
JOURNAL OF APPLIED
COMPUTER SCIENCE
Vol. 26 No. 1 (2018), pp. 33-62

The Evaluation of Text String Matching
Algorithms as an Aid to Image Search

Joanna Ochelska-Mierzejewska1

1Lodz University of Technology
Institute of Information Technology

ul. Wólczańska 215, 90-924 Łódź, Poland
joanna.ochelska-mierzejewska@p.lodz.pl

Abstract. The main goal of this paper is to analyse intelligent text string
matching methods (like fuzzy sets and relations) and evaluate their useful-
ness for image search. The present study examines the ability of different
algorithms to handle multi-word and multi-sentence queries. Eight different
similarity measures (N-gram, Levenshtein distance, Jaro coefficient, Dice
coefficient, Overlap coefficient, Euclidean distance, Cosine similarity and
Jaccard similarity) are employed to analyse the algorithms in terms of time
complexity and accuracy of results. The outcomes are used to develop a hi-
erarchy of methods, illustrating their usefulness to image search. The search
response time increases significantly in the case of data sets containing sev-
eral thousand images. The findings indicate that the analysed algorithms do
not fulfil the response-time requirements of professional applications. Due to
its limitations, the proposed system should be considered only as an illustra-
tion of a novel solution with further development perspectives.

The use of Polish as the language of experiments affects the accuracy
of measures. This limitation seems to be easy to overcome in the case of
languages with simpler grammar rules (e.g. English).
Keywords: text comparison, N-gram, Levenshtein distance, Jaro coefficient,
Dice’s coefficient, Overlap coefficient, Euclidean distance, Cosine similarity,
Jaccard similarity.

34 The Evaluation of Text String Matching Algorithms . . .

1. Introduction

A search is the act or process of analysing a data set in order to find a specific
element. This process is most commonly associated with the search for textual
or multimedia information. Recent years have seen great progress in the field of
search techniques, leading, among others, to the development of methods based
on the analysis of graphical objects or sound. Those include specialised solutions
applied in medicine or acoustics.

A key to a successful search is the use of suitable algorithms. Years of research
have led to the development of many types of solutions, often depending on the
nature and type of search.

1.1. Classification of Text String Matching Algorithms

The text string matching algorithms can be classified according to the follow-
ing criteria:

1. The method of comparison applied.

2. The number of patterns used.

3. The use of pre-processing or text pattern.

The first criterion distinguishes two methods: exact string matching and inex-
act or approximate string matching.

Exact string matching is the primary way of comparison applied in all search
engines. This type of algorithms return a positive result only if an exact match is
found. Any variations of the term that we look for, which are not in an identity
relation with it, are ignored. An example of such a solution is the naive algorithm
(also referred to as the brute force algorithm) or the Boyer-Moore algorithm.

The approximate string matching consists in finding the strings that are similar
to the pattern, rather than identical to it. The degree of similarity is determined
arbitrarily on the basis of the number of transfers needed to transform a string into
the pattern, or by the length of the substring of the pattern retrieved from the text.
The most popular algorithms in this group include the Hamming and Levenshtein
distance algorithm and Seller’s algorithm.

Inexact string matching comprises four main categories of algorithms:

1. Dynamic Programming algorithms, e.g. the Wunsch algorithm and the Smith-
Waterman algorithm.

J. Ochelska-Mierzejewska 35

2. Deterministic and Non-Deterministic Finite-State Finite-State Automaton.

3. Bit-Parallelism algorithms, e.g. the Shift-Or algorithm.

4. Algorithms based on filtering. These include most of the algorithms pro-
posed in recent years.

The second criterion specifies three groups of algorithms:

1. The single pattern algorithms. These include the commonly used algorithms,
such as the naive algorithm, the Rabin-Karp algorithm, the finite automata
algorithms, the Knuth-Morris-Pratt algorithm, the Boyer-Moore algorithm,
or the Bitap algorithm, also known as Shift-Or, which, thanks to its effi-
ciency, has become the heart of the Unix search tool – agrep.

2. Algorithms using a finite set of patterns. This group includes the Aho-Corasick
algorithm, the Commentz-Walter algorithm and the Rabin-Karp algorithm.

3. Algorithms using an infinite number of patterns. In this case, patterns are
represented by grammar or regular expressions.

The last criterion of textual analysis algorithms is concerned with the pre-
processing of text and pattern. The algorithms that employ the pre-processing of
text were developed on the basis of the so-called online algorithms which allow
the pre-processing of the pattern exclusively. They employ indexing of the con-
tent, which makes the search process much more efficient.

1.2. Performance of Text String Matching Algorithms

The running time of an algorithm is fundamental to all complex computational
processes. In principle, text analysis algorithms operate on large data sets. Their
expected running time depends on the field of application. However, it should be
relatively short. In the case of a web browser, it should not exceed a few seconds,
whereas a system analysing terabytes of data in a research laboratory, should return
results within ten minutes.

Research into text comparison algorithms has shown dependencies between
the running time of an algorithm, the memory consumption and the accuracy of
results. Those dependencies can vary, depending on the solution employed. Some
algorithms work equally well with patterns of any length, other are effective only

36 The Evaluation of Text String Matching Algorithms . . .

for patterns of a specific length. However, in general, we can state that there is an
inversely proportional relationship between the running time of an algorithm and
the memory consumption (in the case of algorithms based on finite automata) and
between the running time of an algorithm and the accuracy of text strings matching
(exact vs. approximate search) [1].

The rest of the paper is organized as follows. Chapter 2 introduces the most
significant definitions used in the paper. In Chapter 3, the stages of text analysis
are presented and selected word, sentence and text comparison methods are de-
scribed in detail. Next, in Chapter 4, the evaluation of text comparison methods is
presented. Chapter 5 presents the outcomes of experiments conducted with the use
of methods described in Chapter 3. Chapter 6 focuses on image search based on
multi-sentence queries. This is followed by the discussion of the results. Chapter 7
is a summary of the paper.

