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Abstract. In the paper there are presented two new models of encrypted
hierarchical secret sharing schemes based on barycentric Hermite formula.
Moreover an application of the second scheme to design a novel broadcast
encryption protocol is proposed. The protocol allows to send a decoding
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that fulfill special conditions.
Keywords: hierarchical secret sharing, barycentric Hermite weights, broad-
cast, encryption.



58 Numerical Models of Hierarchical Threshold Secret Sharing. . .

1. Introduction

Broadcast transmission consists in sending a signal to multiple recipients with-
out indicating the address. Such a signal may be encrypted to ensure access for a
specific group of users - then only users who know the decryption method have
access to the sent information. Such a data transfer method is used, among others,
in the case of pay TV and sharing the data via the Internet, where only those users
who have fulfill certain conditions (for example, made the charges) have access to
the data. Recipients may dynamically change during the time period: new users
who have made the payment can join and users who have not payed may lose their
rights. Thus it is important to exchange decoding key called the session key, reg-
ularly. This requires constructing key exchange protocol, which allows safe and
effective dissemination of new session key among the entitled users.

Let GC be a group controller i.e. the unit, which is responsible for providing
keys to authorized users, and broadcasting messages. The activities carried out by
GC can be divided into two parts - system initialization and the broadcasting.

During initialization GC prepares private key for each user of the system, then
GC activities are repeated in cycles. A single cycle starts with establishing the
users who in the next cycle will be revoked, i.e. they lose access to encrypted
information. Then GC generates a new session key and broadcasts it in specially-
prepared message, which allows obtain the key only entitled users. After reconsti-
tuting the key, users have access to information until the beginning of a new cycle
and establishing a new session key. Details of the particular stages of broadcast
communication are shown in the following scheme.

A scheme of a broadcast communication:

1. System initialization:

i) Determining system parameters, indicating GC, choosing cryptographic
algorithms.

ii) Registering users - the user receives a new private key KU , which al-
lows him to access the system.

2. Broadcast part:

i) Broadcast key - GC sends an enabling block T , in which the session
key S is hidden (only authorized users can recover it).
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ii) Signal transmission - GC encrypts the message M using the session
key S and encryption algorithm E, and then sends the received cipher-
text C = E(S ,M).

iii) Signal reconstruction - the user, using his private key KU obtains the
session key S from the enabling block T , then using S decrypts the
message by reconstructing M from C.

Over the years, a number of broadcast protocols have been proposed. They im-
plemented various solutions to revoke and restore users dynamically and to detect
illegal system access attempts [3], [5], [8], [10], [11]. In particular, M. Naor and
B. Pincas [10] proposed a model using the secret sharing scheme in which the key
S is free polynomial coefficient of p(x) given in power base representation and the
reconstruction S is being done using Lagrange interpolation formula. Modification
of this model consisting in a change of the key selecting way and its reconstruction
is given in [7]. In a modified model version the key S is a leading polynomial co-
efficient and its reconstruction is based on Newton’s interpolation formula. Some
of the of papers (e.g. [21]) presenting algorithms for identifying illegal users and
tracing traitor (whose keys were used to create keys for illegal users). In these al-
gorithms it is assumed that keys of illegal users are linear combinations of keys of
dishonest users.

The mentioned models use the idea proposed in [4] consisting in transferring
the secret Shamir scheme to the exponent. The safety of these models is based on
decision Diffie-Helman problem [1].

2. Secure hierarchical secret scharing

The first secret sharing algorithm of dividing an information between mem-
bers of a fixed participant group was proposed by Shamir [15] in 1979. In this
algorithm, called (t, n)-threshold scheme [9], [12], [18], the author assumes that a
trusted entity, called the dealer, uses the Horner algorithm to divide a secret s into
n shares si = (xi, p(xi)), i = 0, 1, . . . , n− 1 and distributes them between the partic-
ipants of the threshold process, where nonzero knots (xi)n−1

0 are pairwise distinct
and

p (x) =

t−1∑
i=0

aixi, a0 = s, t ≤ n, (1)
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is an univariate polynomial of degree t−1 over a field K of order |K| greater than n.
Then owners of any t shares si0 , si1 , . . . , sit−1 can ask another trusted entity, called
the combiner, to recover the secret s by using the well known Lagrange, Newton
or Neville interpolating formulae [15], [16]. If the combiner’s attempt succeeds,
then the owners gain the desired access to some goods.

