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dominik.szajerman@p.lodz.pl

1. Introduction

Abstract. Virtual characters are an important part of many modern com-
puter games. This paper describes a graph-based memory system designed
for artificial agents that also simulate simple emotions. The system was
tested using virtual simulation environment and it showed many new and
desirable AI behaviours. These behaviours include simple preferences, reac-
tions based on bot’s opinion of a stimuli or improvement of bot’s ability to
find objects to interact with.
Keywords: computer games, artificial intelligence.

Since the start of the video games industry, the creators confronted the mat-
ter of creating smart and challenging non-player characters’ intelligence. A few
AI systems were designed solving various problems: the path-finding, navigation
mesh generation, decision making or adapting enemies. Decision making devel-
oped into: decision trees, state machines or behavior trees. With the help of these
systems, designers could easily create, manage and extend existing AI behaviors,
what led to great improvement of game world for players. However, there is one
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significant issue with each of these algorithms. All they are based on rational de-
cision making. This affects the believability of NPC – the player could find out
how a character works and predict its choices. This led to a deeper reflection on
the possibility of simulating the human psyche, for example by taking into account
emotions [1, 2, 3, 4] and memory.

In this article we present a simple and easy to implement model for simulat-
ing rule-based agents with emotions and memory. There is also a description of
a simulation environment along with a series of tests that were conducted. The
simulation was created for the purpose of properly verifying many of the model’s
aspects and categorizing any unexpected behaviours that result from the essence
of the model.

2. Related work

The creator of [5] has expanded decision trees AI by taking agent’s emotions
into account during the decision-making process. This enabled the agents to adjust
their behaviour depending on their emotional state. That also made actors to be-
have in a less predictable way, which in term made the agents more realistic [6].
Has created a multi-layer emotion model composed, among others, of perception,
emotions, motivations and behaviour.

Overall, modelling advanced memory or personality in games is not used as
much as it could be due to the fact that in most cases it would not have much of an
influence on the behaviour of agents: in most cases their behavior is based just on
their role in the simulation. In cases where it is used, the memories are related to a
very specific, feature focused thing, like bot’s opinion of player or other agent.

Long-term memory model introduced in [7] has made it possible to create
bots that were learning during the gameplay. They were successfully used in logic
games, first-person shooters and real-time strategy games. In case of this model,
the main focus was put on the maximizing the chance to win at the game, not on
the believability of the AI.

Short term memory and limited perception that were simulated by [8] has
greatly reduced the amount of information agent has access to. This in term has
led to a situation the bots were making decisions based just on what they should
know, which had a positive effect on the believability of the bots (and reduced the
computational complexity of finding an action to perform). In this case though, the
influence of emotions was not touched upon.
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3. Data

Before going on with the descriptions on how exactly the presented model
works, it is worthwhile to first introduce and describe the data types being used
in the calculations. There are three main types of information we’ll touch upon in
this section:

1. Agent emotions.

2. Behaviour rules.

3. Memory graph.

3.1. Emotions

The proposed model is to a certain extent based on the emotional decision-
making agent described in [2]. Its author has distinguished the three main types
of stimuli that affect the actions performed by a bot: fear, pain and anger. This
choice was dictated by the consistency of these stimuli between different cultures
and social groups. Thanks to the fact that chosen stimuli were negative, the bot’s
responses could be more direct, which in term made the resulting agent behaviours
much more emotionally responsive. Moreover, instead of using mathematical de-
scriptions for the emotional state of the bot, the author has used a fuzzy logic
system. This has greatly simplified the definition of behavior rules and the process
of their selection. Overall, this made the model more readable. On the other hand,
the choice of just the negative feelings only imposed the nature of the activities
performed, which were mostly defensive responses to negative stimuli. In addi-
tion, the feeling of pain (although it worked out fine in this case) is not an emotion
itself.

In order for bots to be able to express both positive and negative emotions we
decided to use 4 different emotion scales that were first introduced in [9]. Each
of the scales represents two opposing, conflicting emotions at its ends. The scales
are:

1. sadness – happiness,

2. disgust – acceptance,

3. fear – anger,
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4. surprise – awaitance.