2. Fuzzy Sets and Linguistic Variable

The concept of a fuzzy set was introduced by Zadeh in 1965 [2]. To each
element of a considered space, he added a positive real number from the [0, 1]
interval interpreted as a "membership level (or degree)".

Formally, a fuzzy set A in a non-empty space X is a set of ordered pairs

A = {< x, µA(x) >: x ∈ X} (1)

where µA : X → [0; 1] the membership function of A, whose values express the
membership level of x in A.

Fuzzy sets are mostly applied to formalize linguistic and imprecise understand-
able statements which express both properties of objects, e.g. young people, small
house, and amounts, e.g. very few, almost all.

A linguistic variable [3] is an ordered quintuple < L,H, X,G,M >, where:
L is the name of the variable,
H or H(L) is the term-set (linguistic values of L),
X is the universe of discourse,
G is a syntactic rule which generates values (labels) of L,
M is a semantic rule which associates a term from L with a fuzzy set in X.

A linguistic variable is exemplified by: L = "temperature", H(L) = { low, medium,
acceptable, high }, X = [−40oC,+40oC], in which M associates to e.g. "high" a
non-decreasing monotonic and continuous membership function in X, etc.

J. Ochelska-Mierzejewska 37

3. Text String Matching Algorithms

Text string matching is a complex assessment process that investigates the oc-
currence of certain features (or lack of those features) in a text string. Here, the
term text string refers to any linguistic structure. The hierarchy of algorithms ap-
plied in the present paper requires a more precise definition of this term. So, text
refers to a language structure which consists of at least one sentence that includes
at least one word contained between the marks ”.”. Because of the heterogeneous
character of text, the process of analysis is composed of several stages. In the first
stage, the text is partitioned into sentences. Next, each sentence is transformed into
a set of words, which constitutes the result of the second stage of the analysis. The
elements of collections formed in this way undergo further partitioning, creating
for each word a set of tokens that are products of the last stage of this process.
Their length is fixed, which has a crucial influence on the final results of the ex-
periment described here. Thus, the tokens ascribe a set of features to a particular
word. It follows from the above that the level of similarity between two texts can
be described as an overall assessment of similarities between sets of tokens of
respective sentences.

Each of the above stages is performed using another group of algorithms. The
first of them is a text comparison algorithm that is used for preliminary partitioning
of the texts compared and calculation of the sum of partial results. The second
group of algorithms transforms the sentences into sets of words and computes
individual similarity results. The last group of algorithms, which consists of eight
different measures, is used for analysing the level of similarity between particular
words on the basis of sets of features.

3.1. Text Comparison Algorithm

The first stage of textual analysis involves the use of text comparison algorithm
which directly uses the membership function µRS (5). The algorithm is based on a
fuzzy relation RT defined on a set of texts T . It can be formally defined as follows:

Definition 1 The fuzzy relation RT on T — the set of all text, is of the form:

RT = {〈t1, t2〉 , µRT (t1, t2) : t1, t2 ∈ T } (2)

38 The Evaluation of Text String Matching Algorithms . . .

with the membership function µRT : T × T → [0, 1]:

µRT (t1, t2) =
1
N
·

N(t1)∑
i=1

max j∈{1,2,...,N(t2)}µRS
(
si, s j

)
(3)

where:
si — the sentence of number in text t1;
s j — the sentence of number in text t2;
µRS – the value of function defined by (5);
N (t1) ,N (t2) – the number of sentences t1, t2, respectively;
N = max {N (t1) ,N (t2)} — the number of sentences in the longer of the two texts
under comparison.

The first operation performed by this algorithm is the partitioning of the texts
into sentences. Then, pairs of sentences are compared by the algorithm and the
results are processed according to the formula (3). The similarity coefficient ob-
tained in this way is contained in the range [0, 1], where 0 is interpreted as a total
lack of similarity between the texts and 1 –– as their identity.

3.2. Sentence Comparison Algorithm

The second stage of text analysis is the comparison of sentences that make up
the texts under examination. The pairs of sentences obtained in the first stage are
further divided into sets of words. Those sets are compared using word comparison
algorithms. The results of the comparison are processed according the formula (7)
and constitute the final measure of similarity between the sentences under exami-
nation.

Definition 2 The fuzzy relation RS on S — the set of all sentences, is of the form:

RS = {〈s1, s2〉 , µRS (s1, s2) : s1, s2 ∈ S } (4)

with the membership function µRS : S × S → [0, 1]:

µRS (s1, s2) =
1
N
·

N(s1)∑
i=1

max j∈{1,2,...,N(s2)}µRW
(
wi,w j

)
(5)

J. Ochelska-Mierzejewska 39

where:
wi — the word of number in sentence s1;
w j — the word of number in sentence s2;
µRW — the value of function (7);
N (s1) ,N (s2) – the number of words s1, s2, respectively;
N = max {N (s1) ,N (s2)}— the number of words in the longer of the two sentences
under comparison.

3.3. Word Comparison Algorithm

The word similarity algorithms are the last and most important group of text
analysis algorithms. Used directly by the sentence comparison algorithm and in-
directly by the text comparison algorithm, they have a crucial influence on the
efficiency of the whole analysis process. In the present paper, eight different sim-
ilarity measures have been applied. However, it is possible to replace them with
other methods that might be more accurate or less time-consuming. The only con-
dition that they must fulfil is that the results obtained have to be contained in a
range [0, 1].

3.3.1. N-gram

The first of the word comparison methods applied is an extended version of
the N-gram measure. The generalized version of this measure analyses substrings
of the same and different length. The disadvantage of such an analysis is its high
computational cost. This was the reason for introducing a modification that con-
sisted in the elimination of too short, and thus not very representative n-grams.
These restrictions, referred to as upper and lower limits, reduce the number of
comparisons, thus shortening the search response time for words with substan-
tially different numbers of letters. This method, determined by the fuzzy relation
RW, is defined as [4, 5].