The authors [16] and Tassa [20] proposed to use the Hermite interpolation in
order to extend Shamir’s (t, n)-threshold scheme to a hierarchical (t, n)-threshold
secret sharing scheme, which admits priorities of the shares during the reconstruc-
tion of the secret s. The hierarchy is achieved by admitting, among all n ≥ t shares,
the shares with consecutive derivatives of p ∈ Pt−1 at confluent knots, which are
admissible in Hermite interpolation problems. We note that the sequence (xi)n−1

0 is
said to be admissible if each its longest subsequence of equal knots consists only
consecutive knots, say xi, xi+1, . . . , xi+k for some i, k. It is equivalent to the fact
that

xi = xi−1 = · · · = xi−ki for all i, (2)

where ki are the left multiplicities of xi defined by

ki = max {k : xi−k = xi} . (3)

In the hierarchical threshold scheme the dealer uses the generalized Horner algo-
rithm to evaluate n shares of the Hermite type,

si = (ki, xi, yi) , yi = p(ki)(xi), i = 0, 1, . . . , n − 1, (4)

which means that the sequence (xi)n−1
0 is admissible. Next, he distributes these

shares among participants of the threshold scheme. On the other hand, if the com-
biner receives t shares si0 , si1 ,. . . , sit−1 from a coalition of the participants, then he
sorts them to get a sequence of shares of the Hermite type, for the simplicity of
notation say (si)t−1

0 . After successful sorting the combiner can apply the general-
ized Lagrange, Newton or Neville forms of the Hermite interpolating polynomial
p̃ ∈Pt−1 such that

p̃(ki)(xi) = yi, i = 0, 1, . . . , t − 1, (5)

in order to compute the secret s̃ = p̃(0), which requires O(t2) algebraic operations.
Example 1. If n = 7, t = 2 and

(si)6
0 = ((0, 5, 89), (1, 5, 65), (0, 4, 72), (0, 8, 87), (1, 8, 69), (2, 8, 13)),
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then the combiner’s shares (si j)
2
0 = ((1, 8, 69), (0, 5, 89), (0, 8, 87)) can be sorted to

the following shares (si)2
0 = ((0, 8, 87), (1, 8, 69), (0, 5, 89)) of the Hermite type. On

the other hand, such a sorting is impossible for shares (si j)
1
0 = ((0, 4, 72), (1, 5, 65)).

Note that we have p = p̃, and so s = s̃, whenever the shares (si)t−1
0 are not

falsified. Therefore, one can assume that the combiner should grant the access only
if s = s̃. Moreover, note that the Shamir’s (t, n)-threshold scheme can be adapted
to design useful broadcast protocols [3], [5], [8], [10], [11], which include not only
protocols for the paid satellite and internet transmissions and transfers for money
from banks, but also payments from the automated telling machines. This idea is
due to Naor and Pincas [10], [11], who noticed that the group controller (gc-unit)
of broadcasting plays the similar role as a dealer and a combiner during a secret
sharing. Recall that the gc-unit is responsible [4] for the following activities:

(i) computation, distribution and reconstitution of the private keys (shares) among
the potential recipients of broadcasted messages,

(ii) regular exchange of the session key, in order to identify and revoke illegal
users and to add new clients,

(iii) encryption of the session and private keys to increase the security of proto-
cols,

(iv) transmission of the information or some other goods to authorized clients.

