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Abstract. In this paper we consider probabilistic approach to the deci-
sion problem of security in graphs. In this purpose we define general model
(called property tester) and criteria for approximating answers for decision
problems. We constructed two property testers and one heuristics for the
problem of security in graphs.
Keywords: secure set, property testing.

1. Introduction

Set S ⊂ V is called secure set iff ∀X⊂S |N[X]∩ S | ≥ |N(X) \ S | [1]. That means
that every subset of a secure set has at least as many friends (neighbour vertices
in S ) as enemies (neighbour vertices outside S ) and will be defended in case of
attack. Problem of determining if given set is secure is co−NP-complete, there is
no efficient algorithm solving it [1].

Property testers are algorithms that distinguish inputs with a given property
from those that are far from satisfying the property [2]. Property testers are allowed
to be probabilistic and approximate in exchange for much reduced complexity.

In our work we apply the idea of testing to construct probabilistic and approxi-
mate algorithms for graph security problems that run in polynomial time. Our goal
was to formalize the testing model and propose various approaches for security
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testing and general methods of rating them. We take into account possibilities of
practical application, algorithm complexity and quality of the approximation.

2. Property testing

Definition 1 (Property tester [2][3]) Property testers are algorithms that distin-
guish inputs with a given property from those that are far from satisfying the prop-
erty. Far means that significant part of the input must be changed so that property
can be satisfied.

2.1. Tester response

Classical deterministic algorithm for decision problem answers the question

Does the given input satisfy that property?

Property tester for decision problem answers the question
Does the given input satisfy that property or is it far from satisfying it?

2.2. Tester requirements

We require our property testers to satisfy two properties:

• Accept secure set with probability > 95%.

• Reject set that is ε-far from being secure with probability > 95%.

If input set is close to being secure we don’t put any requirements on the given
answer.

YES

ε
Far from
YES

Accept with 
probability > 95%

Don't care

Reject with 
probability > 95%

Figure 1. Property tester requirements
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2.3. Meaning of ε-far

Meaning of ε-far depends on chosen model and can have impact on:

• Possibilities of practical application.

• Algorithm complexity.

• Fraction of cases we can guarantee the probability of answer correctness.

2.4. Test witness

Witness is a fragment of input or structure generated basing on input. For ex-
ample number from given input sequence.Witness testimony is its property, that
can be an evidence of some global input property. For example unordered pair of
sequence elements proved it’s global unsortedness.

Remark 2 Testimonies of some witnesses may not entail any informations about
global input property. For example ordered pair of sequence elements tells nothing
about its global sortedness.

Witness testimony is valuable, if it entails some information about global input
property. We call witness valuable if its testimony is valuable.

Lemma 3 (Witness lemma) If a single test catches a valuable witness with a
probability ≥ p, than s = 3/p iterations of the test catch a witness with proba-
bility > 95%.

Proof. Probability of not catching a valuable witness with s tries does not exceed
P ≤ (1 − p)s. Using 1 − x ≤ e−x, we get P ≤ e−ps = e−3 ≤ 95%. �

3. Formal testing model

3.1. Model definition

Proposed testing model contains of:
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Definition of ε-far,
Specification of attributes input must have to be ε-far from satisfying given
property.

Definition of witness and it’s evidence,
Specification of local and easily verifiable property that can give evidence
of given global property.

Witness choose algorithm,
Specification of witness selection method from the set of every possible wit-
nesses.

Witness testimony extraction algorithm,
Specification of method to designate if local property is satisfied for chosen
witness. Together with witness choose algorithm it specified probability ps

of catching valuable witness.

3.2. Model rating criteria

For a single problem it is possible to construct many correct testing models.
Here is the general model rating schema which fulfilment is required for model
usefulness.

Practical and intuitive understanding of ε-far.
Is information that input is ε-far from satisfying given property is valuable
for us.

Uniform witness choose.
Does every witness have the same probability to be chosen. If, despite of
many valuable witnesses, our algorithm somehow ignores them than we can
give guarantee on probability of answer correctness. If it is not uniform dis-
tribution than we can not use lemma 3.

Relationship between ε and ps.
How does probability of choosing valuable witness change depending on
how far input is far from satisfying given property.
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Choose and check of witness algorithms complexity.
What is the complexity of witness choose and witness testimony check al-
gorithms and is it an advantage over deterministic algorithm.