Definition 3 The fuzzy relation RW on W — the set of all words, is of the form:

RW = {〈w1,w2〉 , µRW (w1,w2) : w1,w2 ∈ W} (6)

40 The Evaluation of Text String Matching Algorithms . . .

with the membership function µRW : W ×W → [0, 1]:

∀w1,w2∈W µRW (w1,w2) =

2
(N−n1+1)(N−n1+2)−(N−n2+1)(N−n2+1)(N−n2)

·
∑n2

i=n1

∑N(w1)−i+1
j=1 h (i, j)

(7)

assuming that
n1 ≤ n2 ≤ Nmin

where:
n1 — the minimal length of sub-sequence of the word;
n2 — the maximal length of sub-sequence of the word;
h (i, j) = 1 – if a sub-sequence containing i letters of word w1 and beginning from
j-th position in w1 appears at least once in word w2; otherwise h (i, j) = 0;
N (w1) ,N (w2) – the number of letters w1, w2, respectively;
N = max {N (w1) ,N (w2)} – the number of letters in the longer of the two words
under comparison;
Nmin = min {N (w1) ,N (w2)}.

The first task performed by this algorithm is to create two sets of tokens for
word w1 and w2, respectively, each of n1-length. Next, the terms from the first set
are compared with the terms from the second set (in the order of appearance in
words). After finding the first match, the search starts again for the next element
belonging to the first set. The whole procedure involves sets of tokens of the length
contained in the range [n1, n2]. The result is computed by the formula (7). The
final result is calculated by multiplying this value by the fraction representing all
possible substrings.

3.3.2. Levenshtein Distance

The Levenshtein distance is one of the most commonly used non-fuzzy meth-
ods for measuring text similarity. It determines the level of similarity between
words of different length by means of three operations: deletion, substitution and
insertion of characters belonging to the compared text strings. The procedure con-
sists in calculating the minimal number of insertions, deletions or substitutions

J. Ochelska-Mierzejewska 41

required to transform the source word into the target word. Each of the above-
mentioned operations has an arbitrarily assigned weight, which can also influence
the result of the comparison [6].

Definition 4 Let a and b are sequences of characters with the length m and n;
ai is the beginning segment of a1, . . . , ai;
w (x, y) is the weight of substitution;
w (x,�) is the weight of deletion;
w (�, y) is the weight of insertion.
Then Levenshtein distance is of the form:

dL
(
ai, b j

)
= min



dL
(
ai−1, b j

)
+ w (ai,�)

f or < deletation ai >,

dL
(
ai−1, b j−1

)
+ w

(
ai, b j

)
< substitution ai with b j >,

dL
(
ai, b j−1

)
+ w

(
�, b j

)
< insertion b j >

(8)

The Levenshtein distance is not defined by the membership function. Thus, the re-
sults of formula (8) do not belong to the range [0, 1]. Because the function applied
in the present paper operates only on values belonging to this range, it is necessary
to normalize the obtained result, as illustrated below:

dnL = 1 −
dL

max (m, n)
(9)

3.3.3. Jaro Coefficient

The Jaro coefficient is used mainly for typographic error and duplicate detec-
tion. This algorithm can be also used in statistics for record linkage [6]. According
to the experiments conducted by C.D. Budzinsky, this method brought best results
in comparison to twenty others used for typographic error finding [7].

Definition 5 Let us define on the set of all words W a fuzzy relation RWJO of the
form:

RWJO = {〈w1,w2〉 , µRWJO (w1,w2) : w1,ws2 ∈ W} (10)

42 The Evaluation of Text String Matching Algorithms . . .

with membership function µRWJO : W ×W → [0, 1] given by:

∀w1,w2∈W µRWJO (w1,w2) =

1
3 ·

(
|w′1|
|w1 |

+
|w′2|
|w2 |

+
|w′1|−Tw′1 ,w

′
2

|w′1|

) (11)

where:
w1,w2 – compared words;
w′1 – a string of characters from w1, found in w2;
w′2 – a string of characters from w2, found in w1;

Tw′1,w
′
2

=
the number of transposition of characters w′1and w′2

2 .

In order to extend Definition 5, let us analyze two text strings, w1 and w2. Let
w1 contain characters similar to those in w2 and let w2 contain characters similar
to those in w1. Character a from string w1 is similar to string w2, if it appears in
a similar place of string w2 [8]. According to Jaro, two characters from w1 and
w2 are considered ”matching” if the distance between them is not further than
max(|s1 |,|s2 |)

2 − 1. However, the area of search can be determined arbitrarily.

3.3.4. Dice’s Coefficient

The Dice’s coefficient is applied in the area of information retrieval. It is a type
of measure based on the calculating of terms of compared words. The coefficient
is calculated as follows: twice the number of terms found in both strings is divided
by the sum of terms found in both words. The formal definition of the Dice’s
coefficient is presented below.

Definition 6 Let us define a fuzzy relation RWD between two sets of words X and
Y

RWD = {〈x, y〉 , µRWD (x, y) : x ∈ X, y ∈ Y} (12)

with membership function µRWD : X × Y → [0, 1] represented by:

∀x∈X∀y∈Y µRWD (x, y) =
2 ·

∑n
i=1 xi · yi∑n

i=1 xi +
∑n

i=1 yi
(13)

where:
x, y – compared words;

J. Ochelska-Mierzejewska 43

xi – i-term of x;
yi – i-term of y;
n – the number of terms in x, y or their common part.

The above-mentioned terms are usually bigrams. In order to maximize the ac-
curacy of our measurement, it is necessary to divide words into tokens of different
lengths. However, this will lengthen the search response time. Here, substrings of
lengths contained in the range

[
2, length of the shorter word

]
were used.

3.3.5. Overlap Coefficient

The overlap coefficient is similar to the Dice’s coefficient, both in terms of
application areas and ways of comparison. Here, the computations are also based
on terms. The overlap coefficient computes the overlap between two words. If they
overlap entirely, they are classified as identical.