In view of (iii) we choose a multiplicative group G such that, for each r ∈
K\ {0}, there exists a function er : K→ G, which satisfies the following functional
equations

er(x) = x, er(x + y) = er(x)er(y), er(xy) = [er(x)]y (6)

for all x, y ∈ K. Thus er is a homorphism of the additive group K onto the mul-
tiplicative group G. For example, we may use the characters er to encrypt both
shares and keys, whenever either K = Zn is the additive group of residues modulo
a prime number n and G = (Zn\ {0} , ·), or K = R is the additive group of real
numbers and G is the multiplicative group of complex numbers of absolute value
1. In these particular cases we can define the characters by

er(x) = ωrx and er(x) = eirx,

where ω is a generator of the multiplicative group Zn\ {0}.
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In this paper the encrypted shares of the form

si = si(r) = (ki, xi, er (yi)) , r ∈ K\ {0} , yi = p(ki)(xi), (7)

are used to define the encrypted hierarchical (t, n)-threshold schemes in Section 2.
In Section 3 such shares si with ki = 0, called the encrypted users’ private keys,
play a fundamental role in the definition of secure broadcasting protocols. A pre-
sentation of these definitions needs to introduce additional details about Hermite
interpolation. Namely, throughout the paper the identity of the form

(di)t−1
0 = (dα,κ)

m−1τα−1
α=0κ=0 , t =

m−1∑
α=0

τα, (8)

will mean that the lexicographic ordering of the matrix elements on the right
hand side is identical with the sequence coordinates on the left hand side.

By using this convention one can divide the sequence (si)t−1
0 of Hermite type

into the sequence of blocks (S α)m−1
0 such that the knots are the same in each block

and distinct in any two different blocks:

S α =
{(

zα, τα, yα,κ
)

: κ = 0, 1, . . . , τα − 1
}
,

where zα denotes the common knot in the group S α and the multiplicities τα are
defined by

τα = card(S α) = max{ki + 1 : ki ∈ S α}. (9)

Then the Hermite interpolating formula

p̃(x) =

m−1∑
α=0

τα−1∑
κ=0

yα,κgα,κ(x), (10)

with Hermite fundamental polynomials

gα,κ(x) =
w(x)
κ!

τα−κ−1∑
ν=0

γα,ν

(x − zα)τα−κ−ν
, (11)

can be easily proved for the polynomial p̃ ∈Pt−1, defined by interpolating condi-
tions

p̃(κ)(zα) = yα,κ, α = 0, 1, . . . ,m − 1, κ = 0, 1, . . . , τα − 1,
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which are equivalent to the conditions (5), whenever we denote

(yi)t−1
0 = (yα,κ)

m−1τα−1
α=0κ=0 .

The representation (10)-(11) of p̃(x) is called the barycentric Hermite formula, in
which the barycentric weights are defined by

γα,ρ =
h(τα−1−ρ)
α (zα)

(τα − 1 − ρ)!
,

1
hα(x)

= wα(x) =

m−1∏
ν=0,ν,α

(x − zν)τν (12)

for α = 0, 1, . . . ,m − 1 and ρ = 0, 1, . . . , τα − 1. It follows that γα,ρ are the unique
coefficients of the following partial fraction decomposition

1
w(x)

=

m−1∑
α=0

τα−1∑
ρ=0

γα,ρ

(x − zα)ρ+1 , w(x) =

m−1∏
α=0

(x − zα)τα , (13)

which is a particular case of (10) for p̃(x) ≡ 1 and yα,κ ≡ p̃(κ)(zα). Further, it
should be noticed that the barycentric weights (γα,ρ)

m−1τα−1
α=0ρ=0 depend only on the

knots zα ∈ S α and its multiplicities τα = card(S α).
At the present time a few efficient O(t2)-algorithms for computing barycentric

weights γα,ρ are known [14], [2], [13]. It should be mentioned that the algorithm
of Schneider and Werner [14] transforms numerically the Hermite interpolating
polynomial given in the Newtonian form to its barycentric Hermite form. On the
other hand, the Butcher’s barycentric algorithm is based on some properties of
symmetric forms. Clearly, all these algorithms may be used in our Algorithms 2
for secret sharing and broadcasting presented in Section 2 and 3. However, if the
knots are defined by the recurrent formulae of the form

xi = ξxi−1 + β, i = 1, 2, . . . , t − 1; x0 = η,

with ξ , 0, β, η in K, then we propose to use the fast O(t log t)-algorithms pre-
sented by the authors in [17]. Finally, in Section 3 a special barycentric algorithm
is designed by the second author in order to increase security and effectiveness and
generalize broadcasting protocol from the thesis [6].
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3. Encrypted hierarchical (t, n)−threshold schemes.

