
JOURNAL OF APPLIED
COMPUTER SCIENCE
Vol. 26 No. 2 (2018), pp. 31-43

Heterogeneous Fog Generated with the Effect of
Light Scattering and Blur

Michał Gawron1, Urszula Boryczka2

1University of Silesia
Institute of Computer Science

Będzińska 39, 41-200 Sosnowiec, Poland
michalgawron.mg@gmail.com

2University of Silesia
Institute of Computer Science

Będzińska 39, 41-200 Sosnowiec, Poland
urszula.boryczka@us.edu.pl

Abstract. The development of computer graphics forces new requirements
on the developers, which will make the virtual world more similar to the real
world. One of these elements is the simulation of fog. Common fog algo-
rithms mix the color of the scene with the color of the fog over a certain dis-
tance. However, one feature of the naturally foggy scenery is ignored. With
the distance and density of the fog, the observed scenery or individual ob-
jects become more blurred. In this paper we will present our implementation
of the distance fog in the Unreal Engine 4, including the effect of blurring
the foggy areas, simulating of light scattering and variations in fog density
using noise.
Keywords: computer graphics, computer games, fog, blur, Unreal Engine.

32 Heterogeneous Fog Generated with the Effect of Light Scattering and Blur

1. Introduction

Visualization of natural phenomena is an important part of the current develop-
ment process of computer games. The development of computer graphics imposes
new requirements on the developers, which will make the virtual world even more
similar to the real world. One of these phenomena is the simulation of fog, which
in games is used primarily to create an atmosphere around the player. Over the
years, the way it is rendered has changed many times to express its natural prop-
erties. Currently, the most advanced method is volumetric fog, which provides the
highest quality and at the same time high calculation cost.

Common fog algorithms mix the color of the scene with the color of the fog
over a certain distance. However, one feature of the naturally foggy scenery is
ignored. With the distance and density of the fog, the viewed scenery or individ-
ual objects become more blurred. This feature can be seen in the figure 1, where
the Westminster Palace and the Elizabeth Tower seen in the distance are blurred,
which makes them lacking in detail. A noticeable contrast are the clear and sharp
light lamps in the foreground.

Figure 1: Westminster Palace on a foggy day. Source: https://www.pri.org

In this paper we will present our implementation of the real-time distance fog
in the Unreal Engine 4. The post-process effect includes the blurring effect de-
scribed earlier, simulation of light scattering and variations in fog density using
noise.

M. Gawron, U. Boryczka 33

2. Related work

When adding the fog to the game there is a large number of algorithms that can
be implemented. The simplest implementations include a uniform fog that mixes
scene color with fog color based on the pixel distance from the observer. The al-
gorithms described at [1] and [2] use noise to simulate the feeling of heterogeneity
and the movement of suspended in-air water particles. The effect of light scattering
in fog is described in [3] [4] [5] and [6]. The latest and most advanced implementa-
tions are based on volumetric solutions that fully express the feeling of fog density
and the light scattering [7] and [8].

3. Proposed algorithm

Our fog implementation proposed in the paper in Unreal Engine 4 is based on
four elements:

• generating distance fog;

• simulating light scattering;

• simulating heterogeneity and motion with noise;

• generating scene blur depending on fog density.

3.1. Generating distance fog

Based on the given parameters determining the distance, density and color, we
generate a fog which is then mixed with the scene. The easiest way to calculate
the fog distance is to calculate it using the depth buffer. However, it causes some
distortion - the fog is calculated linearly from the camera. For this reason, the
distance is calculated on the basis of the position of the camera and the world
position reconstructed from the depth buffer. This creates fog in the circle from the
camera (fig. 2).

The fog density is calculated from formula 3 based on the parameters deter-
mining the distance and density. Then the color of the scene is blended with the
fog color using equation 4.

