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Abstract. In this paper we present the enhancement of the standard two-view
reconstruction procedure. An ordinary approach assumes determination of
points’ correspondences followed by projection matrix estimation, to finally
refine results with bundle adjustment taking as a cost function reprojection
error. Our contribution is realized in two manners: introducing an additional
step of outliers rejection, changing cost function of bundle adjustment pro-
cess to Relative Reprojection Error (εR) and applying central difference as
a method for Jacobian matrix approximation. Tests revealed gain in average
εR with lower variance, for confidence level of 0.95. Besides accuracy im-
provement, the suggested modifications supply the final result in the time vir-
tually independent on initial object’s complexity and, in most cases, shorter
than the standard approach.
Keywords: 3D reconstruction, epipolar geometry, photogrammetry, model
refinement.

1. Introduction

Direct analysis of data present in an image is valuable for many purposes,
however, it does not regard spatial relationships, barely depicted with a projec-
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tion. In many problems, especially within robotics domain, possession of a three-
dimensional model, even reasonably simplified, might be advantageous and could
make further processing more accurate or reliable. But here an other problem
arises, namely knowing the computer model of a scene is difficult or, very of-
ten, impossible in advance. Thus the procedure of Structure from Motion (SfM)
came into being. It may be thought of as a process of building a 3D model of a
scene by reasoning from a range of available clues, for instance: parallax effect or
shadows distribution. Current taxonomy of this domain introduced two groups of
reconstruction methods, divided with respect to the role illumination plays in the
reconstruction process [1]. These groups are constituted by active and passive tech-
niques. The active ones apply lightning patterns to generate actively depth clues.
Structured Light [2, 3] methods or, its more accurate version, Laser Line Scan
[4, 5] are cases in point. On the other hand we have passive techniques making use
of information captured with an ordinary camera. This usually uses projections
from different viewpoints.

Undoubtedly, active methods solve many problems of simple multiple-view re-
construction: correspondence issue, complex texture influence or poorer accuracy
[6] just to name a few, however, they require either virtually laboratory acquisi-
tion conditions or expensive tools designed for far remote sensing. That is why
structured light and its derivatives have to be rejected in some cases.

Contrary to active methods, multiple-view reconstruction, based on photogram-
metry, makes use just of images correspondence captured with an ordinary camera.

2. Related works

Multiple-view reconstruction follows usually a standard sequence of proce-
dures aiming in creation some sort of model. The algorithm is depicted in the
Figure 1 [1].

Having two frames F1 and F2 provided (stage a), SURF features (our key-
points) are extracted and aggregated into two vectors x =< x1, x2, x3, ..., xn >

and x′ =< x′1, x
′
2, x
′
3, ..., x

′
m > (stage b), where n and m are number of features

in frame F1 and F2 respectively. The correspondences between respective features
< x1, x2, x3, ..., xn > and < x′1, x

′
2, x
′
3, ..., x

′
m > may be then found (stage c). Usually

for this process RANSAC method is employed so as to boost accuracy of match-
ing [7]. Having collected information about respective features’ locations in both
frames, and bearing in mind intrinsic camera parameters K (Eq. 1) responsible
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Figure 1: Basic flow of scene reconstruction procedures Source: Own work

for transforming camera coordinates into image coordinates, one can approximate
the essential matrix E (Eq. 2). The essential matrix is generally defined as 3 [7].
The illustration of the idea of two-view reconstruction is presented in the Figure 2,
where capital Y1 is a 3D point, x1 and x′1 are projections of the point Y1 onto views
F1 and F2 respectively, O1 and O2 are cameras’ centers.

K =

 fx s cx

0 fy cy

0 0 1

 (1)

E =

e1 e2 e3
e4 e5 e6
e7 e8 e9

 (2)

xi
T Ex′i = 0 for correspondences xi ↔ x′i (3)

On the grounds of estimated matrix E one ought to solve projection ambiguity
(choosing the solution out of four possibilities), taking into consideration that the
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Figure 2: Idea of two-view reconstruction. Source: Own work

only real projection matrix P (Eq. 4) describes 3D points being in front of both
cameras (stage d).

P = [R | t] =

r1 r2 r3 tx

r4 r5 r6 ty
r7 r8 r9 tz

 (4)

where P is denoted as concatenation of a rotation matrix R and a translation vector
t. Formula is valid for correspondences in image coordinates.