Tester complexity can be described us: O(3/ps · f (I) · g(I)) , where

• 3/ps is number of necessary witness tests to be repeated,

• f (I) is witness choose algorithm complexity,

• g(I) is witness check algorithm complexity.

Fraction of cases that we can give probability guarantee on.
How fraction of cases that we can give probability guarantee on changes de-
pending on ε. Other words, how small ε is required to give this guarantee on
at least δ fraction of possible inputs. If for given definition of ε-far signifi-
cant fraction of input cases is very close to satisfy given property, than we
will need very small ε for that cases to be considered as ε-far. That in other
hand has impact on algorithm complexity.

3.3. Problem decomposition

Here we present a way to construct proper testing model using problem de-
composition.

Definition 4 (General predicate) Let our decision problem be predicate on set of
all possible inputs and call it general.
PG : I→ {true, f alse}, where I is a set of all possible problem inputs.

Definition 5 (Special predicate) Let D(I) = {I1, I2, . . . , Ik} be a function defining
an input decomposition and PS : D(I) → {true, f alse} a predicate on the ele-
ment of that decomposition (part of the input), such that ∀I∈I PG(I) = true ⇔
∀Ii∈D(I) PS (Ii) = true. PS is called special predicate.

4. Security in graphs

In this section we present basic graph security definitions derived from [4][5][1][6]
and reworded for better readability.
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Nonempty set S ⊆ V in graph G = (V, E) is called an alliance, if ∀v∈S |N[v] ∩
S | ≥ |N(v)∩V \ S |. That means that every member of an alliance (vertex in S ) has
at least as many friends (neighbour vertices in S ) as enemies (neighbour vertices
outside S ) and will be defended in case of attack. In addition if S is also dominating
set of G we call it global alliance.

Definition 6 For set X ⊆ V we define predicate SEC(X) ⇔ |N[X ∩ S ]| ≥ |N(X ∩
V \ S )|.

Set S is called k-alliance, if ∀X⊆S |X| ≤ k ⇒ SEC(X) and again when S is domi-
nating set of G we call it global k-alliance.

For nonempty subset S = (v1, v2, . . . , vk) ⊆ V in graph G = (V, E), attack on
S is every sequence of k mutually disjoint sets A = (A1, A2, . . . , Ak), such that
∀1≤i≤k ∀a∈Ai a ∈ N(v) \ S . If a ∈ Ai we say that a attacks vi. Similarly we define
defence of S as every sequence of k mutually disjoint sets D = (D1,D2, . . . ,Dk),
such that ∀1≤i≤k ∀d∈Di a ∈ N[si] ∩ S . If d ∈ Di we say that d defends vi. Attack A
on S can be defended, if there exists defence D such that ∀1≤i≤k |Di| ≥ |Ai|. Set S
is secure iff every attack on S can be defended.

Theorem 7 (Secure set as k-alliance) Set S is secure in graph G iff it is global
|S |-alliance.

Proof. This theorem was proved in [1]. �

5. Security testing

5.1. Attack based model

The simplest, natural way for security testing is to take into account all possible
maximal attacks and require given fraction of them to be defendable.

5.1.1. Model

Definition of ε-far,
S is ε-far from being secure iff ε fraction of attacks cannot be defended.
For example set is 1/2-far from being secure iff half of the possible attacks
cannot be defended.
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Definition of witness and it’s evidence,
Maximal attack on S is a witness, defence possibility is his testimony. Wit-
ness is valuable if there is not defence for him.

Witness choose algorithm,
For every enemy we choose his target uniformly and independently at ran-
dom (his neighbour in S ). This way we get a maximal attack, because every
enemy is making use of his attack possibility.

Witness testimony extraction algorithm,
To check if attack is defendable we use security matching algorithm de-
scribed in [4].

5.1.2. Model rating

Practical and intuitive understanding of ε-far,
ε-far is defined that way to be the most intuitive. Enemies usually don’t
choose their targets at random, so practical application may be narrowed, but
it is still valuable information to know that for example half of the attacks
cannot be defended.