−→pd = |WorldPos −CameraPos|; (1)

34 Heterogeneous Fog Generated with the Effect of Light Scattering and Blur

Figure 2: Comparison of fog generation using depth buffer (top) and world/camera
position (bottom)

dist =

(
|
−→pd | − S tartDistance

Distance

)Exponent

(2)

FDensity = max(dist, FogDensity) (3)

CFinal = C
(
1 − FDensity

)
+ CFogFDensity (4)

where WorldPos is the scene world position reconstructed from depth buffer,
CameraPos is the camera world position, S tartDistance is the fog offset start
distance, Distance is the fog blend distance, Exponent is the fog blend distance
falloff, FogDensity is the max value of fog density, C is the scene base color and
CFog is the fog color.

M. Gawron, U. Boryczka 35

3.2. Simulating light scattering

The simulation of light scattering by fog is possible when the camera is di-
rected towards a light source, in most cases it is a directional light. This effect is
achieved by calculating the angle between the incident light and the camera. Based
on the calculated angle, the color responsible for the scattering is added to the base
color of the fog. Figure 3 shows an example of how a soft orange scattering from
a light source is added to the grey-blue fog.

−→ps = (WorldPos −CameraPos) + S catterS tartDist (5)

scatter =
−→ps

|
−→ps|
◦
−→
L (6)

FS catter = (max(0, scatter))S catterExponent (7)

where WorldPos is the scene world position reconstructed from depth buffer,
CameraPos is the camera world position,

−→
L is the light vector, S catterS tartDist

is the fog scatter offset distance and S catterExponent is the fog scatter falloff.

With the calculated coefficient of scattering 7 we mix the fog color and the
scatter color using the formula below:

CFog = CFog + CS catterFS catter (8)

where CFog is the fog color and CS catter is the fog scatter color.

Figure 3: Fog light scattering effect

36 Heterogeneous Fog Generated with the Effect of Light Scattering and Blur

3.3. Fog density variation

The fog generated in the previous stages has a uniform density and color all
around the area. To achieve variation, we used noise texture with the world position
as its coordinates. Real-time noise generation is a very complex process with very
low performance. That’s why we decided to use the previously generated texture,
which we then sample in the shader. The feeling of motion is created by shifting
the noise coordinates in time by a given value specified by the user. The noise
generated in this way is used to manipulate the density and color of fog on the
scene (fig. 4). It is possible to modify the fog density using black and white noise
texture based on the formula 9 and insert it into the equation 3.

Figure 4: Example variation of the fog density

NDensity = LowD (1 − Noise) + MaxD Noise (9)

FDensity = max(NDensity dist, FogDensity) (10)

where Noise is the noise texture, LowD is the lowest fog density, MaxD is the high-
est fog density and FogDensity is the global max value of fog density.

Listing 1 shows the complete HLSL shader code used to generate the fog, in-
cluding examples of parameter values. Figure 5 shows a comparison of the default
fog from the Unreal Engine 4 and our implementation. As one can see, they are
very similar to each other.

Listing 1: Shader code of fog generation
1 // example parameters setup

M. Gawron, U. Boryczka 37

2 float StartDistance = 0.0f;
3 float Distance = 1000.0f;
4 float Exponent = 0.55f;
5 float3 NoiseSpeed = float3(200.0f, 25.0f, 0.0f);
6 float NoiseSize = 10000.0f;
7 float LowNoiseDensity = 0.12f;
8 float MaxNoiseDensity = 0.18f;
9 float MaxDensity = 0.5f;