Each of those emotions (E) is in the numerical range [0, 1]. E equal to 0, 5 is
the neutral position, meaning that neither of emotions in the scale is manifesting.
In case of scale of sadness – happiness, the greater E is, the happier a bot is. The
opposite is true for sadness. Full emotional state (ES ) can be then represented as a
vector of four numbers. A neutral ES is equal to (0.5, 0.5, 0.5, 0.5). ES of a bot that
has suddenly found itself in a scary situation can be equal to: (0.5, 0.5, 0.1, 0.1).

Every rule available to bot has a set of up to four emotion preferences: each for
a different kind of emotion. These can be also represented as ES . A rule named
“Run” may have a following description: (−,−, 0.0,−). Unspecified emotion val-
ues are replaced with “–” and are not taken under consideration when picking a
rule to perform. Rules also may define result ES and action perception ES simi-
larly to rule emotion preferences.

Whenever there is a need to measure how two different emotional states are
similar to each other, a state distance (S D) is calculated:

1. For each E defined in both states, their difference is added to total distance
as if to calculate Manhattan distance.

2. Then, the total distance is divided by the number of additions made in step
one to create average difference of ES components.

3. Finally, the value is raised to the power of two and subtracted from 1.

These steps produce a floating-point number ranging from zero to one that
describes how two states are similar to each other (with value equal to one meaning
states are equal).

3.2. Rules

A behaviour rule in the proposed model can be described by a set of the fol-
lowing elements:

ruleaction, which is an action related to the rule, the actor will perform it when-
ever the associated rule is picked. The fact of performing this action itself is called
the event. For example, in a typical game, the rule can be defined as follows:

• Condition: life points below twenty percent of their maximum value.
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• Action: drink a healing potion.

• Event: the potion was drunk.

rulepre f erence := ES defines the emotional state in which the bot should be, so
that the chance that a given rule is selected p(ES ) is the largest.

rulepre f erence → @S := ES p(S ) > p(rulepre f erence). (1)

ruleresult contains information about the emotional state to which the agent’s
state will get closer after the event. ruleresult is represented in form of an ES vector,
as well as for each of its defined elements: an effect. The effect is in the numeric
interval of [0, 1] and describes the maximum change of a given emotion after the
event.

ruleperception contains information about the emotional state to which the status
of the bot will get closer after observing another bot performing the given action.
It is represented the in same way as the ruleresult.

ruleparticipants describes all participants of the action. For each of them, a pre-
ferred opinion is defined in a similar form to ruleresult. Also, it contains required
object type as well as a list of required tags for each of the participants.

ruleimportance is a importance factor that acts as a multiplier for the probability
of selection of the rule.

3.3. Memory

Many of the rules available for bots may require some kind of interaction with
the simulation environment. In many cases there will not be any matching rule
participants close to the bot. For these kind if situations we extended the base
system by introducing a memory graph that stores all of the information a bot
currently remembers.

Two main kinds of elements of the graph: vertices and edges represent different
things. Each vertex represents a memory of an unique in-game-object or a past
event. It contains info about the object’s type, its unique characteristics and bot’s
own opinion of a memory (in form of an ES ). An edge contains info about bot’s
association of two different memories, its importance and is mainly just used in
the process of browsing bot’s memory.

There are three main types of memory objects:

• location,
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• person or item,

• event.

During the simulation, a memory graph is constantly undergoing changes be-
cause of bot’s perception and actions he performs. There are five cases when bot’s
memory is modified:

1. Bot enters location A for a first time: add a vertex for each location A is
connected to and connect them with A node.

2. Bot sees a person or an item A for the first time: add a vertex that represents
a given object and connect it by an edge with bots current location.

3. Bot sees a person performing an action: add a vertex representing a memory
of that action and connect it with actions participants and persons current
location. Slightly modify opinion of a person perceived depending of action
perceived.

4. Bot finishes performing an action: add a vertex representing a memory of
that action. Connect it with current bots location and all other objects that
participated in it. Modify opinion of actions participants depending on a rule
finished.

5. Bot is told about something, discovers information when reading or other
means: a set of new vertices and edges is added to the graph.