Uniform witness choose,
Every maximal attack is chosen with the same probability, because every
of them can be constructed in exactly one way and there is no such attack,
algorithm couldn’t construct.

Relationship between ε and ps,
Relationship is linear, set is ε-far from being secure iff ε fraction of witnesses
(attacks) is undefendable, so they are valuable witnesses.
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Figure 2. Relationship between ε and ps in attack based model

Choose and check of witness algorithms complexity,
Witness choose can be done in O(|V \ S ||S |) - for every enemy we choose
his neighbour to be the target of the attack.
Witness check is determined by security matching algorithm [4] and isO(n5/2).

Fraction of cases that we can give probability guarantee on,
We have done computer simulations for random graphs with 10 − 20 nodes.
Results are shown on the plot below.
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Figure 3. Fraction of cases that we can give probability guarantee on attack based 
model

That means that even for high ε (low algorithm complexity) random graph
is either secure or ε-far from being secure (there are many witnesses) and
we can give probability guarantee on algorithm answer.
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5.1.3. Algorithm

Algorithm 5.1 Attack based tester
Repeat 3/ε times

Chose maximal attack A independently and uniformly at random A.
if A cannot be defended then

return S is ε-far from being secure.
end if
return S is secure.

End

5.1.4. Analysis

• Secure set will always be correctly determined.

• For the set that is ε-far from being secure, probability of choosing undefend-
able attack in one test is no less than ε.

• Using witness lemma 3 3/ε test repetitions chooses undefendable attack in
no less than 95% of the cases.

5.1.5. Conclusions

• Probability of failure to recognize insecure set despite of ε fraction of unde-
fendable attacks is no more than 5%.

• Algorithm complexity is O(n5/2/ε).

5.1.6. Examples

Troubling example

1

2

k

Figure 4. Troubling example for attack based model



38 Graph Security Testing

In the above graphs family only attacks that are focused on single vertex
cannot be defended. There is exactly k of such attacks and in set of all k3 at-
tacks they are only 1/k2 fraction. That means that for any ε we can construct
a graph, that is close to being secure and our algorithm cannot guarantee the
correctness of the given answer.

Easy example

a

d

Figure 5. Easy example for attack based model

In the above graphs family exactly half of the attacks cannot be defended.
Cycle can be defended independently, every attack in which a chooses d
as his target cannot be defended. That means that our algorithm has 50%
chance to choose valuable witness in single test and according to witness
lemma 3 that gives 95% success rate with only 6 repetitions.

5.2. Subset based model

Next model is derived directly from subset secure set definition [7]. In this
case we will take into account all possible subsets of S and require given fraction
of them to satisfy [6].

5.2.1. Model

Definition of ε-far,
S is ε-far from being secure iff ε fraction of subsets doesn’t satisfy [6].
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Definition of witness and it’s evidence,
Subset A ⊆ S is a witness and value of SEC(A) is his testimony. Witness is
valuable if his testimony equals f alse.

Witness choose algorithm,
For every vertex v ∈ S choose one possibility uniformly and independently
at random:

• v is in witness,

• v is not in witness.

Witness testimony extraction algorithm.
Compute SEC(A) from definition.

5.2.2. Model rating

Lets use 3.2 for such testing model.

Practical and intuitive understanding of ε-far,
This model derives from security definition, so the definition of ε-far is very
intuitive. It has practical applications, because it is a valuable information to
know that for example half of the subsets are not secure.

Uniform witness choose,
From the set of all possible subsets of S every one is chosen with the same
probability, because every of them can be constructed in exactly one way
and there is no such subset that algorithm could not construct.

Relationship between ε and ps,
Relationship is linear, set is ε-far from being secure iff exactly ε fraction of
witnesses (subsets) doesn’t satisfy [6], so they are valuable.
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Figure 6. Relationship between ε and ps for subset based model

Choose and check of witness algorithms complexity,
Witness choose complexity is O(|S |) - for every ally we choose if it is in the
witness. Witness check complexity is determined by SEC definition and is
O(n).

Fraction of cases that we can give probability guarantee on.
We have done computer simulations for random graphs with 10 − 20 nodes.
Results are shown on the plot below.
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Figure 7. Fraction of cases that we can give probability guarantee on subset based 
model

That means that even for high ε (low algorithm complexity) random graph
is either secure or ε-far from being secure (there are many witnesses) and
we can give probability guarantee on algorithm answer.