Definition 7 Let us define a fuzzy relation RWO between two sets of words X
and Y

RWO = {〈x, y〉 , µRWO (x, y) : x ∈ X, y ∈ Y} (14)

with a membership function µRWO : X × Y → [0, 1] represented by the formula:

∀x∈X∀y∈Y µRWO (x, y) =

∑n
i=1 xi · yi

min
{∑n

i=1 xi,
∑n

i=1 yi
} (15)

where:
x, y – compared words;
xi – i-term of x; yi – i-term of y;
n – the number of terms in x, y or their common part.

Dividing of the compared words into tokens is performed in the same way as
in the case of Dice’s coefficient.

3.3.6. Euclidean Distance

Another method, which resembles the Dice’s measure is the Euclidean dis-
tance. It is based on a vector space representing the attributes of compared words.
In text analysis, the attributes define the number of identical terms in each of the
compared words. The Euclidean distance is formally defined as follows:

44 The Evaluation of Text String Matching Algorithms . . .

Definition 8 Given two objects X and Y represented by n attributes, where xi is
the i-attribute, the similarity measure X = [x1, x2, . . . , xn] and Y =

[
y1, y2, . . . , yn

]
expressed by the formula

dE (X,Y) =

√√ n∑
i=1

(xi − yi)2 (16)

is referred to as Euclidean distance.

The algorithm applied here is based on the comparison of terms. On the basis
of the compared words, a and b, we create a set Ta∪Tb of all (unique) tokens of the
length contained in the range

[
2, length of the shorter word

]
. Other elements of the

set are then retrieved from the words and the number of occurrences is calculated.
Finally, for each of the n-terms contained in the set Ta ∪ Tb two attributes are
created, namely xi and yi. These attributes define the number of occurrences of
i-term of set Ta ∪ Tb in a and b, respectively. The values obtained in (16), define
the distance between the two words.

This distance is not normalized to the range [0, 1]. Thus, scaling is performed,
using the following formula (17):

dnE =

√
|Ta|

2 + |Tb|
2 − dE√

|Ta|
2 + |Tb|

2
(17)

where:
|Ta|, |Tb| – the number of tokens of the length from the range

[
2, length of the

shorter word] created from words a, b, respectively.

3.3.7. Cosine Similarity

Another commonly used method based on a vector space is the Cosine simi-
larity measure. In this method, the compared words are transformed into vectors.
However, as opposed to the Euclidean distance, the similarity level is not deter-
mined by measuring the distance between attributes x and y, but by measuring the
angle between the vectors. For similar text strings the cosine value of this angle
tends to 1, whereas for substantially different strings, whose vectors form an an-
gle of 90o, it tends to 0. The results of this comparison, contained in the range
[0, 1], provide the ability to define a fuzzy relation RWC between the words. The
formalized definition of this relation is as follows:

J. Ochelska-Mierzejewska 45

Definition 9 A fuzzy relation RWC between two sets of vectors X and Y is defined:

RWC = {〈x, y〉 , µRWC (x, y) : x ∈ X, y ∈ Y} (18)

with membership function µRWC : X × Y → [0, 1] represented by the following
formula:

∀x∈X ∀y∈Y µRWC (x, y) =

∑n
i=1 xi · yi√(∑n

i=1 x2
i

)
·
(∑n

i=1 y2
i

) (19)

where:
x, y – the compared vectors;
xi – an element of vector x;
yi – an element of vector y;
n – the number of elements of vector.

The first stage of the Cosine measure algorithm involves constructing unique
collections of tokens for words x and y, denoted as Tx and Ty, respectively. The
lengths of tokens, like in the other measures, are contained in the range

[
2, length of

the shorter word]. Next, a set Tx∩Ty is created, which is an intersection of Tx and
Ty. The size of sets is determined and the values obtained are used in the formula
(19), which in this case looks as follows:

µRWC (x, y) =

∣∣∣Tx ∩ Ty
∣∣∣√

|Tx| ·
∣∣∣Ty

∣∣∣ (20)

3.3.8. Jaccard Similarity

The last type of method presented in this paper is the Jaccard index. It is most
often used to measure the similarity between sample sets. There are many extended
versions of this method but the most basic one focuses on the comparison of two
objects, X and Y . Each of these objects can either posses or not possess certain fea-
tures, called attributes. The similarity of X and Y is understood as the comparison
between respective attributes. There are four possible combinations that define the
number of the attributes:

• |X ∩ Y | – attribute occurs in X and Y;

• |X ∩ Y | – attribute occurs in X but does not occur in Y;

46 The Evaluation of Text String Matching Algorithms . . .

•
∣∣∣X ∩ Y

∣∣∣ – attribute occurs does not occur in X but occurs in Y;

•
∣∣∣X ∩ Y

∣∣∣ – attribute does not occur in either X or Y .

On the basis of the observed distribution of attributes, Jaccard proposed the
following measure of similarity between X and Y .

Definition 10 Given two objects X and Y, each of them represented by n-attributes
belonging to a common domain U, the measure of similarity between X and Y
expressed by

RWJXY =
|X ∩ Y |

|X ∩ Y | + |X ∩ Y | + |X ∩ Y |
(21)

is referred to as the Jaccard index.

The formula (21) can be simplified as follows:

RWJXY =
|X ∩ Y |
|X ∪ Y |

(22)

The Jaccard method is based on attribute matching and takes into account only
the attributes occurring in objects X and Y . Thus, a situation

∣∣∣X ∩ Y
∣∣∣, in which

attribute i ∈ U does not characterize any of the objects, was not taken into consid-
eration in formula (21).

The result of similarity computations of words form formula (21) or (22) is
contained in the range [0, 1]. Thus, the measure described is perfectly suited for a
membership function defining a fuzzy relationship RWJ between X and Y .

4. Algorithm of Textual Analysis Results Classification

Textual analysis algorithms are the focus of the presented system. The results
generated by those algorithms are real numbers, which makes them more difficult
to interpret than natural language expressions. Thus, an algorithm has been de-
veloped to match the obtained similarity results with the corresponding linguistic
expressions. The algorithm was constructed using the fuzzy set theory [2]. A lin-
guistic variable search accuracy was defined in order to describe the similarity of
a particular query to image description [9]. Linguistic values characterized by its
variable constitute a set:

T (search accuracy) = {low, medium, high} .