Memory graph is regularly browsed for potential participants. First step of this
process is to pick a small group of starting memory nodes (hook nodes). This group
consists of some randomly picked nodes. Some of them are currently perceived by
the bot, recently added to the graph or just are the ones that were modified recently.
Then, each hook node picked is analyzed separately from others in a following
way:

1. The node is analyzed for whether it is a good participant for a rule in ques-
tion: its type, characteristics and bot’s opinion of it are tested.

2. If node is indeed a fitting participant, the node is added to a potential partic-
ipants group.
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3. Another unvisited node connected to the current one is picked to replace
current node. The node is picked using using weighted random selection
based on connection importance.

4. After that, process returns to step 1 and repeats 5-10 times or until there are
no more possible nodes to go to.

This whole process can be repeated multiple times per node, thus producing
multiple paths through memory graph. After All potential rule participants are
picked, five best ones are selected and from among these, then one is selected as
final participant using weighted random selection (the better the participant fits,
the greater his chance of being picked). Memory edges leading to final action par-
ticipant from the original hook node also have their importance slightly raised and
thus will be more likely to be visited in future. In case there are no potential par-
ticipants available, another rule is considered.

After all requirements for a rule are met, the bot can begin to perform an action
associated with the rule. Actions can be easily implemented and added to simula-
tion by designers and define precisely how a bot behaves after a rule is picked.

4. Decission process

The one of the main goals of the model being described in this paper, is that
agents have to make decisions based on their emotional state and memory. The
general scheme of the model is presented in figure 1.

4.1. Picking a rule

The first step in the decision making process is the initial selection of the few
best actions that will be considered further. Each rule that a bot can perform in-
cludes a rulepre f erence value which describes a state in which the bot is most likely
to pick that rule. By using it, you can easily calculate the difference between it
and the current mood of the actor actorstate := ES . It is defined as the average
of squared differences between successive corresponding elements of two vectors.
Let us assume the following:

1 ≤ k ≤ 4, k ∈ N
a1, a2, ..., ak

i1, i2, ..., ik.
(2)
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Figure 1: A scheme of the model.

k represents the number of emotions compared. The a1, a2, ..., ak are the distin-
guished E values of agent status, located, respectively, at the coordinates i1, i2, ..., ik
of ES vector.

We can then distinguish T , which contains all possible sets of emotion values
that are compared in a test:

T = {p ∈ X × Y : pri1(p) = a1 ∧ ... ∧ prik (p) = ak} (3)

T is then a set consisting of only those vectors which perfectly meet our expec-
tations as to the values of the agent’s condition being tested. We can choose any
vector of features p, which will serve as a specific set of required ES . Then, with
the use of p, we can calculate the final result of the score(p):

score(p) =

∑k
j=1(pr j(p) − a j)2

k
(4)
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Whenever a rule does not define certain emotion in rulepre f erence (for exam-
ple anger), this emotion is not taken into account when calculating the distance.
Thanks to that, regardless of the number of defined emotions, the calculated score(p)
will always be in the range [0, 1].

Out of all rules, 5 are selected with the profiles that are closest to the current
state of the actor, i.e. those whose calculated score(p) is the smallest.

Then, with the calculated distances one rule is selected with the use of weighted
randomization. It is done in a following way:

1. For each distance oi the similarity of pi is defined as: pi = 1 − oi.

2. Then the sum of all similarities is calculated P =
∑n

i=1 pi

3. One number X = [0, P] is picked randomly.

4. Finally, all selected rules rulei are considered one after another. For each of
them, pi is subtracted from the X value.

5. When the value of X after subtracting the any pi will become lesser than or
equal to 0, the rulei is chosen.

In case the chosen rule turns out to be impossible to perform, it is possible to
easily return to this stage from further parts of the algorithm.

4.2. Choosing Participants

The next step is to select participants for the rule picked. Each ruleparticipant

defined in the rule must be matched with an appropriately similar object in the
simulation. Otherwise, the rule will not be possible to perform.

