
JOURNAL OF APPLIED
COMPUTER SCIENCE
Vol. 26 No. 2 (2018), pp. 107-116

The Use of Heuristic Algorithms: A Case Study
of a Card Game

Krzysztof Lichy1, Marcin Mazur1, Jan Stolarek1, Piotr Lipiński1

1Institute of Information Technology
Lodz University of Technology

Lodz, Poland
krzysztof.lichy@p.lodz.pl

Abstract. In this paper we introduce the results of an experiment consisting
in the creation of artificial intelligence using the heuristic algorithm Monte-
Carlo Tree Search and evaluation of its effectiveness in the card game Thou-
sand.
Keywords: Artificial Intelligence, Monte-Carlo Tree Search, heuristics al-
gorithms.

1. Introduction

There are many methods of programming artificial intelligence in games, de-
pending on the nature of the game and the requirements to be met by artificial
intelligence. In board games and card games, artificial intelligence tends to be
based on building a tree of potential game states. Board games, in most cases, are
games with excellent information, i.e. they hide no information from the player.
In card games, meanwhile, opponents’ cards are unknown and one can only try
and guess how the deck is distributed, which makes these games an example of
games with imperfect information. Building trees of potential game states is quite
problematic from the point of view of programming. It is necessary to account



108 The Use of Heuristic Algorithms: A Case Study of a Card Game. . .

for all game-play possibilities, which may require a large amount of memory and
processing power due to the large size of the tree. For games with imperfect in-
formation, the size of the tree is additionally increased by various configuration
possibilities of hidden information. Monte-Carlo Tree Search (MCTS), a heuristic
search algorithm, enables the effective searching of large game trees. Supported
by UCT (Upper Confidence Bound applied to Trees), it searches the game tree
asynchronously, focusing on the more promising part. It performs simulation of
the game on each of the created nodes, based on which the node values are deter-
mined. It is characteristic in that it can be interrupted at any time by returning the
value close to the optimal one. Expanded by heuristics to support optimization, its
duration can be further reduced and its efficiency increased.

2. Theoretical background

Artificial intelligence, as we know it today, dates back to the 1940s. It was then
when a model of an artificial neuron, resulting from the combination of knowledge
in the field of neurobiology and Turing’s theory of computation, was proposed for
the first time. However, artificial intelligence as such would not be born until the
1950s when Logist Theorist was created, making it the first program capable of
mimicking the problem-solving skills of a human being. It proved this by solving
most of the theories described in Whitehead and Russell’s Principia Mathemat-
ica. Logist Theorist was the first to use, or even define, heuristics in computer
programming. Newell and Simon, the creators of the program, realized that the
search tree would grow exponentially. Therefore, they needed to introduce some-
thing that would allow for limiting the number of branches of the tree. The solution
turned out to be the introduction of heuristics that rejected paths most likely not
leading towards a solution. In 1957, General Problem Solver (GPS) was designed
specifically to mimic human problem-solving skills. It quickly turned out that the
program solved puzzles (ones that it supported) in a similar way to a human being.
The creation of both Logic Theorist and GPS contributed to the widespread use
of search algorithms by artificial intelligence programmers in the 1960s. In 1959,
breadth-first search (BFS) was developed by Moore with the purpose of finding
the shortest path out of a maze. This algorithm is the first representative of brute-
force, or uninformed, search algorithms. The use of heuristic search can be traced
back to 1958, and more specifically to the early works of Newell and Simon. How-
ever, it was not properly defined or used in heuristic functions until the late 1960s.



A. One, A. Two 109

In 1987, Bruce Abramson, as part of his doctoral thesis, studies the Monte Carlo
method developed in 1940, based on random sampling. In his research, Abram-
son used, among others, methods that were previously used in heuristic search by
Newell and Simon, thus greatly improving the performance of search algorithms
such as breadth-first and depth-first [1]. In 1992, Brugmann proposed using the
concepts of exploration and exploitation based on the function of UCB (Upper
Confidence Bound) in the structuring of sampled trees (Monte Carlo). This, in
turn, gave rise to the UCT (Upper Confidence Bound for Trees) function. Based
on these concepts, Remi Coulom described the use of the Monte Carlo method for
game trees and coined the term Monte Carlo Tree Search [2, 3, 4].