J. Ochelska-Mierzejewska 47

Figure 1: Fuzzy sets for a linguistic variable search accuracy.

Each value is assigned to a fuzzy set, the elements of which belong to the
range X = [0, 1]. A graphic representation of membership functions describing
those sets is shown in Figure 1, while their mathematical representation is given
by formulae (23), (24) and (25). The type of functions used in the algorithm is
chosen arbitrarily. Replacing them with other function types would influence the
characteristics of the results but would not influence the method of computing.

µL (x) =


1 x = aL

bL−x
bL−aL

for x ∈ [aL, bL]
0 x ∈ [bL, bH]

(23)

µM (x) =


x−aM

bM−aM
x ∈ [aM, bM]

1 x = bM
cM−x

cM−bM
for x ∈ [bM, cM]

0 x ∈ [aL, aM] ∪ [cM, bH]

(24)

µH (x) =


1 x = bH

x−aH
bH−aH

for x ∈ [aH , bH]
0 x ∈ [aL, aH]

(25)

The boundaries of sets L, M and H are determined by variables aL, bL, aM,
bM, cM, aH and bH , which are directly used from the idea of fuzziness. Such terms
as high or low do not possess unambiguous designate. What they refer to is a

48 The Evaluation of Text String Matching Algorithms . . .

subjective feeling, which cannot be unequivocally defined. By substituting specific
values with variables, one can arbitrarily define the linguistic values. However,
this imposes certain conditions on the sets’ boundaries. The fulfilment of those
conditions is required by the conceptual model of function µL, µM, µH . There are
two inequalities that need to be fulfilled while substituting the variable with certain
values:

• inequality for the function µL, µM, µH defined via formula (26)

aL ≤ aM < bL ≤ aH < cM ≤ bH (26)

• inequality for the function µM defined via formula (27)

aM < bM < cM (27)

The classification of images into sets L, M and H begins with specifying the
variables of the membership function. The value x ∈ X obtained in the process of
textual analysis is then compared with the ranges of all sets. If the value belongs
to any of the ranges, we calculate the value of the membership function µL (x),
µM (x), µH (x), defined on this set. The result of those calculations defines the level
of membership of the result of textual analysis in a particular fuzzy set. At the same
time, this set carries information about the linguistic value taken by the variable of
search accuracy.

5. Time Complexity and Accuracy of Text Analysis Algo-
rithms

The most important features that determine the usefulness of a text analysis
algorithm are:

• time complexity, understood as the time needed by the algorithm to solve a
particular problem;

• accuracy, understood as the quality of a particular solution.

The former signifies the dependency between the number of basic operations
performed by the algorithm and the size of the input. It is a necessary but not the
only condition for an algorithm to be considered suitable for a particular problem.

J. Ochelska-Mierzejewska 49

However, it can happen that this condition is fulfilled only with a small number of
input data and the running time of the algorithm for bigger data sets rises exponen-
tially, which makes the algorithm useless.

The latter feature is less formal. It refers to the level of semantic correctness of
text similarity evaluation performed by the algorithm. Due to the specificity of ap-
plication and quantitative character of computations performed on non-quantitative
values, the assessment of the accuracy level is based to a large extent on the judge-
ment of the researcher. However, by evaluating the algorithms in terms of their
accuracy, we can indicate the solutions that are unsuitable for textual analysis.

In order to evaluate empirically the usefulness of the algorithms discussed here,
it was necessary to conduct certain measurements. In the first step, the methodol-
ogy consisted in preparing 17 sets A,. . . ,R of random textual sequences of sizes
A = 10, B = 20, C = 30, D = 40, E = 50, F = 60, G = 70, H = 80, I = 90,
J = 100, K = 110, L = 120, M = 130, N = 140, O = 150, P = 160, R = 170. Each
subsequent set is contained entirely in the previous one, fulfilling the dependency:

A ⊂ B ⊂ C ⊂ D ⊂ E ⊂ F ⊂ G ⊂ H ⊂ I ⊂ J
⊂ K ⊂ L ⊂ M ⊂ N ⊂ O ⊂ P ⊂ R

Texts that constitute the elements of those sets were constructed according to
an identical pattern (28). The query (29) was built in a similar way. Owing to
this unification, it was possible to eliminate discrepancies between the results in
the case of phrases of variable length. The change factor results from the random
character of constituent units of sentences, i.e. words. They are taken from a spe-
cially prepared set of words most often used in the Polish language1. The range of
their lengths was arbitrarily determined as [3, 22].

SENTENCE1.SENTENCE2.SENTENCE3. (28)

where:
the length of SENTENCE1 is 3,
the length of SENTENCE2 is 4,
the length of SENTENCE3 is 2.

S ENT ENCE4.S ENT ENCE5. (29)

1The collection of words most often used in Polish contained in file polish.dic.proto
(http://ispell-pl.sourceforge.net) was developed on the basis of a 3.5 million word set.

50 The Evaluation of Text String Matching Algorithms . . .

where:
the length of SENTENCE4 is 4,
the length of SENTENCE5 is 3.

A text comparison algorithm was used to determine the search response time
for each set A,. . . ,R. Thus, the sentence similarity algorithm was used indirectly,
together with the N-gram, Levenshtein, Jaro, Dice, Overlap, Euclidean, Cosine
and Jaccard measures. The discrepancy between partial results was eliminated by
calculating for each set an arithmetic average from 1000 samples by using the same
text sequences.

The results are presented graphically in Figure 2, where one can easily distin-
guish the algorithms that proved most efficient, namely the Overlap, Dice, Jaccard
and Cosine measure. In the case of those measures, the average time needed to
compare the query with 170 descriptions was not longer than 0.825 seconds. The
Jaro algorithm also turned out to be fast, with the running time of 1.325 seconds.
In the case of the Levenshtein method, the average measurement time for the same
number of comparisons was nearly 2 seconds. The application of the generalized
N-gram and Euclidean measure resulted in the highest computing time of 2.892
and 4.068 seconds, respectively.

