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Abstract. The paper presents some novel research on applications of Type-
2 Fuzzy Logic Systems to support the Selective Catalytic Reduction process
(SCR). The aim of the research is to design and test higher order fuzzy logic
systems and their genuine modifications to manage data in DeNOx systems
responsible for controlling emission of nitrogen oxides (NO, NO2). Since
in real applications, it is still performed under the supervision of a human
expert, the scope is to replace, at least partially, his/her participation with
dedicated type-2 fuzzy logic systems. As the result, it is shown that the pro-
posed systems with new means of learning fuzzy IF-THEN rules allow us to
compute parameters much closer to those determined by experts, even in a
comparison to some earlier approaches based on traditional fuzzy logic.
Keywords: fuzzy logic, Selective Catalytic Reduction (SCR), air pollution,
nitrogen oxides, adjustable air filters, ammonia valve, dedictaed Type-2 Fuz-
zy Logic System, learning fuzzy rules.

1. Introduction

Attempts to create systems working similarly to (or even replacing) human ex-
perts is a very common field of research nowadays. In particular, in cases when
expressing knowledge by natural language is simpler (or the only possible man-
ner) to analytical/strict formulae, e.g. when it can not be determined precisely, or
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Figure 1: Selective catalytic reduction (SCR) process, human-supported
(a scheme).

require linguistic and/or non-linear models, Fuzzy Logic Systems (FLS) and their
higher-order extensions are very promising and handy tools. Examples of devel-
opment of such systems, and their profitable applications are widely presented in
the literature, e.g. [1, 2]. Aims of these methods are to cover certain issues as close
as possible to actions that human experts take in corresponding situations/prob-
lems. Popularity of Fuzzy Logic Systems is primarily due to the fact that they can
be used when experts in a given field express their knowledge in a linguistic and
not mathematical way. Confirmed efficiency of these systems is being mentioned
in plenty of issues, e.g. crane control systems [3], elevator control [4] or water
quality control systems [5, 6].

Hence, in this paper an attempt of creating a type-2 fuzzy logic system (T2FLS)
that enables managing the DeNOx system parameters. DeNOx is a mechanism that
controls the process of the so-called Selective Catalytic Reduction (SCR) to reduce
amounts of harmful nitrogen oxides exhausted to the atmosphere. As for now, this
process is controlled and managed by a human experts manually, see Fig. 1. The
scope is to propose an intelligent tool, based on type-2 fuzzy logic to suggest pa-
rameters for the DeNOx system, preferably, as close to human decision as possible,
see Fig. 2.

The rest of the paper is organised as follows: Section 2 describes briefly the
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Figure 2: Selective catalytic reduction process assisted by a Type-2 Fuzzy Logic
System.

SCR process and possible applications of fuzzy logic, mostly with respect to data
uncertainty appearing in expert decisions making. Section 3 presents general struc-
ture of a type-2 fuzzy logic system and, more detailed, some genuine elements
being authors’ contribution to the issue. The results are evaluated and discussed
in Section 4, with respect to some earlier evaluations based on traditional and
interval-valued fuzzy logic systems. Finally, we conclude in Section 5 with some
new possibilities and directions of the research.

2. Knowledge specification and uncertainty of data in man-
aging the Selective Catalytic Reduction process

One of the best-known and efficient methods for reducing nitrogen oxides (NO,
NO2) is the DeNOx system based on the Selective Catalytic Reduction (SCR) [7].
This method uses ammonia (NH3) as a reducing gas injected to the reduction
chamber. It is described by the following formulae:

4NO+4NH3+O2=4N2+6H2O, (1)