Following [16] our first mathematical model of encrypted hierarchical (t, n)−
threshold scheme is based on the Newton formulae

p̃(x) =

t−1∑
i=0

cihi(x), ci = 〈y0, y1, . . . , yi〉 , (14)

for the Hermite interpolating problem (5), where the Newton basis (hi)t−1
0 of Pt−1

is defined by

h0(x) = 1,
hi(x) = hi−1(x) · (x − xi−1)

= (x − x0) . . . (x − xi−1) , i = 1, . . . , t − 1.
(15)

It is important in applications that the divided differences satisfy the following
useful recurrent formulae

〈yi, yi+1, . . . , yi+k〉 =


yi+k−ki

(i+k−ki)!
, if xi = xi+k,

〈yi+1,...,yi+k〉−〈yi,...,yi+k−1〉

xi+k−xi
, otherwise ,

(16)

for all i, k such that 0 ≤ i ≤ i + k < t. Hence the coefficients (ci)t−1
0 can be com-

puted by using the following slight modification of the effective O(t2)−algorithm
[19], which should be proceeded by the initializations given at the first line of the
algorithm.

bi = yi/ki!, i = 0, 1, . . . , t − 1;
f or(i = 0; i < t; i + +)
{

f or( j = i; j >= i − ki; j − −)
b j = bi;

f or( j = i − ki − 1; j >= 0; j − −)
b j = (b j+1 − b j)/(xi − x j);

ci = b0;
}

Algorithm DD. The C++ pseudocode to compute vectors c and b of divided
differences ci = 〈y0, y1, . . . , yi〉 and bi = 〈yi, yi+1, . . . , yt−1〉, i = 0, 1, . . . , t − 1.
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Now by using formulae (14) and (15) we derive the formula

s̃ = p̃ (0) =

t−1∑
i=0

cihi(0) (17)

with
h0(0) = 1, hi(0) = −hi−1(0)xi−1, i = 1, 2, . . . , t − 1.

It suggests the following simple hierarchical (t, n)-threshold scheme with an arbi-
trary encryption function er, which do not need to have properties (6). However,
it is supposed that this function is known only by the dealer, while the decryption
function e−1

r is known only by the combiner. Note that if we use the encryption
function er(x) = ωrx (x ∈ Zn) in Algorithm 1, then the security of the (t, n)−
threshold scheme increases proportionally to the high security of the Diffi-Helman
decision problem [1]. The overall number of algebraic operations in Algorithm 1
is equal to O(t2), whenever evaluations of the encryption and decryption functions
are not taken into account.

Algorithm 1. Dividing the secret s into n encrypted hierarchical (t, n)-shares and
its recovering. The encryption and decryption functions er and e−1

r , r ∈ K\ {0} , are
supposed to be known by the dealer and combiner, respectively.

1. The dealer chooses randomly two integers n ≥ t > 1, admissible Hermite in-
terpolation knots (xi)n−1

0 in K\ {0} with left multiplicities (ki)n−1
0 , coefficients

(ai)t−1
1 of the polynomial p(x) =

∑t−1
i=0 aixi of degree t − 1, and sets a0 = s.

2. Next the dealer uses the generalized Horner algorithm to compute n val-
ues/derivatives yi = p(ki)(xi) of the polynomial p(x), encrypts them by set-
ting ui = er(yi) and distributes the encrypted shares si(r) = (ki, xi, ui), i =

0, 1, . . . , n − 1, among the participants of the scheme.