Average time values shown in linear chart in Figure 2 allow one to clearly
determine the efficiency of text similarity algorithm for each measure presented
above. Its final value is calculated via formula (30) through the scaling of an arbi-
trarily selected series of data to the range [0, 1] and calculating for each value its
complement to unity.

W = 1 −
tx

tmax
(30)

where:
tx – average running time of text similarity algorithm for a particular measure in
series x,
tmax – maximal average running time of text similarity algorithm in series x ob-
tained by one of the measures.

The results of these computations are shown in Table 1, whereas the efficiency
obtained by each measure is presented in Figure 3.

The present research enables approximate estimation of the running time of
each of the above similarity measures in real production environment involving
large data sets. Due to linear character of charts, a general formula applied to this

J. Ochelska-Mierzejewska 51

0

0,5

1

1,5

2

2,5

3

3,5

4

10 30 50 70 90 110 130 150 170

Time [s]

Number of texts

Euclidean

N-gram

Levenshtein

Jaro

Cosine

Jaccard

Dice

Overlap

Figure 2: The running time of textual analysis measures – a comparison.

Table 1: Efficiency of text comparison algorithm, depending on the measure ap-
plied.

Measure Mean time of Scaled Efficiency
the series 170 value

Overlap 0.730 0.179 0.821
Dice 0.792 0.195 0.805
Jaccard 0.822 0.202 0.798
Cosine 0.825 0.203 0.797
Jaro 1.325 0.326 0.674
Levenshtein 1.990 0.489 0.511
N-gram 2.892 0.711 0.289
Euclidean 4.068 1.000 0.000

52 The Evaluation of Text String Matching Algorithms . . .

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Overlap Dice Jaccard Cosine Jaro Levenshtein N-gram Euclidean

Efficiency

Words similarity measures

Figure 3: Efficiency of text comparison algorithm for the measures applied.

task will have the form given in (31)2.

y = ax + b (31)

where:
a – the slope of a particular function,
x – the number of descriptions for which we calculate the running time of an
algorithm,
b – the shift factor of a particular function from Figure 2,
y – the estimated running time of the algorithm for a particular number of texts.

Table 2 presents the estimated running time of algorithms for three sample
description sets, calculated via formula (31), with known values of a and b.

In the second stage, we measured the accuracy of the text comparison algo-
rithm. The above-described measures were applied again. The measurement was

2The estimation was performed with the method of least squares. It applied a one-equation model
with one explanatory variable x. The evaluation of the model was performed using a determination
coefficient R2 and t-Student statistics.

J. Ochelska-Mierzejewska 53

Table 2: An estimated average time of similarity measurement in a production
environment

Similarity a b y(104) y(105) y(106)
measure [s] [min] [h]
Overlap 0.0043 0 42.84 7.14 1.19
Dice 0.0047 0 46.49 7.75 1.29
Jaccard 0.0048 0 48.27 8.04 1.34
Cosine 0.0048 0 48.41 8.07 1.35
Jaro 0.0078 0 90.00 12.97 2.16
Levenshtein 0.0117 0 117.95 19.47 3.24
N-gram 0.0170 0 173.83 28.26 4.71
Euclidean 0.0238 0 239.97 39.73 6.62

based on 15 sets A,. . . ,O, each consisting of a query k and two texts h and l.

A = {kA, hA, lA}
...

O = {kO, hO, lO}

For each minimal syntactic change (such as the change from singular into plural,
introduction of a participle form, adding a suffix or prefix, or other word forma-
tion processes), description h repeated the query, with the semantic identity crite-
rion depending on the subjective opinion of the researcher. In terms of syntax and
meaning, text l differed substantially from the query. The lengths of k and h within
the set were the same, while the length of description l was arbitrary. A sample set
G was as follows (in Polish):

kG = PRZYKRYTE SNIEGIEM CHOINKI.
ZJEZDZAJACY NARCIARZE.
ZACHODZACE SLONCE.

hG = POKRYTE SNIEGIEM CHOINKI.
NARCIARZE ZJEZDZAJA.
ZACHOD SLONCA.

lG = POLNA DROGA.PADA DESZCZ.
CHLOPAK PROWADZI ROWER.
BAGAZNIK PELEN GAZET.

54 The Evaluation of Text String Matching Algorithms . . .

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Overlap Cosine Dice N-gram Jaccard Levenshtein Jaro Euclidean

Average similarity values

Words similarity measures

P(k,h)

P(k,l)

S

Figure 4: Comparison of average similarity values of t and h, t and l for sets A, . . . ,
O and their efficacy S .

Using the above data, two measurements were conducted to determine the sim-
ilarity between all pairs of texts k and h and k and l. This was performed by calcu-
lating for each group a result in the form of an arithmetic average of partial results.
The results obtained are presented graphically in Figure 4. For the evaluation of
the results, we use a model situation in which the similarity of k and h is a value
possibly closest to 1, while the similarity between k and l tends to 0. Thus, the
measure of accuracy S is the difference between the two values:

S = Pkh − Pkl

As shown in Figure 4, some of the measures used achieved a satisfactory level
of accuracy results, with scores at around 0.7. The best result was obtained by
the Overlap coefficient, with the value of S equal to 0.794. Almost as good results
were achieved by the Cosine method (0.739) and Dice’s coefficient (0.733). The N-

J. Ochelska-Mierzejewska 55

Table 3: Usefulness of text comparison algorithm depending on the word similarity
measure applied

Measure Time Accuracy Usefulness
complexity

Overlap 0.821 0.794 0.807
Dice 0.805 0.733 0.769
Cosine 0.797 0.739 0.768
Jaccard 0.798 0.675 0.736
Jaro 0.674 0.486 0.580
Levenshtein 0.511 0.642 0.576
N-gram 0.289 0.694 0.492
Euclidean 0 0.250 0.125

gram algorithm and Jaccard index, for which the S value equals 0.694 and 0.675,
respectively, can also be regarded as efficient. Next come the results obtained by
the Levenshtein distance (0.642) and the much less efficient Jaro distance (0.486).
The Euclidean algorithm turned out to overstate the level of similarity between k
and l, with the average value of S equal to 0.25.