6NO2+8NH3=7N2+12H2O. (2)
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The DeNOx system performs the catalytic reduction and its main task to reduce ni-
trogen oxides in chemical processes in which these oxides are harmful by-products.
As for now, managing the parameters of this process must take place under human
control due to the non-linearity of the process and many factors that influence the
efficiency of the chemical reaction. The solutions known from the literature do not
give satisfactory results or are not similar enough to human actions. Therefore, the
attempt to develop fuzzy logic systems potentially extended with new implications
and new methods of learning fuzzy rules that would allow to increase the efficiency
of these systems should be considered justified.Due to the non-linearity of this pro-
cess and the influence of many factors on it, system parameters are managed under
human control (of course, in the case of large industrial installations). According
to literature, indispensable elements when developing a system with a knowledge
base such as Fuzzy Logic Systems (FLS) and Type-2 Fuzzy Logic Systems are:

1. acquiring knowledge from an expert

2. systematization and assessment of knowledge

3. presenting knowledge in a form consistent with the adopted formalism

(a) fuzzy sets representing input data,
(b) fuzzy sets representing output data,
(c) IF THEN rules database,
(d) selection of fuzzing operators, aggregations and implications consis-

tent with the nature of the input data.

If traditional decision-making systems can not be used, for example due to the
lack of an appropriate process model, fuzzy logic systems handling uncertain in-
formation are applied. Problems with process modeling are very characteristic for
cases in which high degree of indeterminacy of data appears and/or knowledge is
imprecise, data are incomplete, data relationships are undefined or difficult to de-
termine. Despite the advantages of human intuition and rational thinking in action,
the machine should not forget about such elements as emotions, psychophysical
conditions and knowledge and experience in the field. Fuzzy Logic Systems are
able to handle, at least partially, these problems and work on unreliable data. Fuzzy
logic systems also works in situations where problems are unstructured, i.e. for it
is impossible to arrange the algorithm or experience and intuition are necessary.
Applications of Fuzzy Logic Systems in solving problems and issues described are
given e.g. in [8]-[12].
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3. Type-2 fuzzy logic systems and learning rules for man-
aging SCR

Research on fuzzy logic systems allowed us to obtain better results when using
some additional methods of learning fuzzy rules, than results obtained without
learning. It is a premise now to use another modifications and improvements of
fuzzy logic methods: in this particular case we propose to use type-2 fuzzy logic
systems based on type-2 fuzzy sets. The main reason is that these systems handle
knowledge of several experts in the form of type-2 fuzzy sets and determining
„confidence level” for individual experts, which is definitely a possibility to keep
the most crucial entry data in their consistent form without aggregating them (and,
in consequence, loosing some parameters influencing final performance). Apart
from new look at learning IF-THEN rules, it is profitable to extend traditional fuzzy
implications (including the so-called engineering implications) to forms suitable
for type-2 fuzzy sets.

3.1. Structure and details of the dedicated type-2 fuzzy logic system

A type-2 fuzzy set in a non-empty universe of discourse X is a set of ordered
pairs

Ã = {〈x, µÃ(x)〉 : x ∈ X} (3)

where µÃ(x) : X → FS([0, 1]) is a membership function of a type-2 fuzzy set and
FS([0, 1]) is a set of all fuzzy sets in [0, 1]. Type-2 fuzzy sets are also known
as „fuzzy-fuzzy sets” or „fuzzy-valued fuzzy sets” and it is their most important
feature to express membership degrees with imprecise, here: fuzzy, values, not
only with real numbers, as traditional fuzzy sets do [13, 14]. Thanks to it, new
potential of developing fuzzy logic systems, in the sense of Mamdani [8] can be
visible. A structure of type-2 fuzzy logic system is illustrated in Fig. 3.

Fuzzification: acquiring data from experts In the case of traditional fuzzy
logic systems, knowledge is obtained from one expert in a linguistic form. As a
result, traditional fuzzy sets are created to determine the NO and NO2 input val-
ues, and output values, i.e. the opening degree of the ammonia valve.

Knowing that the knowledge from one expert can be subjective and contain
errors, it seems natural to take into account a larger number of experts. Such an
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Figure 3: Type-2 Fuzzy Logic System: a general structure

approach eliminates or partially reduces the problems of possible subjective as-
sessments by one expert only. Such possibilities are offered by higher-order fuzzy
logic systems, based on two or more membership functions for given linguistic
values. As it is expected, this approach approximates the entry data more care-
fully, without averaging them. In the designed type-2 fuzzy logic system, the entry
data are collected from three experts with different experience (related to the pe-
riod being involved in handling DeNOx), and, instead of their aggregation, e.g.
via weighted average, type-2 fuzzy logic systems are able to handle such an un-
certainty. A general schema of representing entry data with type-2 fuzzy sets is
depicted in Fig. 4.