Now, let us describe the process of decomposition an essential matrix E into
four different variants of the projection matrix of the second camera P2, assuming
that projection matrix of the first camera is P1 = [I | 0]. Following this, one need to
decompose an essential matrix E into multiplication of a skew-symmetric matrix
S and a rotation matrix R. Supposing SVD (Singular Value Decomposition) of a
matrix E is of the form E = Udiag(1, 1, 0)VT and taking as a goal decomposition,
such that E = RS , we may found two results (Eq. 5, 6).
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E = R1S 1 = (U

 0 1 0
−1 0 0
0 0 1

 VT )

︸                  ︷︷                  ︸
R1

(V

0 −1 0
1 0 0
0 0 0

 VT )

︸                  ︷︷                  ︸
S 1

(5)

E = R2S 2 = (U

 0 1 0
−1 0 0
0 0 1


T

VT )

︸                    ︷︷                    ︸
R2

(V

0 −1 0
1 0 0
0 0 0

 VT )

︸                  ︷︷                  ︸
S 2

(6)

Orthogonality and value of determinant equal to 1 can be easily proved for a ro-
tation matrix. Now, a vector t needs to be extracted from S such that S = [t]×.
Following this, we may derived that t lies in the null space of E (Eq. 7)

Et = RS t = R[t]×t = 0 (7)

From this we may obtain translation vector t as a last column of the matrix U (see
SVD of matrix E). Because t is in the null space of E so are all vectors of the form
λt (for any scalar λ ∈ R), what states for different scales of the vector t. Since, the
scale cannot be uniquely determined, we need to consider solely a sign. That is
reason why we may formulate four different solutions of projection matrix P2 (Eq.
8-11).

P2 = [R1 | t] (8)

P2 = [R1 | − t] (9)

P2 = [R2 | t] (10)

P2 = [R2 | − t] (11)

Knowing locations of points’ projections (xi,x′i) and having relative move be-
tween cameras (encoded in projection matrix), 3D points’ counterparts {y1, y2, ...,

yl} ∈ Y could be triangulated (stage e). Certainly, the estimated solution may leave
something to be desired. This is wreaked by noise presence (during taking images
or key-points detection), error of numerical calculations and features mismatching.
To overcome it somehow, non-linear optimization process, called bundle adjust-
ment, is often introduced. It usually makes use of either Levenberg- Marquardt or
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Powell’s Dog Leg optimization algorithms, taking as a cost function value of the
reprojection error (Eq. 12) [7].

ε =
∑

i

d(xi, x̄i)2 + d(x′i , x̄i
′)2 (12)

where x̄i = P1xi, x̄i
′ = P2x′i and d(·) is a Euclidean distance.

The outcome is refined projection matrix and 3D points locations (stage f).
This usual approach was mentioned in [8, 9].

Scene reconstruction leaves many aspects of potential enhancement, and so,
Chao Zhang et al. introduced a modified feature descriptor (based on Local Binary
Patterns) for acceleration and accuracy improvement of stereo matching [10]. On
the other hand, Marek Kowalski and Władysław Skarbek made use 4D subspace
tracking procedure so that noise during key-points detection could be reduced [11].
Other authors focused on providing more dense (with more points) reconstruction
with depth camera [12] or prior sparse representation [13, 14]. In the method pre-
sented in this paper, we focused on providing more accurate reconstruction within
shorter processing time. In our method, an additional step, called outliers rejec-
tion (stage e’), was introduced into algorithm flow (see Fig. 3). Many authors focus
on outliers rejection only as a result of 2D RANSAC procedure for features match-
ing while still many poorly fitted points may be left within inliers set. Besides that,
the new cost function, defined as relative reprojection error (εR), was set in the
non-linear optimization procedure for bundle adjustment. Also, for needs of bundle
adjustment process, Jacobian matrix was estimated using, more accurate, central
difference.

Figure 3: Proposed extension of the scene reconstruction procedures. Source: Own
work

3. Method

Standard reprojection error (Fig. 4) is a distance between feature originally
detected in an image (x j), and its triangulated 3D counterpart (Y j) projected (x̄ j)
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onto the image plane with estimated projection matrix (P2) of the camera with the
center at the point O (Fig. 4). Due to noise and error cumulation, the points x j

and x̄ j rarely overlap. Leaving it as it is may result in reasonably disturbed 3D
model structure. However, absolute value of the error may decide about model
uselessness to be not necessarily right, since it ought to be referred to some scale.

Figure 4: Visualization of the reprojection error. Source: Own work

Relative reprojection error εR (Eq. 13) is a new measure of reconstruction qual-
ity with respect to reconstructed model projection. It is a relative quantity which
associates value of reprojection error with height and width of frames being pro-
cessed.