The method of browsing the memory graph used in this model is largely based
on the ant colony graph search optimization algorithm proposed by Marco Dorigo
in [10]. It is a heuristic algorithm for optimizing the search for the most efficient
path in a graph. In his algorithm descriptions, he compares its functionality to
the the colonies of ants which seek food. At first, the ants move around the area
(along edges of the graph) in chaotic manner and look for food (in this case for the
appropriate vertex). If any of them finds a valid path, it will return to the colony
using the same way it came from and leaving behind a trail of pheromones. This
trace informs other ants that it can lead them to food, and this in turn increases
the chance that they will at least partially follow that trail. This does not guarantee
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that future ants will use exactly the same route, but instead they could arrive at the
destination using a different, slightly modified and possibly better path, and then
leave behind even stronger trail with pheromones (because their path was better).
After some time, pheromones gradually evaporate. This in turn leaves only the best
paths clearly marked in the graph.

Having how ant algorithm works in mind, we can begin describing the partici-
pant selection process. It is initiated by selecting a certain subgroup of the starting
vertices from the memory graph. Each of these corresponds to ant colony (but in
this case there are more than one colonies). The size of this group usually does not
exceed ten elements. This group consists of:

• some randomly selected objects within the bot’s perception range,

• recently memorized vertices,

• vertices used recently in past actions,

• objects already found and used in the action,

• randomly selected vertices of the graph.

Then, from each of those vertices, five to ten randomly selected paths are lead.
The chance of path crossing any edge of the graph adjacent to the current end is
proportional to its weight edgeimportance (which corresponds to the concentration
of pheromones in the ant colony algorithm). Each of paths created has a length of
up to five edges. The path can not contain the same vertex twice. In some cases
there are situations in which the path cannot go anywhere, because all possible
edges coming out of the vertex have already been visited. In this case, the final
path simply ends at the problematic tip and ends up being shorter.

Each vertex on the path is tested whether it can be used in an action related
to the currently selected rule. First, types of vertex and the searched object are
compared. Then the emotional profile is tested. The distance between participant
profile and object opinion is calculated. It is done slightly differently way than
when calculating the rule distance: the average of the distance of select ES ele-
ments is calculated. If the distance exceeds a certain limit, the object is discarded.
After analyzing all the paths created, one of the vertices found is selected ran-
domly. Those vertices that match the profile more closely have a better chance of
being chosen. The last condition is to make sure that tags of the vertex contain all
of the ruleparticipanttags , i.e.:
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ruleparticipanttags ∈ vtags (5)

In some cases, it is required that a certain tag must not be present in a given
vertex. In such situations, a ‘!’ sign is added at the beginning of the unwanted tag.
If a rule required that the action objective was a clean place to sit, the participant
tags could look like this: (SEAT, !DIRTY).

The last stage of the selection process is to select just one participant for each
participant required. It is simply done by randomly selecting one of all potential
participants. An alternative to this solution can also be to use the participant’s
calculated score and then either selecting the best one or using a weighted random
selection.

If no proper candidate for any of the participants is found, the whole rule is
rejected and then the whole process goes back to rule selection phase. The other
newly selected rule one is added to the pool of the five best rules and one of them
is picked randomly again.

The method of searching for rule participants is to an extent inspired by the
process of thinking about subsequent object associations. One can often think
about a few seemingly unrelated objects through a series of associations and then
come up with another one that suits the activity currently being considered. It is
also worth noting that the computational complexity of single search in memory
is not dependent on its size: this approach allows to achieve a large improvement
compared to when all the objects remembered would be considered for a candidate.

5. Mood Adjustment

After the action associated with rule picked is completed and the modifica-
tions are made to the memory graph, emotional state of the agent is adjusted. This
process is divided into three smaller stages:

1. Soothing phase.

2. Participant impact phase.

3. Action impact phase.

However, they are described in a modified order, because the stage of participants’
influence is easier to explain when basing on the action impact description.
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5.1. Soothing phase

The initial step in the mood adjustment process is to modify the emotional
state so that it becomes closer to its neutral value, i.e. ES = (0.5, 0.5, 0.5, 5.5). It
imitates the effect of agent calming down after recent events.