Thanks to secondary membership functions µx, for each x ∈ X, it is possible to
determine the „confidence level” of the knowledge of experts individually. „Confi-
dence level” can also be explained here as „level of experience” (the closer to 1, the
higher). In practice, it means taking into account the linguistic values proposed by
experts as separate primary membership functions and assigning to each of them
secondary membership degrees dependent directly on their experience in handling
DeNOx, as mentioned above.

IF-THEN rules and fuzzy implication In fuzzy logic systems, knowledge is
obtained from experts using linguistic forms. As results, fuzzy rules in the form of
IF-THEN are obtained:

Example:
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Figure 4: A schematic illustration of acquiring linguistic knowledge from experts
and representing it as a type-2 fuzzy set

IF (NO IS Low) AND (NO2 IS Low) THEN Valve opening angle IS Low
IF (NO IS Low) AND (NO2 High) THEN Valve opening angle IS Medium
IF (NO IS Medium) AND (NO2 High) THEN Valve opening angle IS Very High

Type-reduction and defuzzification Using the Extension Principle, the centroid
of the Type-2 Fuzzy Set B̃ in a finite Y={y1, y2, . . . , yM}, M ∈ M, in which the
membership degrees are in the form of

µB̃(yi) =

∫
u∈Jyi

fyi(u)/u, (4)

where Jyi ⊆ [0, 1], i = 1, 2, . . . ,M, is a set of all primary membership of yi to B̃, is
given as:

CB̃ =

∫
u1∈Jy1

. . .

∫
uM∈JyN

(
fy1(u1)∗ . . . ∗ fyN (uM)

)/∑M
i=1 xiui∑M

i=1 ui
, (5)

where ui ∈ Jyi , and ∗ is a T -norm.
The defuzzification for all simulations is done using the Height Method (6)

(see Fig.5). The Height Method uses heights of each input fuzzy sets that create
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Figure 5: A graphical explanation of the Height Method; µi is value of fuzzy rule
activation on this fuzzy set, and yi are representatives values each of fuzzy sets.

output fuzzy sets as antecedents of fuzzy rules (after type-reduction). The heights
of fuzzy sets are µCi∗ (taken as weights) and yi are representative points, see [?].
The Height Method is simple and efficient.

y∗ =

∑M
i=1 yiµCi∗∑M
i=1 µCi∗

, (6)

where y∗ is the value of the fuzzy output, µCi∗ is the value of the activation of i-th
fuzzy rule, yi is the element Y representative for fuzzy set and M is number off all
fuzzy sets which taking apart in creation output fuzzy set.

3.2. New algorithms for learning fuzzy rules

The rule base in fuzzy logic systems is usually determined on knowledge and
experience provided by experts in informal or even linguistic forms. This approach
does not guarantee, however, that the set of rules is optimal, and problems appear
when several experts propose different rules with similar, overlapping or contradic-
tory succedents. That is why the rule base needs to be tuned to improve algorithms
of selecting rules that are activated in inference. The presented algorithms of learn-
ing fuzzy rules in a type-2 fuzzy logic system are extensions of similar proposals
for traditional fuzzy logic systems [15].
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Algorithm 1 Learning rules in type-2 fuzzy logic systems (S RI)
1: for all succedents do
2: if the first degree of membership == max Activation value then
3: Counter of the antecedent← Counter of the antecedent + 1

Algorithm 2 Learning rules in type-2 fuzzy logic systems (S RII)
1: for all succedents do
2: if the first degree of membership > 0 then
3: Counter of the antecedent← Counter of the antecedent + 1

Algorithm 3 Learning rules in type-2 fuzzy logic systems (S RIII)
1: for all succedents do
2: if the first degree of membership > 0 then
3: Counter of the antecedent ← Counter of the antecedent +

First Degree of membership

Simulations show that the use of Type-2 Fuzzy Logic allow improving the
performance of the dedicated fuzzy logic system, see Table 1.