εR =

n∑
j=1

d(
dx

m(x j, x̄ j)
W

· 100%,
dy

m(x j, x̄ j)
H

· 100%) subject to x̄ j = P2x j (13)

where d(·) is a Euclidean distance is a Euclidean distance; W is an image width;
H is an image height; dx

m(·) is a Manhattan distance along horizontal axis; dy
m(·)

means a Manhattan distance along vertical axis; x j is a 2D feature; x̄ j is a 2D point
created as a projection of a 3D counterpart (Y j) by the projection matrix P2; n is a
number of all points correspondences

Below in the chapter 3, successive stages of the reconstruction algorithm are
presented together with the additional step introduced in this paper.
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3.1. Feature extraction

Both frames being processed need to be described by features which can be
detected quick and which may be matched precisely afterwards. King and Panchal
suggests SIFT, ORB or SURF features to be suitable for this purpose[15], nev-
ertheless SIFT features are significantly slower than the others. Concerning time
comparison between ORB and SURF the authors were not able to present author-
itative results because of some unknown errors. Due to the fact that only SURF
features gained a point for detection speed, and there is no strong emphasis on
the huge number of features, we used this kind of descriptor in the reconstruction
process (for comparison tables, see [15]). The SURF features detected on a single
image of the monkey, may be seen in the Figure 5.

Figure 5: SURF features detected onto the subject. Source: Own work

3.2. Correspondence searching

Searching for matches among 2D features is the widely elaborated topic in the
literature of the subject. The benchmark method for SURF features, presented in
[16], uses features vectors of the length of 64 bytes so as to speed up matching and
keeping enough distinctiveness, and robustness. Even though, simple descriptors
matching might result in many mis-correspondences (see Fig. 6).
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Figure 6: SURF features matched in the two frames. Source: Own work

To prevent influence of mismatches onto the final result, the method of random
sample consensus (RANSAC) was employed. Though it consumes additional time
(see section 4), it improves much final result by rejection of matches which do
not fit the model (are too far in the other image after transformation) (see Fig. 7).
We may notice that all matches represent, approximately, the same transformation
unlike in the Figure 6.

Figure 7: SURF features matched with RANSAC method. Source: Own work

3.3. Camera projection matrix estimation

Camera projection matrix were approximated based on inliers found with RANSAC
method. The core of calculation is finding the solution of the 8-point algorithm,
formulated as in the Equation 14
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Ae =


x1,xx′1,x x1,xx′1,y x1,x x1,yx′1,x x1,yx′1,y x1,y x′1,x x′1,y 1

...
...

...
...

...
...

...
...

...

x j,xx′j,x x j,xx′j,y x j,x x j,yx′j,x x j,yx′j,y x j,y x′j,x x′j,y 1





e1
e4
e7
e2
e5
e8
e3
e6
e9


= 0

(14)
where A is a composition of points coordinates in the reference and the control
frame, and e is a column-wise flatten vector of an essential matrix entries (Eq. 2).

Unfortunately, due to noise, the matrix A, of Singular Value Decomposition of
the form A = UDVT, does not have rank 8 and the exact solution is not defined.
But one may find the exact solution of Âe = 0 which minimizes the Frobenius
norm to Ae = 0 [7]. Then, using singular value decomposition, we may find Â as
Â = UD̂VT where D̂ is D (matrix with singular values on diagonal) with the last
(smallest) singular value set to zero.

Afterwards, by solving camera ambiguity problem (i.e. choosing one out of
four projection matrix for which all (or most) points lie in front of both cameras,
see subsection 2) we obtain camera projection matrix P2 as transformation includ-
ing information about the rotation and translation of cameras coordinate systems.

3.4. Triangulation

Thanks to triangulation, 3D points’ counterparts (Y j) may be found by seeking
for the point in between two back-projected rays going through the camera origins
and locations of the feature in both frames (see Fig 8).

3.5. Outliers rejection

Even the very first step of reconstruction pipeline may produce errors which
are propagated and accumulated in successive stages, making significant impact
onto the final result. Mis-localized keypoints or mis-matched correspondences are
only cases in point. In order to diminish their influence, a process of initial re-
finement has been introduced in this paper. Contrary to bundle adjustment, which
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Figure 8: Visualization of triangulation process. Source: Own work

usually improves extrinsic camera parameters (or 3D locations) explicitly [17, 18],
initial refinement works indirectly operating on the features.