The results obtained by measuring the time complexity and accuracy of text
similarity algorithm for each of the presented methods enabled to determine their
usefulness for image search systems. A uniform value scale of those two features,
simplified the procedure to calculating an arithmetic average. The results were
presented in Table 3.

The experiment conducted in the present work allowed the selection of word
similarity measures that can successfully be applied in a textual analysis algorithm.
The methods were examined in terms of time complexity and accuracy. The final
results were presented graphically in Figure 5. Among the eight methods applied,
the best result was obtained by the Overlap coefficient (0.807). The Dice, Cosine
and Jaccard methods obtained the results of 0.769, 0.768 and 0.736, respectively.
The Jaro (0.580), Leveshtein (0.576) and N-gram (0.492) methods were character-
ized by an average usefulness, with the last of them characterized by a satisfactory
accuracy score but very low efficiency. The only algorithm that turned out to be
useless was the Euclidean algorithm, with the result as low as 0.125.

Analysing the experiment described, one has to be aware of its approximate
nature. Comparing either very similar or extremely different texts or measuring

56 The Evaluation of Text String Matching Algorithms . . .

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Overlap Dice Cosine Jaccard Jaro Levenshtein N-gram Euclidean

Usefulness

Words similarity measures

Figure 5: Usefulness of word comparison measures in terms of efficiency and effi-
cacy.

the running time of the algorithm for equal-length sequences is a deliberate op-
eration that aims at showing certain tendencies and does not focus on singular
cases. In reality, however, the structure of texts is characterized by different length
and different number of constituent elements, which has a direct influence on the
computing time3. The semantic model of presented in this paper did not take into
account the phenomena occurring in natural languages, which could substantially
influence the final result. It ignored the existence of synonyms which, despite iden-
tical semantic meaning, would not be considered as similar, and homonyms, which
are similar only at the syntactic level.

It is evident from the data that there are some dependencies between the time
complexity and accuracy of the examined measures. It can be concluded that the
running time of an algorithm is inversely proportional to the lengths of compared
sequences and the storage space they occupy.

time ∼
1

number of token

3This conclusion was drawn after analysing the influence of words’ length on the algorithm’s
running time.

J. Ochelska-Mierzejewska 57

time ∼
1

storage space occupied
Every measurement of word similarity is conducted using word-based tokens.

Thus, the time required to perform the comparison is determined by the number of
tokens. The length of subsequences created is the factor that directly influences the
accuracy of word matching, and consequently, the efficacy of the measurement4.
The number of tokens determines also the memory space required to store them.
Thus, the dependency between the time and quality of measurement and the size
of storage space becomes obvious5.

Despite its demonstrative character, the present research can be considered as
an important and formally correct frame of reference for more detailed studies on
the possible applications of text comparison algorithm and related word similarity
measures.

6. Image Search System

Search engines are an integral part of many systems. Without an efficient se-
lection of the data stored, many applications would not be able to provide its users
with a basic functionality. The same applies to the system proposed in the present
paper, designed to collect and share images. It is aimed to involve an efficient im-
age search engine that will employ algorithms described in Section 3.

The most important element of the system proposed in this paper is the ad-
vanced image search engine. It allows the user to define search parameters which
are divided into three groups, each controlling other aspects of the search process.

• The first group allows the user to define the ranges of meaning of the terms:
low, medium and high, relating to the classification of the images found. The
values, which must be included in the interval [0,1], are defined by formulas
(26) and (27).

• The second group allows the user to select the algorithms for image search.
There are eight methods to choose from, described in detail in Section 3.3.

• The third group allows the user to specify the way in which the algorithm
will compare texts. In the case of symmetric variants, the running time will

4It was assumed that an optimal length was contained in the range
[
2, length of the shorter word

]
.

5The storage aspect was not included in the present discussion, since it does not matter much for
the system presented.

58 The Evaluation of Text String Matching Algorithms . . .

be twice longer. The best- and worst-case response times are discussed in
Section 3.1.

The results of the search depend on the ranges of meaning defined by the user
and the number of algorithms employed. If we define three disjoint sets of mean-
ing, namely low, medium and high, then each of the images will be unambiguously
assigned to only one of those sets. However, defining partially joint sets will allow
the image to be classified as belonging to each of those sets with a varying mem-
bership degree. This will result in the double occurrence of this image on the list
of results. As each of the algorithms performs an independent search, the result of
the search is the sum of all images found.

6.1. Time Complexity and Accuracy of the Image Search

Verification of the effectiveness of the image search confirmed the results of
tests of the text comparison algorithm. A search involving a series of 30 images,
described according to their contents, resulted in finding images that matched the
specified query. The images with descriptions that were clearly closer to the re-
quested phrase were characterized by a higher degree of membership to a given
set, which means a better accuracy of matching as compared to others. Search
accuracy depended on the type of algorithm employed and confirmed the results
shown in Figure 4. It was also crucial to provide every image with an accurate,
intuitively motivated description. Too short a description lowered significantly the
chance to find an image, while an exceedingly elaborate description resulted in a
lower similarity value and increased the number of false positives.

Table 4 shows the results (expressed as x / y / z, where x – the number images
searched by the system, y - the number of correct results, z - the number of medium
or high results returned) of four search sessions using all the algorithms described.
In each test, a different query was used and only the results from the MEDIUM
and HIGH groups were taken into account6.

The running time of the search engine has remained close to the value pre-
sented in the previous section. The differences result directly from the length of
the descriptions and length of the query. In most cases, the relative hierarchy re-
mained unchanged, as shown in Table 4. The running times of all algorithms for
seven arbitrarily selected images are summarized in Table 5 (the time is given in
milliseconds).

6Ranges of results: L = [0, 0.25], M = [0.125, 0.875], H = [0, 75; 1].