Let’s assume a certain value s:

s = [0, 1], (6)

and call it a soothe factor. Its value will tell us how much the emotional state of
the agent will approach the neutral state after the stage is completed. With s it is
possible to express the values of successive elements of the agent’s emotional state
α0, ..., αn:

∀0≤k≤n αk = s ∗ 0.5 + (1 − s) ∗ prk(agentstate). (7)

Based on the expression above, it is easy to deduce that for s = 1 the resulting
value will always be equal to 0.5. Also, for s = 0 the value will not change. By
adjusting the value of s you can control the rate of soothing agents’ emotions in a
simple way.

The emotional state of an agent after this phase can be described as:

agentstate := (α0, ..., αn). (8)

5.2. Action impact phase

Each rule defines a certain result ruleresult and features one effect weight per
each element defined of the result: w1, ...,wk. These weights are located on coordi-
nates i1, ..., ik of the ruleresult vector. Let’s take the following assumptions:

quantity of agentstate elements affected by the rule: λ.
vector containing coordinates of agentstate elements affected:

I = {i0, ..., iλ}. (9)

vector containing effect weights associated with rule result:

W = (wi0, ...,wi). (10)

Let’s define a MoveTo function:
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MoveTo : [0, 1] × [0, 1] × R→ [0, 1], (11)

where MoveTo is described by a following formula:

MoveTo(x, y, t) :=
{ y−x
‖y−x‖ · t i f t < ‖y − x‖,
y − x, otherwise.

(12)

Therefore the MoveTo function accepts three values (x, y, t), which will be
called: initial value, target value and step. From each trio of values results a sin-
gle value called simply the final value. The final value resulting from this function
is the initial value changed at most by step in such that it is as close as possible to
the target value.

In order to to calculate the value of new emotion resulting from the end of the
action, let’s define another function we’ll call Adjust. The result of it is the new
value of a single emotion after the action is completed:

Ad just : [0, 1] × [0, 1] × N→ [0, 1], (13)

and let’s describe it with the following formula:

Ad just(x, y, j) := pr j(agentstate) + MoveTo(x, y, prk(W)) (14)

Adjust therefore accepts a set of three values: (x, y, j), which are called: ini-
tial emotion, target emotion and emotional index. The value resulting from this
function is called final emotion. The Adjust function can be described as follows:
If the index of current emotion is in the vector of coordinates I, then the result of
the function is equal to the initial emotion shifted towards the desired result emo-
tion value of appropriate index. This translation though is scaled by the weight
value wi corresponding to the given emotion index. If the emotion index does not
appear in I the result is simply equal to the initial emotion and Adjust is simplified
to:

Ad just(x, y, j) := pr j(agentstate) (15)

The function defined in this way allows us to describe, in a simple way, the
values of subsequent components of the emotional state of the agent α0, ..., αn:

∀0≤k≤n αk = Ad just(prk(agentstate), prk(ruleresult), k), (16)



174 A Memory Model for Emotional Decision-Making Agent. . .

and this, in turn allows as to finally define the resulting agent emotional state
as:

agentstate := (α0, ..., αn). (17)

5.3. Participant impact phase

Each participant profile ruleparticipant defined in behavior rule defines a desired,
perfectly fitting opinion participantpro f ile := ES and, just as in the action impact
phase, it distinguishes a set of effects weights on individual emotions w1, ...,wk

located, respectively, on the coordinates i1, ..., ik of the vector memberpro f ile. Each
of the participants selected also has a corresponding vertex in the memory graph
containing the agent’s opinion about the participant vopinion := ES .

With these assumptions we can use the formula (14), which will allow to de-
scribe subsequent elements of the agent emotional state alpha0, ..., alphan after a
particular participant is taken into account:

∀0≤k≤n αk = Ad just(prk(agentstate), prk(vopinion), k). (18)

It is worth noting that the the result is not dictated by the participant profile
participantpro f ile, but by the opinion about actual participant found: vopinion.

The resulting emotional state of the agent can be then simply defined as:

agentstate := (α0, ..., αn). (19)

All of the participants are analyzed one by one, in a specific order, each of
them changing the emotional state of the agent in a similar way.

6. Memory modification

The system created has to create new memories and connect them with rela-
tions, that in time should evolve. In this section the process memory graph creation
is described.