T. Gieniusz, R. Lewoń, M. Małafiejski 41

5.2.3. Algorithm

Algorithm 5.2 Subset based tester
Repeat 3/ε times

Choose subset X ⊆ S uniformly and independently at random.
if ∼ SEC(X) [6] then

return S is ε-far fro being secure.
end if
return S is secure.

End

5.2.4. Analysis

• Secure set will always be correctly determined.

• For the set that is ε-far from being secure, probability of choosing subset
that doesn’t satisfy SEC in one test is no less than ε.

• Using witness lemma 3 3/ε test repetitions chooses such subset in no less
than 95% of the cases.

5.2.5. Conclusions

• Probability of failure to recognize insecure set despite of ε fraction of unde-
fendable attacks is no more than 5%.

• Algorithm complexity is O(n2/ε).
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Figure 8. Troubling example for subset based model

In the above graphs family SEC is not satisfied for only the whole S . In set
of every 2|S | possible subsets of S it is only fraction of 1/2|S |. That means
that for any ε we can construct a graph, that is close to being secure and our
algorithm cannot guarantee the correctness of the given answer.

Easy example

Secure
subgraph

Figure 9. Easy example for subset based model

In the above graphs family SEC is not satisfied for exactly half of the subsets.
That means that our algorithm has 50% chance to choose valuable witness
in single test and according to witness lemma 3 that gives 95% success rate
with only 6 repetitions.

6. Security problem heuristic

In this section we will present heuristic algorithms based on simple idea. Idea
is to construct subset that is a valuable witness for security problem in subset based
model - subset that does not satisfy SEC. Specific versions of this algorithm differs

5.2.6. Examples

Troubling example
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in subset construction approach.

We will use following naming convention:

• S ⊆ V is a subset of vertices to be checked for security

• c and d are optimization criteria for any subset S ′ ⊆ S

6.1. Algorithm schema

Algorithm 6.1 Security problem heuristic schema
Split S into n disjoint clusters S 1, S 2, ..., S n

repeat
For every pair of clusters S i, S j, i , j calculate c(S i ∪ S j)
Join two clusters optimizing c, in the case of ambiguity use d criteria

until There are at least two clusters or one of the clusters does not satisfy SEC
if Any of the clusters does not satisfy SEC then

return false
else

return true
end if

Remark 8 First step of the algorithm can be randomized (and algorithm can be
repeated many times). The simplest version is to take one-element clusters, for
S = {s1, s2, ..., sk} take S i = {si}, i = 1, 2, ..., k as initial clusters.

In all presented variant of algorithm we take the same c criteria, for every
X ⊆ S :

c(X) = |N[X] ∩ S | − |N(X) \ S |

We will minimize this criteria, negative value means that X does not satisfy
SEC, therefore S is not secure. Algorithm objective is to construct valuable wit-
ness, so minimization of c is well founded.
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6.2. Secondary criteria proposals

Second criteria is used in the case of ambiguity of c criteria. In such situation
we propose following approaches:

Avoid massive clusters creation
For any X ⊆ S :

d1 = |X| .

This will lead to small clusters creation.

Support massive and strong clusters creation
For any X ⊆ S :

d2 = |N[X] ∩ S | .

This will lead to bigger clusters with greater support from the outside cre-
ation.

Support neighbourhood-dependent clusters creation
For any X ⊆ S :

d3 = |(N[X] \ X) ∩ S | .

This will lead to creation of the clusters that require maximum help from
neighbours outside of X.

Remark 9 In the simplest version secondary criteria can be omitted. We can also
use many criteria by choosing secondary criteria randomly at every iteration. In
case of further ambiguity after second criteria usage we can introduce additional
resolve phases or choose cluster at random.
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T. Gieniusz, R. Lewoń, M. Małafiejski 45

[3] Goldreich, O., Goldwasser, S., and Ron, D., Property testing and its connec-
tion to learning and approximation, Journal of the ACM (JACM), Vol. 45,
No. 4, 1998, pp. 653–750.

[4] Blukis, T., Zbiory bezpieczne w grafach, Master’s thesis, Politechnika Gdańka,
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