10 float ScatterStartDist = 1000.0f;
11 float ScatterExponent = 4.0f;
12 float3 FogColor = float3(0.45f, 0.64f, 1.0f);
13 float3 ScatterColor = float3(1.0f, 0.65f, 0.28f);
14
15 float FogDistance(float Offset, float Distance, float Exponent)
16 {
17 float position = WorldPosition - CameraPosition;
18 float dist = sqrt(dot(position, position));
19 return pow((dist + Offset) / Distance, Exponent);
20 }
21
22 float NoiseDensity(Texture NoiseTex, float3 NoiseSpeed, float NoiseSize)
23 {
24 float3 uv = WorldPosition + NoiseSpeed * Time;
25 uv /= NoiseSize;
26 return tex2D(NoiseTex, uv.xy).x;
27 }
28
29 float FogScatter(float Offset, float Exponent)
30 {
31 float position = (WorldPosition - CameraPosition) + Offset;
32 position = normalize(position);
33 float dist = saturate(dot(position, LightVector));
34 return pow(dist, Exponent);
35 }
36
37 float3 ComputeFog()
38 {
39 float density = FogDistance(StartDistance, Distance, Exponent);
40 float noise = NoiseDensity(NoiseTex, NoiseSpeed, NoiseSize);
41 density *= lerp(LowNoiseDensity, MaxNoiseDensity, noise);
42 float finalDensity = clamp(0.0f, MaxDensity, density);
43
44 float scatter = FogScatter(ScatterStartDist, ScatterExponent);
45 float3 finalFog = FogColor + scatter * ScatterColor;
46

38 Heterogeneous Fog Generated with the Effect of Light Scattering and Blur

47 return lerp(SceneColor, finalFog, finalDensity);
48 }

Figure 5: Comparison of the default Unreal Engine 4 fog (top) and our implemen-
tation (bottom)

3.4. Generating scene blur

The generation of blur is the main point of our fog implementation. There
are many blur algorithms. Initially we used a fast horizontal-vertical algorithm
(box blur). However, the result quality was insufficient and for that reason we used
a Gaussian blur. This allows us to achieve high image quality even at high blur
values. Figures 6 and 7 shows four examples where blurring increases the realism
of a scene.

The Gaussian blur is a type of image-blurring filter that uses a Gaussian func-
tion for calculating the transformation to apply to each pixel in the image [9] [10].
The equation of a Gaussian function in two dimensions is:

M. Gawron, U. Boryczka 39

Table 1: Kernel weights matrix for Gaussian blur

0.002915 0.013064 0.021539 0.013064 0.002915

0.013064 0.058550 0.096532 0.058550 0.013064

0.021539 0.096532 0.159155 0.096532 0.021539

0.013064 0.058550 0.096532 0.058550 0.013064

0.002915 0.013064 0.021539 0.013064 0.002915

G (x, y) =
1

2πσ2 e−
x2+y2

2σ2 (11)

where x is the distance from the origin in the horizontal axis, y is the distance from
the origin in the vertical axis and σ is the standard deviation of the Gaussian dis-
tribution.

Values from distribution 11 are used to build a convolution matrix which is
applied to the original image. In our case, we used standard deviation σ = 1.0 and
the kernel size n = 5 to create a weights matrix 1.

Figure 6: Comparison of example scenes without and with blurring

There are two ways to implement blurring. The first is to generate blur in sin-
gle pass together with fog generation. Then the blur is created on the basis of an

40 Heterogeneous Fog Generated with the Effect of Light Scattering and Blur

image without fog. The second solution is a new, separate pass in which the blur
is created on an already foggy scene. Implementation differences are shown in the
figure 8. No matter what approach we choose, the user can change the blurring
parameters, including: distance, falloff or maximum blur value. The blur is related
to the density of the fog, and when the density is higher, the blurring value of the
scene is also increased.

Figure 7: Comparison of example scenes without and with blurring

4. Performance

We have prepared four test scenes to measure the performance of the proposed
fog generating solution. Each of the scenes presents a forest landscape. We added
our fog algorithm and default Unreal Engine 4 fog to each of them. Then the per-
formance was measured using the GPU profiler tool. We used a computer equipped
with Intel Core i5 3.20GHz CPU, NVIDIA GeForce GTX 970 GPU and 16GB of
RAM memory. Each scene was started 20 times with the highest quality settings
and Full HD resolution (1920x1080).