6.1. Memory importance

At this stage, all the initial requirements needed for the actor to perform the
rule chosen are met. However, before this happens, an additional step is performed.
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The goal of this step is to make easier future searching of the graph. In relation
to the ant colony optimization algorithm this step corresponds to the process of
ants leaving the pheromones after their return to the colony and also their gradual
evaporation.

For each participant of the action, a path through the memory graph that led to
it is remembered. The weight of each of the edges along the path is increased by
a certain fixed value of the Wplus multiplied by the ruleimportance of the performed
action.

In order for an agent to be able to forget, The total weight of all edges in the
memory graph is limited to 1. If, after increasing the weight of the edges recently
used, this sum exceeds 1, it is necessary to reduce the weights of graph edges
accordingly. A similar situation can also occur when a new association (edge) be-
tween two memories is added. The act of lowering weights of the edges may lead
to a situation where a weight of an edge will become smaller than the Wmin. Any
edge below that value is then removed from the graph. If that happens, both ver-
tices that were connected by the edge removed are checked for whether they have
any other edges associated with them. If not, the bot is unable to associate the
memory with anything else it remembers: this vertex is thus removed from mem-
ory and completely forgotten. This mechanism simplifies the graph of memories
and imitates the process of gradually forgetting. The steps to normalize the sum of
weights are as follows:

1. Calculate the sum of weights of all edges of the memory graph Wsum.

2. For each edge vi divide its weight by the sum of all weights: wi = wi/Wsum.

3. Delete each edge vi for which its wi is smaller than defined in expression (2)
Wsum.

4. For each vertex that is the end of the deleted edge, check if it has any other
edges. If not, remove this vertex from the graph.

The minimum value of the Wmin association weight defined in the expression
(2) and the fact that the sum of all association weights does not exceed the number
1 limit the maximum number of edges that can exist in the agent’s memory graph
at once. The maximum number of associations in the graph is 1

Wmin
. By modifying

the Wmin and Wplus values as well as the initial weight of the newly created edges,
it is easily to control how much information the agent can store at the one time.
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Actions described in this section promote the selection of edges that most often
lead to a successful search for a participant. An additional effect that resulted from
this mechanism is the creation of preferences in bots: two objects of the game
world may be identical, but because one of them is connected to the edge with
a high edgeimportance value, it will be chosen more often than the other one. In
addition, the introduction of the process of removing unused edges and memories
simplifies the graph and creates an easy to adjust limit on the amount of agent
memories.

The memory graph of each agent is constantly undergoing changes during as
a result of the actions a he performs. One of the basic mechanisms contributing
to the creation of new vertices and edges is the perception. In addition, the agent
also memorizes any actions taken and other kinds sources. Below are possible
situations in which the graph is changed:

• A new location is noticed by the agent. For each newly discovered site, a
vertex will be added to the graph, and then it will be associated by new
edges with any already known neighboring sites.

• If an agent gets close to an object, he will notice it and then create a new
vertex. It will be connected by an edge to the memory corresponding to
location where the object is currently located.

• Agent noticing another bot performing an action related to the a certain rule
will change its opinion of that agent vopinion slightly towards ruleperception of
that rule.

• Each rule rule completed by a bot will mean two types of changes in the
graph. The first one of these is that the opinions about the participants will
be changed so that they’ll resemble more closely opinions about appropri-
ate participant profiles desired in the action. The second of the changes is
that a new vertex of the graph is created: it represents the event itself and is
connected to vertices representing every other participant of the action per-
formed. The vertex created is also connected with the current location of the
agent.

• There may also be situations in which the bot’s memory will be modified
in a more abstract way. This can happen, for example, as a result of reading
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something on a piece of paper or talking with another agent about some-
thing. In these situations, the agent memory graph G is extended by a differ-
ent G2 graph. G1 = G2 ∪G0.