4. Evaluations and discussion

As reference values of the operation of fuzzy logic systems, systems known
from the literature have been implemented. Then, that producing the best results is
selected. In order to verify the results obtained in the experiment with the values
given by experts, three comparative methods are used.

4.1. Evaluation: test sets, reference sets, and comparison methods

The evaluations is based on 6 data sets, |X1| = |X2| = |X3| = 10 000 and |X4| =

|X5| = |X6| = 100 000 samples each, Xi = {x1, x2, . . . , xN}, where x j = (x1, x2) ∈
XNO × XNO2 , i = 1, 2, . . . , 6, j = 1, 2, . . . ,N, N = 10 000 for i = 1, 2, 3 or
N = 100 000 for i = 4, 5, 6. x j is a value of concentration of NO and NO2 (read
from sensors of the DeNOx system) expressed with integers in [0, 400] mg/m3.
Measurements are read every 2 seconds which is determined by the capabilities
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of the solenoid valves used to dispense ammonia, the inertia of the system and
some legal circumstances regarding emission of nitrogen oxides. The permissible
concentration of nitrogen oxides, for thermal units with a capacity below 50 MW
from the combustion of solid fuels in the form of coal and coke, is 400 mg/m3.
Output data are real numbers from the range [0.00, 100.00] specifying the open-
ing in [%] of the ammonia dispensing valve to the reaction chamber of the filter.
To determine expected value of opening valve [%] 3 experts are asked to define
(base on data sets X1,. . . , X6) vectors of expected values. That give 18 vectors
EWI(X1),. . . , EWI(X6) with are aggregated to 6 vectors E(X1),. . . , E(X6) using the
weighted average according to (7):

e =

∑n
i=1 ei ∗Wi∑n

i=1 Wi
(7)

where e is the expected value after aggregation, ei is the expected value of the i-
th expert, and Wi is the weight assigned to the i-th expert related to how long he
works on DeNOx. In the considered case, the weights are:

1. expert 1 - W1 = 3

2. expert 2 - W2 = 20

3. expert 3 - W3 = 13

The same vectors (X1,. . . , X6) are use to make calculation by Type-2 Fuzzy Logic
System with proposal new learning methods. It is give 6 vectors |C1| = |C2| = |C3| =

10 000 and |C4| = |C5| = |C6| = 100 000 corresponding to vectors E(X1),. . . , E(X6)
of the same length.

The results calculated by the system were compared with the data proposed by
the expert. For each set of samples two vectors are compare: |Ei| - vector contain-
ing the output values proposed by the expert, |Ci| - vector containing the output
values calculated by the fuzzy logic system. Their comparison was carried out
using three methods. The first method is the minimum-maximum, the second is
the Persona Correlation Coefficient (PCC), the third is the Mean Absolute Percent
Error (MAPE).

min - max(E,C) =

∑n
i=1 min{ei, ci}∑n
i=1 max{ei, ci}

(8)

where E = {e1, e2, ..., en}, C = {c1, c2, ..., cn}, ci is the actual value calculated by
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the fuzzy system, and ei is the value proposed by a human expert. The values
of the min-max(E,C) method show the similarity of the E and C vectors. The
maximum value of the min-max(E,C) method is 1 – which means that the vectors
are identical, and hence the calculated values by the system are the same as the
opening values of the ammonia dispensing valve proposed by the expert.

r(E,C) =

∑n
i=1(ei − e)(ci − c)√∑n

i=1(ei − e)2
√∑n

i=1(ci − c)2
(9)

where r ∈ [−1; 1], e = 1
n
∑n

i=1 ei i c = 1
n
∑n

i=1 ci. PCC value represents the correla-
tion between vectors E and C. Values −1 means total negative correlation, 0 means
no correlation, and 1 means total positive correlation. The Mean Absolute Percent-
age Error (MAPE), is also known as the Average Absolute Percentage Deviation
(MAPE).