The results of the performance tests are presented in Tables 2 and 3. As can be
seen, our fog solution is only 0.02 ms slower without blurring. Adding the blur as
a separate pass increases the rendering time to 0.65ms. However, the combination
of fog generation and blurring in a single pass gives better performance results -

M. Gawron, U. Boryczka 41

Figure 8: An example of a scene with fog and blur in single pass (top), in separate
passes (middle) and the difference between them (bottom)

rendering time is reduced to 0.44ms.

42 Heterogeneous Fog Generated with the Effect of Light Scattering and Blur

Table 2: Fog performance without blur (in ms)

Scene Our implementation Defualt UE4
Test 01 0.19 0.18
Test 02 0.21 0.16
Test 03 0.20 0.19
Test 04 0.20 0.17

Average 0.20 0.18

5. Conclusion

The fog generated with the use of the proposed solution allows you to quickly
add it to any scene. Thanks to the application of blurring of distant objects on the
stage, we have achieved a very convincing and close to realism effect. The set of
parameters allows us to adjust the fog in any way we like. The way it is made also
allows for comfortable modification.

Table 3: Fog performance with blur (in ms)

Scene Single pass Separate passes
Test 01 0.42 0.62
Test 02 0.49 0.71
Test 03 0.41 0.61
Test 04 0.44 0.65

Average 0.44 0.65

A very positive aspect is the rendering time of the fog shown in the work.
For four test scenes, the render time of the only fog is 0.20 ms, while adding blur
increases the render time to 0.65 ms. The implementation in the form of a full-
screen post process effect is like a fog contained directly in the Unreal Engine 4,
but this algorithm provides easier management of parameters between scenes, e.g.
inside and outside. Our fog algorithm also supports the simulation of motion and
heterogeneity of fog density.

Further work on the described fog effect will be focused on improving the
generation of blur and taking into account the bloom effect for very bright objects.

M. Gawron, U. Boryczka 43

References

[1] Giroud, A. and Biri, V., Modeling and rendering heterogeneous fog in real-
time using B-Spline wavelets, WSCG 2010, 2010, pp. 145–152.

[2] Zdrojewska, D., Real time rendering of heterogenous fog based on the graph-
ics hardware acceleration, http://old.cescg.org/CESCG-2004/web/
Zdrojewska-Dorota/, 2004, Accessed: 18 June 2018.

[3] Guo, F., Tang, J., and Xiao, X., Foggy Scene Rendering Based on Transmis-
sion Map Estimation, International Journal of Computer Games Technology,
2014.

[4] Hoffman, N. and Preetham, A. J., Rendering Outdoor Light Scattering in
Real Time, http://amd-dev.wpengine.netdna-cdn.com/wordpress/
media/2012/10/ATI-LightScattering.pdf, 2002, Accessed: 18 June
2018.

[5] Narasimhan, S. G. and Nayar, S. K., Shedding Light on the Weather, In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Vol. I,
2003, pp. 665–672.

[6] Sun, B., Ramamoorthi, R., Narasimhan, S. G., and Nayar, S. K., A Practical
Analytic Single Scattering Model for Real Time Rendering, ACM Transac-
tions on Graphics, Vol. 24, 2005, pp. 1040–1049.

[7] Billeter, M., Sintorn, E., and Assarsson, U., Real-time multiple scattering
using light propagation volumes, In: I3D ’12 Proceedings of the ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games, 2012, pp. 119–
126.

[8] Klehm, O., Seidel, H., and Eisemann, E., Prefiltered single scattering, In: I3D
’14 Proceedings of the 18th meeting of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, 2014, pp. 71–78.

[9] Nixon, M. and Aguado, A. S., Feature Extraction & Image Processing, chap.
Basic image processing operations, Academic Press, 2nd ed., 2008, pp. 88–
90.

[10] Shapiro, L. G. and Stockman, G., Computer Vision, chap. Gaussian Filtering
and LOG Edge Detection, Prentice Hall, 2001, pp. 166–170.