3. If the combiner receive t shares si0(r), si1(r), . . . , sit−1(r), then he sorts them
in order to get a sequences of the Hermite type, say (ki, xi, ui)t−1

0 for the sim-
plicity of notation. If such a sorting is impossible, the algorithm is stopped
without granting the access.

4. Otherwise, the combiner applies the decryption function to get yi = e−1
r (ui)

and uses Algorithm DD to compute the divided differences ci =< y0, . . . , yi >,
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i = 0, 1, . . . , t−1. It enables to compute the secret s̃ = p̃(0) from the formula
(17), or equivalently from the recurrent formulae: s̃ = 0 and s̃ = ci − s̃ · xi,
i = t − 1, t − 2, . . . , 0.

5. The access is granted only if s̃ = s.

Our second mathematical model of an encrypted (t, n)−threshold scheme de-
pend heavily on the properties (6) of the encryption function er, r ∈ K\{0}. It is
based on the following theorem, in which the convention (8) is applied to exchange
lexicographically the double indexed variables yα,κ, gα,κ, γα,ρ (0 ≤ α < m, 0 ≤
κ, ρ < τα) into the corresponding single indexed variables yi, gi, γi (0 ≤ i < t).
Moreover, it is supposed that the definition (9) of the multiplicity τα of zα is
extended by setting τi = τα, whenever xi = zα. For example, if we consider
the admissible knots (xi)6

0 = (5, 5, 4, 8, 8, 8) with the left multiplicities (ki)6
0 =

(0, 1, 0, 0, 1, 2), then the last extension gives (τi)6
0 = (2, 2, 1, 3, 3, 3).

Theorem 1 Let si(r) = (ki, xi, er(yi)) (i = 0, 1, . . . , t − 1) be shares of the Hermite
type, derived from the polynomial p of the form (1) with a0 = e−1

r (s), and encrypted
by the function er having properties (6). Moreover, let the polynomial p̃ ∈Pt−1 be
defined by Hermite interpolating conditions p̃(ki)(xi) = yi (i = 0, 1, . . . , t − 1) and
expressed in the Hermite barycentric form with barycentric weights (γi)t−1

0 . Then
s̃ = er( p̃(0)) satisfies the following formula

s̃ =

t−1∏
i=0

er(yi)gi(0), (18)

with

gi(0) =
w(0)
ki!

τi−ki−1∑
ν=0

γν

(−xi)τi−ki−ν
, w(0) =

t−1∏
i=0

(−xi), (19)

where (ki)t−1
0 and (τi)t−1

0 denote the left multiplicities and multiplicities of knots
(xi)t−1

0 , respectively. Further, the cost of computation of (gi(0))t−1
0 is equal to O(t2).

Proof. In view of properties (6) of encryption function er, it follows from for-
mulae (10) and (11) that

er( p̃(0)) =

m−1∏
α=0

τα−1∏
κ=0

(er(yα,κ))gα,κ(0)
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and

gα,κ(0) =
w(0)
κ!

τα−κ−1∑
ν=0

γα,ν

(−zα)τα−κ−ν
.

Hence it is sufficient to pass lexicographically from the double to single indexes in
order to get formulae (18) and (19). Since the barycentric weights can be evaluated
by an O(t2)-algorithm, it remains to show that the cost of computing of all basis
sums

σα,κ =

τα−κ−1∑
ν=0

γα,ν

(−zα)τα−κ−ν
, κ = 0, 1, . . . , τα − 1, (20)

is equal to O(τα). But it is a simple consequence of Algorithm BS, which is ob-
tained below by applying the modified Horner algorithm to compute the basis sums
in the order σα,τα−1, σα,τα−2, . . . , σα,0. �

In the prove of Theorem 1 the basis sums (20) have been defined. It is essential
that they can be computed by the Algorithm BS, which has only the cost O(τα).
Note that this algorithm computes the basis sums in order σα,τα−1, σα,τα−2, . . . ,
σα,0 by the Horner algorithm with divisions.