3. Heuristic algorithms

Heuristic algorithms sacrifice finding the best solution for faster and more ef-
fective problem-solving. These algorithms usually return a solution close to the
optimal one in a quick and simple way. They can be used either to find solutions
individually or serve as support functions for algorithm optimization.

4. Search algorithms

A characteristic feature of search algorithms is their ability to solve a formu-
lated problem simply by searching for a solution among the possible options. The
solution in this case is defined as a sequence of certain actions leading to the ex-
pected outcome. Searching for a solution starts from the initial state by forming a
search tree, with the root being the initial state. Then, the tree is expanded by sub-
sequent nodes created as a result of applying a certain action to the parent node.
Once created the child nodes, one needs to be selected to be checked first, leav-
ing the others that are to be checked for later, which is basically the essence of
searching the tree. There are many approaches to choosing a node that is to be
checked first, with sequential tree searches being the historically first and most
simple among them. They consist in checking the entire tree node by node. In this
approach, two sub-approaches can be distinguished: breadth-first and depth-first.
Breadth-first search checks the shallowest nodes first and increases tree depth only
once all nodes at a given level have been checked. Depth-first search proceeds the
other way round, i.e. it creates a sequence of decisions from the root up to the leaf,
then moves up the tree looking for a node not yet checked at each level, and once



110 The Use of Heuristic Algorithms: A Case Study of a Card Game. . .

it has found it, it brings the sequence up to the leaf again. Clearly, these algorithms
are not very effective when searching large trees. They take a lot of time and mem-
ory, depending on where the solution is found in the tree. However, the tree search
process can be improved by using appropriate heuristics, one of the most popular
being the A* (A-star) algorithm. It searches the best traversal sequence based on
the cost of reaching the goal and reaching individual nodes. The different variants
and optimizations of this algorithm find particular application in pathfinding. Un-
fortunately, it cannot be directly applied to card games because it is impossible to
determine or estimate the costs that guide it [5]. Other popular search algorithms
are the brilliantly simple Minimax, traditionally used in board games, and Monte
Carlo Tree Search [6].

5. Infrastructure for search algorithms

Search algorithms require a certain data structure to enable them to create a
tree and track its development. For each node in the tree, there is a structure made
up of 4 components:

• State: record of the game state to which a node refers.

• Parent: reference to a node from which a given node was generated. If a
given node is also a root, this field is null.

• Children: a list of child nodes of a given node. If a given node is a leaf, this
field is null.

• Action: an action that will give a node if called upon the parent object. In
the case of a card game, it is playing a card.

Considering these components, it becomes clear how nodes are linked to trees
and how easy it is to navigate through them thanks to references [5, 7].

6. Problem formulation

Search algorithms require the right formulation of a problem in order to solve
it. For the program to interpret a solution, it must first know what outcome it should
expect at the end of the game. Take chess, where one of three states can be ex-
pected at the conclusion of the game: win, loss, or tie. The algorithm must know



A. One, A. Two 111

how to recognize these states so as to react accordingly. In Thousand, such states
(excluding tie) can be defined only when a given player robi grę. In the case of a
normal game, the only piece of data that allows to determine the value of the node
for the final state is the point value of the node [8, 9]. However, interpretation of
outcomes is not everything. The algorithm must know how to reach these states in
the first place. Depending on the type of game, one needs to properly model the
game so that it can be completed and carried out in line with the corresponding
rules [10, 11].

7. Thousand game

Thousand is a card game played in Central and Eastern Europe, especially
popular in Poland. The game derives from the traditional game of Mariage (Polish
“mariasz”), popular in the early 18th century. 2-4 players can play this game and
the condition for winning is that the player earns one thousand points. A deck of 24
cards, from 9s to aces, is used in the game. The characteristic feature of this game
is “marriages”, where each pair of King and Queen of the same suit gives bonus
points and gives a trump to the given suit. The detailed description of Thousand
goes beyond the scope of this work and can be found in Internet

8. Experiment

Actions of the MCTS algorithm designed to play Thousand will be presented
below. Following the confrontation of MCTS with a greedy and a random algo-
rithm, other factors are determined which affect the improvement of the algorithm,
in particular the system of awarding the node as well as the exploratory factor. The
greedy heuristic algorithm is also compared, and so is the random algorithm in
simulating the opponent’s moves.