The sense of outliers rejection is to reject outlying key-points, thus features
whose εT takes the highest and the lowest values. Statistically, the trimmed mean
enables describing well an overall data tendency [19]. If contribution of extreme
measurements is high, arithmetical average may be, at least, misleading.

Obviously, the width of the rejection border ought to be adjusted bearing in
mind the trade-off between structure completeness and structure accuracy. In our
research, structure completeness is measured as the total surface of a mesh con-
structed with Delaunay triangulation. Hence, we are looking for the optimum re-
jection border such that error decrease is low and total surface is preserved high.

3.6. Bundle adjustment

The fundamental process of bundle adjustment procedure is Jacobian matrix
calculation in the discrete domain. We have applied central difference (Eq. 15) for
derivatives estimation, since it provides better accuracy in comparable time than
backward or forward distance.

f ′(x) =
f (x + h) − f (x − h)

2h
(15)

For optimization process we tested two algorithms: Levenberg- Marquardt and
Powel’s DogLeg. The latter works faster and provides similar results, thus we de-
cided to apply that one. Into the core optimization algorithm, Powel’s DogLeg
suggested in [20], we have introduced a modification in the form of Jacobian ma-
trix approximation by central difference calculation; and applying value of εR as a
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Table 1: Intrinsic parameters used for tests

Parameter name Value
focal length ( fx) 1050
focal length ( fy) 1050
principal point (cx, cy) (480.0, 270.0)
skew 0.0

cost function (Eq. 13).

4. Tests and Results

In the testing process we have evaluated reconstruction of four distinguished
objects of different complexity (see Fig. 9): the polyhedron (42 vertices), the mon-
key (507 vertices), the dragon (22,126 vertices) and the car (31,020 vertices). We
opted synthetic models so as to avoid problem and inaccuracies involved with
camera parameters and calibration. Having chosen projections of ready model,
we posses accurate intrinsic camera parameters (Tab. 1) built into the application.

Figure 9: Subjects being evaluated during the testing stage. Source: Own work
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Prior to evaluation of proposed modifications, the proper value rejection bor-
der need to be selected. The Figure 10 presents dependency between fall of εR in %
and rejection border width in %, and between value of the total mesh surface and
rejection border. We may notice that dependency has logarithmic character, thus

Figure 10: Value of εR decrease and value of the total surface with respect to re-
jected points part

value of actual accuracy gain is lower and lower. Although, the width of rejection
border is customizable parameter fitting to the problem, Wilcox recommends gen-
eral value of 20% [21]. In the Figure 10 we may notice that desired width of the
rejection border is between 20% and 25%. These values assure high εR decrease
preserving still much information about the structure (expressed by the sum of sur-
faces of triangles of the object’s mesh). In our considerations we have taken the
width of 20% for our tests.

The charts below (Fig. 11) depict values of εR for standard reconstruction pi-
pline and for reconstruction flow with the proposed modifications. Values are rep-
resented with respect to the initial object’s complexity expressed by a number of
its vertices.

As it may be noticed, values of εR for the suggested changes are lower and have
shorter lower and upper bounds for confidential level of ρ = 0.95, than for the usual
approach. It should be observed that error decrease, supplied by the introduced
modifications, is gained regardless of a model’s complexity.
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Figure 11: Value of average εR for standard (red) and proposed (blue) method with
confidential level ρ = 0.95

The successive chart (Fig. 12), in turn, shows maximal values of the relative
reprojection error for standard and proposed method. Undoubtedly, value of max-
imum error (associated with the worst reconstructed point) is significantly lower
by applying our improvements. Moreover, value of maximal error for conventional
approach increases steadily, whereas for our method it fluctuates and tends to de-
crease.

Reprojection statistics are crucial, but particular attention ought to be paid also
to execution time. It is presented in the Figure 13 as a juxtaposition of time for
the reference and the suggested method. The proposed method tends to keep con-
stant reconstruction time regardless of initial subject’s complexity, whereas for the
standard approach, time values vary significantly.

5. Conclusions

In this paper modifications of the benchmark two-view reconstruction process
was presented, namely, extension of the procedure by additional step of extrema
rejection and application of the Relative Reprojection Error (εR)as a cost function
for bundle adjustment DogLeg algorithm, instead of ordinary reprojection error.
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Figure 12: Value of maximal εR

Figure 13: Execution time for standard and proposed method
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Both changes influenced results of test, providing better reprojection statistics in
shorter processing time. Further research in this topic should be led towards update
the suggested method to the incremental reconstruction pipline and time reduction
for real-time application.
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