σα,τα = 0;
f or(ν = τα − 1; ν ≥ 0; ν − −)

σα,ν = (σα,ν+1 + γα,τα−ν−1)/(−zα);

Algorithm BS. Evaluation of the basis sums (20) with O(τα) algebraic operations.

Now we are ready to design a mathematical model of a new hierarchical (t, n)-
threshold scheme with an encryption er having properties (6). In order to compute
the barycentric weights (γi)t−1

0 = (γα,ρ)
m−1,τα−1
α=0,ρ=0 we propose to use one of the algo-

rithms presented in [14], [2], [13].

Algorithm 2. A barycentric recovering of the secret s divided into n encrypted
hierarchical (t, n)-shares. The encryption and decryption functions er and e−1

r , r ∈
K\ {0}, are supposed to be known only by the dealer.

1. Here the dealer’s duties are the same as in the Step 1 of Algorithm 1, except
the fact that he should set a0 = e−1

r (s) now.
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2. Next the dealer generates and distributes the shares si(r) = (ki, xi, ui)n−1
0

with ui = er(yi), exactly as in the Step 2 of Algorithm 1.

3. If the combiner receive t shares si0(r), si1(r), . . . , sit−1(r), then he sorts them
in order to get a sequences of the Hermite type, say (ki, xi, ui)t−1

0 for the sim-
plicity of notation. If such a sorting is impossible, the algorithm is stopped
without granting the access.

4. Otherwise, the combiner uses left multiplicities (ki)t−1
0 , multiplicities (τi)t−1

0
and knots (xi)t−1

0 in order to compute the barycentric weights (γi)t−1
0 and

evaluate the basis values (gi(0))t−1
0 with the help of Algorithm BS. Then he

computes s̃ from the formulae (18) presented in Theorem 1.

5. The access is granted only if s̃ = s.

4. Barycentric broadcast protocol with encryption

In this section we present a general broadcast model that uses the barycentric
form of the Hermite interpolating polynomials and the encryption function er with
properties (6). It is based on the following theorem, which will reflect the dynamic
of broadcast cycles.

Theorem 2 Let (γα,ρ)
m−1 τα−1
α=0 ρ=0 be barycentric weights, determined by a sequence

(zα)m−1
0 of pairwise distinct knots with multiplicities (τα)m−1

0 . If zm < {z0, z1, . . . , zm−1}

is an additional knot of multiplicity τm = 1, then the barycentric weights (γ̂α,ρ)
m τα−1
α=0 ρ=0 ,

corresponding to sequences (zα)m
0 and (τα)m

0 , satisfy the following recurrent formu-
lae

γ̂α,τα−1 =
γα,τα−1

zα − zm
,

γ̂α,τα−κ =
γα,τα−κ − γ̂α,τα−κ+1

zα − zm
, κ = 2, 3, . . . , τα,

where α = 0, 1, . . . ,m−1. Additionally, we have γ̂m,0 = 1
w(zm) , where the polynomial

w(x) is defined as in (13).

Proof. It is clear, that γ̂m,0 = ĥm(zα) = 1
w(zm) . Moreover by (12) we have

γ̂α,τα−κ =
ĥ(κ−1)
α (zα)
(κ − 1)!

, ĥα(x) = hα(x) ·
1

x − zm
,
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whenever 0 ≤ α < m. Hence we obtain the formula for γ̂α,τα−1 by setting κ = 1.
Otherwise, we apply Leibnitz differentiation rule and formulae (12) to get

γ̂α,τα−κ =
1

(κ − 1)!

κ−1∑
i=0

(
κ−1
i
)

h(κ−1−i)
α (zα)

(−1)ii!
(zα − zm)i+1

=

κ−1∑
i=0

(−1)i γα,τα−κ+i

(zα − zm)i+1 .

By using twice this formula we derive

γ̂α,τα−κ +
γ̂α,τα−(κ−1)

zα − zm
=
γα,τα−κ

zα − zm
+

κ−1∑
i=1

(−1)i γα,τα−κ+i

(zα − zm)i+1

+
1

zα − zm

κ−2∑
i=0

(−1)i γα,τα−κ+i+1

(zα − zm)i+1 =
γα,τα−κ

zα − zm
,

which completes the proof. �
A simple consequence of Theorem 2 is the following Algorithm BW, which

has the cost O(t). It is an essential part of our new broadcasting protocol with
encryption.

