorithm of the
vector transformation for pure states, where the
matrix operation is denoted by small letter u
Figure 3 depicts the basic parallel model of our state transformation algorithm.
The register is divided into several equal parts. The total amount of nodes denoted
by n means, that there exists the one master node managing #-/ slave nodes. For the
best results the number of nodes is given by the following relation:

Npp = [IOgM ZL])
where L denotes the number of qubits in the quantum register and M is the num-
ber of qubits processed within one slave node. Unfortunately, the total parallel
time is exponential. It is given by the following proposition:

Proposition 1

5 M. Sawerwain, J. Pilecki

The computational cost of simulation of QCM model on a parallel machine is given
by:

ZL
N, DP

Tpp (L) = (6)

Proof

Direct consequence of tensor product of the vector state, vector representing the
quantum register. This means that algorithm is not optimal for parallel computations
and do not belong to the Nick parallel complexity class.

QCS High Level API

N

QCS Classical QCS Parallel MPI
Computation Engine Computation Engine
main node working node 1

working node 3 working node 2

working node n-1

Fig. 3. Standard parallel architecture in QCS software

4.1 Parallel algorithm on the tensor structure of quantum re-
gister

The procedure applying gates to the quantum register covers some important
information useful for developed of the more effective vector state transformation
algorithm. Of course, as section 2 has shown, probability of obtaining an effective
algorithm of QCM simulation is rather small. Still, presented algorithm achieved
very good results, especially compared with other [5, 6] QCM simulators.

It is known that for one qubit gate, the operational matrix U that transforms the
vector state is described by a tensor of unitary matrices. Let u represent some unitary
matrix for one qubit gate (the matrix size is 2* 2). Then, the operation of applying
of one qubit operation to the second qubit of the three-qubit register is denoted as

U=1®u®/ (7)

The symbol / denotes the identity matrix and U represents the large matrix

transforming the quantum register. Detailed analysis of the state vector tensor

Parallel implementation of quantum computation simulator 5

product makes possible finding vector invariant values. These values permit for the
more effective process of applying of a matrix to the state vector. The main
advantage is omitting creation of the large U matrix. Only a small # matrix and
number of qubit are required. For example, the three-qubit tensor product is
calculated in the following way:

“[z|
0
|dod192) = l;z] ® 21] ® ;z] = 5 [51] ® [Zz] =
0
B
aoad,a,
a,a,B;
aoa, aoBa, (8)
- aoB, ® asz| _ aoBiB2
Boa, B> Boa,a,
BoBy Boa B,
BoBias
BoB1B>

The range of following qubits can be observed. In the final state, amplitudes of
all qubits always appear four times, but with a different step depending on the
position of the influenced qubit. For the operation matrix denoted as
U=1®u® 1l wehave the following matrix:

a . B

. . . y . 0

Similarly to the tensor of vectors, some invariant values can be found. For
example, upper elements of u# matrix are separated by one field. Generally, we can
define several important invariants:

Proposition 2 Let # denote the size of the quantum register and ¢ be a position
of the target qubit. Then,

enumber of “small matrices™ is given by m = 2"~

estep between element of small matrices szep = 2""" — 1
*block counts p = 2" =1

edistance in the vector state vszep = 2"/ p

Proof
These equations are based on the tensor product of qubits describing the
quantum register. Correctness of equations can be proved by induction.

5 M. Sawerwain, J. Pilecki

These invariants permit for an easier addressing process in the space of U matrix
and the state vector. Then, creation of the full U matrix is not necessary. Two
“smart” for-like loops (similar to the code form Figure 2) can search through the
whole register and change its state without need for an additional copy of the
vector’s state.

Controlled gates can be treated in a similar way. In such case though, the
situation is much better, because controlled gates are generating only small changes
in the vector’s state. An amount of small gates is given by the equation:

(10

)
where q denotes the number of controlled qubits.

The observation of the tensor product of the vector state and synthesis of the
operation matrix gives us the answer for whether the parallel processing will be
more effective than computation on a one processor architecture. In many cases the
total parallel computation time will be approaching the ideal case given by equation:

Tpp(L) =]5 (11)

Even though, the total amount of operational steps in nodes is still exponential.

m=2""4,

4.2 Examples of gate applying

Observation of the way U operation given by the tensor product:
U=17®u® 1l ipfluences the vector state in equation (12), can answer the
question whether computation on the state vector can be divided into two nodes and

executed independently, without swapping any additional information.

This situation results in the smallest ¢
described by equation (6). Unfortunately, there exist many cases where additional
information must be swapped. For example the operation U =« ® 1 ® 7 .

a B . a, aa,+ Ba,

a . B a; aa,+ Bas

14 o . as yao+oa,
y 6 . as ya,+das (12)

a . Clas aa,+ Bag

.a Bllas aas+ Ba,

v - 1|96 ya,+oas

Y 6 Jlas yas+oay

omputational cost equal to the cost

a B . ag aa,+ Ba,
a . B a, aa, + Bas
a . -l as aa,+ Bag

a . Bllas aa,+ fa, (13)
1% 5 . ay yao,+oay,
y . o as ya, + das
vy -1 %6 ya, + 0a,
y o J\ay yas +da,

Parallel implementation of quantum computation simulator 5

The information concerning amplitudes from the first and second node must be
swapped, otherwise the simulation of U operation cannot be calculated properly.