M =
1
n

∑n

i=1
|

ci − ei

ci
| (10)

The results presented in Table 1 are interpreted: for the comparative method of
min-max and PCC, values closer to 1 mean larger agreement between the results
calculated by the system and the values proposed by the expert. In the case of
MAPEs, however, the larger agreement, the differences calculated are smaller.

All simulations are performed using data obtained from experts separately and
as aggregated data. The article presents the results in relation to aggregate values.

4.2. Results and discussion

In Table 1, the best results obtained by Type-2 Fuzzy Logic Systems are pre-
sented with reference results of fuzzy logic systems elaborated and described in
some earlier published literature. The proposed new methods of fuzzy rules learn-
ing allow you to get better results for fuzzy logic systems. Among the 8 new vari-
ants of Type-2 Fuzzy Logic Systems, those giving the best results are presented
in Table 1, row 4., thanks to using the proposed methods of fuzzy rules learning,
are presented as benefits from described and implemented methods as effective
system supporting an expert in the process of defining parameters for the selective
catalytic reduction system. The results can be explained with numbers illustrating,
to a greater extent, the obtained effects. Although differences between traditional
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Table 1: Values of Measures of Similarity min-max(E,C), Values Pearson Cor-
relation Coefficient (PCC) And Values Mean Absolute Percentage Error (MAPE)
Output Data Calculated by Type-1 and Type-2 Fuzzy Logic Systems and Values
Proposed by Experts After Aggregation.

min-max(E,C) PCC MAPE Description
1. 0.925 0.910 19.35 % Fuzzy Logic System based on T -norm min [16]
2. 0.945 0.936 17.46 % Interval-Valued Fuzzy Logic System [17]
3. 0.929 0.924 16.38 % Type-2 Fuzzy Logic System [18]
4. 0.957 0.960 8.49 % Type-2 Fuzzy Logic System with learning fuzzy rules via Algorithm 1
5. 0.954 0.955 9.16 % Type-2 Fuzzy Logic System with with learning fuzzy rules via Algorithm 2
6. 0.955 0.958 8.56 % Type-2 Fuzzy Logic System with with learning fuzzy rules via Algorithm 3

fuzzy logic systems and Type-2 Fuzzy Logic Systems using new methods of learn-
ing rules may seem small, their explanation in terms of amount of NO and NO2
into the atmosphere are huge. The year production of 8 100 Mg is declared in [19],
hence the improvement of ammonia dosing accuracy with respect to expert expec-
tations from 0.925 to 0.957 calculated using the min-max method is 0.03, which
is an equivalent of 260 Mg less nitrogen oxides emitted to the atmosphere per
year. Or in other words, it is ∼ 21.5 Mg of nitrogen oxides per month, which is
equivalent of∼ 54mln m3 more air totally free of nitrogen oxides per month.

5. Conclusions

The new solution in the field of fuzzy logic is presented in this paper: algo-
rithms for learning rules in type-2 fuzzy logic system. Results of simulation con-
firm the efficiency of a type-2 fuzzy logic system dedicated for the particular prob-
lem of managing nitrogen oxides emission in the DeNOx system. The promis-
ing results, see Table 1., are obtained mostly with the use of type-2 fuzzy logic
systems, that handle imperfect knowledge better than traditional FLSs. Besides,
as the author contribution, new methods of learning type-2 fuzzy rules are intro-
duced. They allow us to increase the similarity of the dedicated type-2 fuzzy logic
system’s response to values proposed by experts in the considered issue. Another
important conclusion is that the use of type-2 fuzzy sets enables increasing the
consistency of results obtained taking into account the knowledge acquired from
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many experts using secondary membership functions of type-2 fuzzy sets as handy
tools to express additional data, e.g. expert experience.

The presented research allows us to conclude that further works on apply-
ing higher-order fuzzy logic systems in computer-aided management of industrial
gases emission is worth continuing and opens new possibilities of introducing AI
methods in the field.
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