9. Assumptions

The game scenario refers to the setting of the type of players who will partici-
pate in the game (MCTS/Greedy/Random). For the MCTS player, this means set-
ting parameters such as the number of simulations, the type of heuristic algorithm
used in the simulation, the node value calculation system, and the exploratory fac-
tor. Due to the multitude of possible settings for various parameters, the number of



112 The Use of Heuristic Algorithms: A Case Study of a Card Game. . .

Figure 1: Random Player is a player who does anything randomly, except declare
the value of points to be won. This player never raises bets, because then he would
only collect negative points.

Table 1: Win ratio for greedy player against random players

greedy random 1 random 2
winsy 99.9% 0.0% 0.1%

simulations was set to a fixed value of 150 iterations, experimentally selected dur-
ing the creation of the program. That number of simulations is considered the sweet
spot between the optimality of card selection and the decent simulation length.

10. Greedy algorithm

First, we will show how the algorithm works in comparison to Random Player.
In this scenario, Greedy Player plays against two Random Players.

Greedy Player wins almost 100% of the time, on average in 24 rounds. To com-
pare, the average game time for MCTS Player against Random Players is 20.53
rounds. The exploratory factor is determined experimentally. However, it is often



A. One, A. Two 113

Figure 2: Ratio of wins to exploratory factor in different reward systems.

encountered in the default value 1. This is because in many games one can apply a
reward system that assigns values to nodes that do not exceed the range [-1; 1]. In
Thousand, two out of three games that are wins depend directly on the number of
points scored, where the range can be [0; 360] points. When a player make game,
that range can include values from [-360; 360], although one can then success-
fully make the reward system binary. The player will either accumulate a required
number of points or not. This is why determining the right exploratory factor is
important in Thousand. To determine the exploratory factor, game simulations are
performed for several selected exploratory factors for each of the reward tactics.
In these scenarios, MCTS Player plays against two Greedy Players

As seen in Fig. [2], the player who bases the rewarding system on points fared
better than the other players. This is because the point-based reward system is
more universal than the other systems. Even if make game, we still strive to win as
many points as possible. In addition, the remaining systems are binary and point-
based reward hybrids, because the player of the win-loss system will not always
make game. In the other cases, the player must use a point-based system. The



114 The Use of Heuristic Algorithms: A Case Study of a Card Game. . .

Table 2: Percentage of wins by mcts players with different algorithms used for
simulation

MCTS greedy MCTS random
winsy 64.0% 51.0%

point-based system also influences the order of magnitude of the exploratory fac-
tor. Better results pertain to values that are expressed in tens. Considering that
the value of the node is given in points scored for each simulated game, the ex-
ploratory factor would result in exploring only the promising node and omitting
the other potentially good nodes. The Monte-Carlo Tree Search algorithm must
mimic the opponent’s moves during simulation. The program allows two ways
to approach this problem. The first is to randomly select a card from the pool of
available opponent cards selected by the rules of the game. The second is to use
a greedy algorithm, in which the player always chooses a card that gives him the
biggest profit or the smallest loss. In Thousand, these are probably the only op-
tions. Table [2] shows the percentage of wins in 100 games played by the MCTS
algorithm with greedy heuristics and a random algorithm. In both cases, oppo-
nents to artificial intelligence were two players using a greedy algorithm to make
decisions.

As seen from the results presented above, the player using a greedy algorithm
for simulation won more games than MCTS using a random algorithm. However,
even with the use of random algorithm, MCTS was able to win the majority of
games against players using the greedy algorithm. This shows how big of an ad-
vantage predicting game states is in the game.