Much better results were obtained for multiqubit gates. The CNot gate has
shown, that there exists gates that do not change the state of a whole register but
only it’s selected parts. For example, the typical application of CNot gate where
qubit zero is the control qubit and the second qubit represent the target qubit, can be
encoded in the following way:

r Y ao a
1] ay a,
1 lasz a,
r . . - S 9s | 2 as (14
.a . B L |lag aa,+ Bag)
a . Bilas aas+ Ba,
y . 0 .|las ya,+déae
y . o0]|lay yas+oda,

Amplitudes in the first node (first four amplitudes) are not changed while
amplitudes in the second part of the register are modified. If we divide the register
into two equal parts, the sending of additional information between them is not
necessary. As such applying CNot gate can be, in some cases, calculated
independently at nodes, the ideal time complexity is given by
2L-q. (1 5

N)

The symbol ¢g. denotes the number of control lines and the big letter “L”

denotes total size of the quantum register.

T(L) =

4.3 Efficient tests of QCS system

The results of simulation of IQFT are presented in Table 1. In this test the four-
processor system based on an Intel Itanium [A-64 processor architecture was used
(with a total available memory amount equal to 4GB RAM). The obtained results
for the of one qubit and two qubit gates execution confirms the obvious expectation,
that addition of new nodes lowers an amount of time required to perform a
computation. On other hand results confirms also the fact of the good
implementation of parallel algorithms of vector processing.

Table 1. Timing of gates in IQFT simulations for IA-64 Itanium 2 system
1-proc | 3-proc 5-proc
1q gate | 0.3s 0.2s 0.1s

2q gate | 0.7s 1.5s/0.4s | 1.4s/0.4s

Results obtained for two qubit gates are worse due to the transfer of additional
data between nodes. It’s necessary to mention, that the cross-nodes information
transfer travels through the shared memory subsystem.

5 M. Sawerwain, J. Pilecki

The more realistic results were obtained for a cluster of nine PC computers
(1GB Ram, Pentium 4 2.4 Ghz) connected by 100Mbits Ethernet network. Those
results are obviously worse. The communication took more time, as did the process
of preparation of data for the cross-node transfer.

Table 2. Results for three, five and nine nodes in cluster build from the typical PC
hardware, 1GB Ram and Intel Pentium 4 Processor 2.4Ghz

3 5 9
25qa | Im17s | 44 s | 24s
25gb [Im14s | 37s | 20s

26q | -- -- 43s
27q | -- -- Im 15s
28q | -- -- 2m 29s

The nine nodes cluster offers enough operational memory to make calculation
with the quantum register containing 28 qubits. The test “25q a” requires swapping
of additional information between nodes, therefore it generated worse results. The
test “25q b” and many others don’t swap any amount of data. Every node process
data independently.

5. Conclusions

Presented article describes an implementation of a parallel algorithm of the
vector state transformation working for pure states. It must be observed, that
obtained algorithm is not effective in the sense of the Nick class. Still, the presented
software QCS system is a tool more effective in a real simulation of the quantum
computation model than other comparable simulators like [5]. It is especially true in
regard of the scripts execution time.

The obtained results have shown additional ways of obtaining better
performance of a parallel algorithm implementation. For example, communication
can be improved by usage of special compression techniques. Applying the
compression results in another interesting feature: the transfer between nodes can be
optimised by compression of fragments of the vector state. Even a simplest
compression can be useful. Example of that is the run-length encoding kind of
compression.

In a future we intend to implement the teleportation-measuring computation
model. Nowadays there exist no systems able to perform simulations of this part of
the quantum computation model.

References

[1] Feynman R.P., Simulating physics with computers, International Journal of Theoret-
ical Physics 21:6/7. pp. 467-488 (1982).

Parallel implementation of quantum computation simulator 5

(2]

[3]

[4]

(3]
[6]
[7]
(8]

de Raedt K., Michielsen K., de Raedt H., Trieu B., Arnold G., Richter M., Lippert
Th., Watanabe H., Ito N., Massive Parallel Quantum Computer Simulator, submit-
ted to Computer Physics Communications.

Sawerwain M., Quantum Computing Simulator (in polish), CMS '05 : V konfer-
encja. Krakow, Polska, 2005-Krakow: Oprogramowanie Naukowo-Techniczne,
2005 - Vol. 2: Regular sessions, pp. 185--190.

Sawerwain M., Parallel implementation of quantum computing Simulator (in pol-
ish) : teoria, projekty, wdrozenia, aplikacje : XIV konferencja. £.6dz, Polska, 2006 .-
16dz : "Pigtek Trzynastego Wydaw.", 2006, pp. 241--244.

Omer B., Structured Quantum Programming, Ph.D. Thesis, TU Vienna, Vienna,
2003.

Gawron P., Miszczak J.A., Numerical simulations of mixed states quantum compu-
tation, www.arxiv.org/quant-ph/0406211.

Touchette H., Dumai P., QuCalc - The quantum computation package for Mathe-
matica, http://crypto.cs.mcgill.ca/QuCalc/, 2000.

Julia-Diaz B., Burdis J.M., and Tabakin F. QDENSITY - A Mathematica Quantum
Computer simulation, Computer Physics Communications. Vol. 174, Issue 11 , 1
June 2006, pp. 914—934.