γ̂α,τα = 0;
f or(κ = 1; κ ≤ τα; κ + +)

γ̂α,τα−κ =
γα,τα−κ−γ̂α,τα−κ+1

zα−zm
;

Algorithm BW. Evaluation of the barycentric weights (γ̂α,κ)
τα
κ=0, whenever a new knot zm

of multiplicity τm = 1 is added to the knots (zα)m−1
0 with multiplicities (τα)m−1

0 .

Now we present a (t, n)-generalization of the broadcast model of Naor and
Pincas [10]. It uses the barycentric weights (γ̂i)t

0 = (γ̂α,κ)
m τα−1
α=0 κ=0 , presented in

Theorem 2, to reconstruct the secret s from the formulae

ŝ =

t∏
i=0

(er(yi))ĝi(0) (21)

and

ĝi(0) =
ŵ(0)
ki!

τi−ki−1∑
ν=0

γ̂ν

(−xi)τi−ki−ν
, ŵ(0) =

t∏
i=0

(−xi), (22)
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where τm = 1, xt = zm and kt = 0. These formulae can be obtained formally from
Theorem 1 by exchanging t − 1 by t and by adding value yt = p(xt) of p at the
point xt < {x0, x1, . . . , xt−1}. The description of this generalization is divided into
the system initialization and the broadcast cycle.

Algorithm 3. A barycentric (t, n)-broadcast model with a secret key s ∈ K\ {0} and
encryption function er, r ∈ K\ {0}.

1. In order to initialize the model the group controller randomly choses the
coefficients (ai)t

1 of the polynomial p(x) =
∑t

i=0 aixi, a0 = e−1
r (s), of degree

t, and admissible knots (xi)n−1
0 with the left multiplicities (ki)n−1

0 such that
ki = 0 for i = t, t + 1, . . . , n − 1. Then he initializes the list L = ∅ of revoked
users, and passes to:

(a) Compute the derivatives/values yi = p(ki)(yi) at points xi (i = 0, 1, . . . ,
n − 1) and deliver n − t encrypted shares (xi, er(yi))n−1

t to the users,
which are called users keys.

(b) Evaluate the public session key Γ = (γi)t−1
0 of barycentric weights by

applying any known O(t2)-algorithm to the knots (xi)t−1
0 with left mul-

tiplicities (ki)t−1
0 .

(c) Prepare the public encrypted enabling block E of the following form
E = (ki, xi, er(yi))t−1

0 .

2. A broadcast cycle begins at the moment, when a private user’s key (xs, er(ys)),
s ≥ t, has been received by the system, together with a (promise of) payment
for a required transmission. Then the following activities are performed:

(a) The user’s key (xs, er(ys)) is reindexed and used to update the enabling
block E to Ê = (ki, xi, er(yi))t

0 (kt = 0, xt := xs).

(b) The Algorithm BW is applied to update the barycentric weights Γ =

(γi)t−1
0 to Γ̂ = (γ̂i)t

0, which correspond to the knots (xi)t
0 with left mul-

tiplicities (ki)t
0 and multiplicities (τi)t

0 defined as in (9).

(c) The formulae (21) and (22) are used to compute a candidate ŝ for s.

(d) The access to the transmission takes place only if ŝ = s. Otherwise, the
private user’s key may be added to the list of revoked users, which may
be checked in the next cycles of the algorithm e.g. at the beginning of
Stage II.
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Since the session key Γ and enabling block E are public, it follows that the
second part of Algorithm 3 can be performed not only by the group controller but
by any user as well. In the last case, it is necessary to assume that each user is able
to activate the algorithms to evaluate the barycentric weights (γ̂i)t

0 and decoding
key ŝ. Of course, it does not mean that knowledge of ŝ by a user is allowed in
Algorithm 3.
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