J. Ochelska-Mierzejewska 59

Table 4: The search effectiveness results

Measure Series 1 Series 2 Series 3 Series 4
Overlap 4/4/4 3/3/3 3/3/3 3/2/3
Cosine 4/4/4 3/2/2 3/2/2 3/1/2
Dice 4/3/3 3/2/2 3/2/2 3/0/1
N-gram 4/3/3 3/2/2 3/2/2 3/0/0
Jaccard 4/3/3 3/1/1 3/2/2 3/0/0
Levenshtein 4/4/7 3/3/17 3/3/10 3/3/9
Jaro 4/4/30 3/3/30 3/3/24 3/3/27
Euclidean 4/4/30 3/3/30 3/3/30 3/3/30

Table 5: The results of search response time measurement

Measure Photo 1 Photo 2 Photo 3 Photo 4
Overlap 0.745 1.867 2.023 2.79
Dice 0.859 2.143 2.044 2.931
Jaccard 0.943 2.238 1.529 3.15
Cosine 0.954 4.908 2.214 3.132
Jaro 1.771 3.665 3.029 4.614
Levenshtein 2.444 5.155 3.759 6.877
N-gram 3.058 5.417 4.253 8.568
Euclidean 3.423 7.221 6.709 12.379

60 The Evaluation of Text String Matching Algorithms . . .

Image search in a data set counting several hundred of elements is not a time-
consuming process. The time complexity increases noticeably only for data sets
of the size characterizing the actual production environment. The results presented
in Table 2 reveal the impractical nature of the presented system. The algorithms
whose implementation has been optimized for efficiency, have difficulty in dealing
with data processing with a speed required by a full-text search. The web applica-
tion proposed in this paper in its present form is only an example of a system using
a novel search engine and does not aspire to be a professional system. It certainly
requires some modifications that would reduce the search response time, which in
turn would allow the system to be used in a production environment.

7. Summary

Searching for information in the ever-increasing tangle of information is get-
ting increasingly difficult. Systems dedicated to the search for textual information
cannot be successfully applied to image search. The new-generation search tech-
nologies, such as Clever, Google, or Direct Hit, although ideally suited for multi-
word search queries, do not yield equally good results for queries consisting of a
few sentences.

The aim of this paper was to develop methods for multimedia objects search,
which would provide good efficiency for full-text queries through the use of text
analysis algorithms using rudimentary artificial intelligence techniques, such as
fuzzy sets and relations. The image search engine proposed in this paper showed a
high number of correct hits both for multi-word queries, as well as those consisting
of a few sentences. Not all of the applied algorithms coped with this task equally
well. A hierarchy of measures was developed on the basis of such parameters as
time complexity and accuracy. The shortest search response times were obtained
with the Overlap, Dice, Jaccard, Cosine and Jaro similarity measures. The most
accurate results were achieved by the Overlap, Cosine, Dice, N-grams and Jaccard
methods. The lowest scores in both categories were obtained by the Euclidean
distance. A long search response time and overestimated similarity values exclude
the application of this measure in effective search mechanisms.

The proposed solution is subject to some limitations. The approximately esti-
mated running times of the algorithms indicate that they do not fulfil the response
time requirements of large data sets found in the production environment. In the
case of complex resources consisting of thousands of images, the search response

J. Ochelska-Mierzejewska 61

time becomes unacceptably long for professional applications.
The use of Polish as the language of experiments was a natural factor affecting

the performance of the algorithms. The varied inflection and thematic alternation,
typical of the Polish language, affected word similarity measurements, resulting in
a mismatch of semantically identical texts. This limitation will be easier to over-
come in the case of languages with simpler grammatical rules (e.g. English) [4].

There are several ways to expand the proposed search engine in order to in-
crease its efficiency. The simplest and most commonly used method is the ini-
tial elimination of resources that do not match the query, performed by their the-
matic categorization. Another solution is to build a mechanism for the translation
of descriptions and queries to a unified form, using a common set of words. The
translation process would be based on a thesaurus. The third possibility, partly im-
plemented here, is to exclude words which are semantically meaningless, such as
conjunctions, prepositions, and pronouns. The elimination of such words would
significantly improve the accuracy and reduce the running time of the algorithms.

References

[1] Ng, C. W., Inexact Pattern Matching Algorithms via Automata
http://cmgm.stanford.edu/biochem218/Projects.html, Tech. rep., Stanford,
2008.

[2] Zadeh, L., Fuzzy Sets, Information and Control, Vol. 8, 1965, pp. 338–353.

[3] Zadeh, L., The concept of a linguistic variable and its application to approxi-
mate reasoning (I), Information Science, Vol. 8, 1975, pp. 199–249.

[4] Ochelska, J., Szczepaniak, P., and Niewiadomski, A., Automatic Summariza-
tion of Standarized Textual Databases Interpreted in Terms of Intuitionistic
Fuzzy Sets, In: Soft Computing: Tools, Techniques and Application, edited by
P. Grzegorzewski, M. Krawczak, and S. Zadrozny, The Academic Press EXIT,
2004, pp. 204–216.

[5] Niewiadomski, A., Intuicjonistyczne zbiory rozmyte w komputerowym określa-
niu podobieństwa dokumentów tekstowych, Ph.D. thesis, Instytut Badań Sys-
temowych PAN, 2001.

62 The Evaluation of Text String Matching Algorithms . . .

[6] Winkler, W. and Thibaudeau, Y., An Application of the Fellegi-
Sunter Model of Record Linkage to the 1990 U.S. Decennial Census,
http://www.census.gov/srd/papers/pdf/rr91-9.pdf, 2004.

[7] Porter, E. and Winkler, W., Approximate String Comparison and its Ef-
fect on an Advanced Record Linkage System, http://www.fcsm.gov/working-
papers/porter-winkler.pdf, 2003.

[8] Cohen, W., Ravikumar, P., and Fienberg, S., A Comparison of String Metrics
for Matching Names and Records, http://www.cs.cmu.edu/ wcohen/postscript/
kdd-2003-match-ws.pdf, 2002.

[9] Navarro, G., A Guided Tour to Approximate String Matching, ACM Comput-
ing Surveys, Vol. 33, No. 1, 2001.