11. Summary and conclusions

The purpose of this study was to create a competitive artificial intelligence
based on heuristic algorithms. We showed that the heuristic search algorithm Monte-
Carlo Tree Search works very well in programming games in which we can distin-
guish individual states described by the same criteria. These can be card games as
well as board games. The basic application of the algorithm for games with perfect
information can also be used for games with imperfect information, by sampling
hidden information, i.e. by determination. The additional use of the greedy al-
gorithm to mimic the opponent’s moves in simulations gives more accurate results



A. One, A. Two 115

and allows to optimize the algorithm in terms of computational complexity. Monte-
Carlo Tree Search works as a universal algorithm for card games and board games.
All that is required is to define the rules of the game and use appropriate heuristics
in predicting the opponent’s moves. Programming any tactical behaviours is not
necessary because the algorithm itself, although unknowingly, applies these be-
haviours by analysing the game tree. The algorithm clearly shows the importance
of predicting the course of the game in playing this type of games. The Monte-
Carlo Tree Search algorithm is very promising, although it has yet to be fully used
in the programming of artificial intelligence for the card game Thousand. This
game is not particularly complicated, with 24 cards in the deck and “marriages” as
the only mechanics that pushes it forward. Still, it is surprising how the same algo-
rithm can be reused for different stages of the game, only slightly modifying what
we want it to return. This can also mean modifying the initial output, although
the core of the algorithm’s operation never changes. Heuristic algorithms are very
effective as the right decision-making algorithms, as well as algorithms supporting
or optimizing other algorithms. They give satisfactory results at a low computing
cost. For MCTS, the user can define how many computational resources he or she
will allocate to it. Time constraints are most commonly used. These resources were
limited in the experiment by the number of algorithm iterations. This is because the
algorithm will be performed the exact specified number of times on any hardware,
consequently giving similar results.

References

[1] Russel, S. and Norvig, P., Artificial Intelligence: A Modern Approach (Third
Edition, Prentice Hall, 2009.

[2] Palma, D. S., Monte Carlo Tree Search algorithms applied to the card game
Scopone, Ph.D. thesis, Politecnico Di Milano, Italy, 2014.

[3] Puchala, D. and Yatsymirskyy, M., Fast Neural Networks Learning Tech-
niques For Signal Compression, Przegląd Elektrotechniczny, Vol. 86, No. 1,
2010, pp. 189–191.

[4] Wawrzonowski, M., Daszuta, M., and Szajerman, D., Mobile devices’ GPUs
in cloth dynamics simulation, In: Proceedings of the 2017 Federated Confer-
ence on Computer Science and Information Systems” (FedCSIS), 2017, pp.
1283–1290.



116 The Use of Heuristic Algorithms: A Case Study of a Card Game. . .

[5] Long, J., Sturtevant, N., and Buro, M., Search in games with incomplete in-
formation: a case study usingBridge card play, In: Proc. Assoc. Adv. Artif.
Intell., 2010, pp. 134–140.

[6] Frank, I. and Basin, D., Search in games with incomplete information: a case
study usingBridge card play, In: Artificial Intelligence, 1998, pp. 87–123.

[7] Powley, E., Whitehouse, D., and Cowling, P., Determinization in Monte-
Carlo TreeSearch for the card game Dou Di Zhu, In: Proc. Artif. Intell. Simul.
Behav, 2011, pp. 573–580.

[8] Porola, M. and Wojciechowski, A., Real-Time Hand Pose Estimation Using
Classifiers, In: Computer Vision and Graphics Volume: 7594, 2016, pp. 573–
580.

[9] Staniucha, S. and Wojciechowski, A., Mouth features extraction for emotion
classification, In: Proceedings of the 2016 Federated Conference on Com-
puter Science and Information Systems (Fedcsis), 2016, pp. 573–580.

[10] Napieralski, P. and Kowalczyk, M., Detection of vertical disparity in three-
dimensional visualizations, Open Physics, Vol. 15, No. 1, 2017.

[11] Napieralski, P. and Kowalczyk, M., Efficient rendering of caustics with
streamed photon mapping, Bulletin of the Polish Academy of Sciences-
Technical Sciences, Vol. 65, No. 3, 2017.