6.2. Evolving opinion

As described, each object remembered by the agent has a certain vopinion := ES
value which represents his opinion about the object. After the completion of an
action with a participant, the opinion of the agent about an appropriate memory
will change depending on the result of the action. As a result, the value of vopinion

will get closer to the ruleresult of the rule performed.
The opinion changing process itself is to an extent based on performing oper-

ations similar to those performed when modifying the emotional state of an agent
after performing an action. To describe the modification of the opinion, we will
use described in the expression (14) Ad just function. With its use, we can describe
subsequent values of the opinion vector 0, ..., n after the modification:

∀0≤k≤n αk = Adjust(prk(agentstate), prk(vopinion), k). (20)

For simplicity, it is assumed that when using the function (12) for calculating
adjusted opinion, weights of effects W = (wi0 , ...,win) are divided by ten.

With such assumptions we can define a new opinion about the object used in
an action as follows:

vopinion := (α0, ..., αn). (21)

7. Simulation

In order to properly verify the model, a dedicated simulation environment has
been created. Its individual parts were then analyzed for the occurrence of specific
mechanisms and measured. There were also specific requirements that needed to
be fulfilled:

• the simulation has to define a set of behavior rules designed to verify selected
elements of the model,



178 A Memory Model for Emotional Decision-Making Agent. . .

• the simulation must contain all of the necessary objects to perform every
action,

• the simulation must also allow multiple agents to interact simultaneously
and to interact with each other.

The finally selected real environment, that ended up being reproduced by the
simulation, is the accounting and sales office. This choice is dictated by a number
of justifications. First and foremost, the office environment fills the requirements
described above nicely. It provides a wide set of behaviour rules related to everyday
tasks, variety of objects in the office as well as the presence of many agents who
work at the office and interact with each other.

This kind of environment makes it possible to measure how much work each of
the agents performs. By making a change in simulation and observing any changes
in their productivity, we were able to tell to a greater extent what kind of influence
it had on agents. This allowed us to draw more conclusions about any of the aspects
of model being tested. There are 3 kinds of work-related measures we used: current
productivity of an agent, his willingness to perform productive activities, as well
as his willingness to perform activities unrelated to work.

Thanks to offices being the places where employees spend several hours a day,
they are, to a cartain extent, isolated from outside environment. This makes longer
simulations retain some reflection in reality.

7.1. Layout

The designed office consists of several rooms designed to serve specific pur-
poses. A diagram displaying office layout is presented on the figure 2.

Basing on the letter marks from fig 2, we can describe all parts of the office:
A – Workspace: The place where the agent workstations are located. It also con-
tains some other objects such as a water machine and a copy machine.
B – Kitchen: contains the equipment needed to prepare a meal, a couple of seats
and a coffee machine.
C – Facilities: a room that contains a vending machine and is connected to the
kitchen.
D – Manager’s room: Room for a special agent with which several additional me-
chanics are associated.
E – Meeting room: A room filled with chairs and containing a whiteboard. Meet-
ings can be organized here (by the office manager).
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Figure 2: A general layout of the office. Letters A-F mark important parts of the
office. Desks belonging to agents 1-9 are numbered.

F – Hall: a small corridor connecting the work space, kitchen and meeting room.
It also contains a second copy machine.

The office manager has been marked with number 9. His desk is located in a
separate room.

Each time the simulation begins, agents do not have any memories or opinions
– their memory is created entirely during the simulation.

7.2. Available rules

In total, twenty-one behavior rules are present in the simulation. Each of them
has its own unique configuration. Four of these rules are related to the exploration
of the environment. Another 11 rules are related to the activities done in the of-
fice. The next five rules require some kind of interaction between agents. One of
those is available only to the office manager and related to his position (the rule
called “GiveAScarySpeech”). Two of the five interaction rules are related to the
interaction of the employee with the supervisor.
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7.3. Observed bahaviours

Before we go on to the detailed description of the tests, it is worth to describe
a few fragments of simulations and them.

Printers: There are two copy machines that are annoying to use. They are used
in the “UsePrinter” rule. The emotional result of this rule is a feeling of bore-
dom and anger. One of the printers is in a frequently visited F location. This lo-
cation itself is not often used in rules, but as a result of being visited frequently
when searching the memory, it usually is connected with edges with high values
of weight. This fact in turn means that the printer in location F much more likely
to be used by agents than the other printer, located at the back of the office.

Two agents owning their desks at the back of the office, close to the second
copy machine, are an exception to this rule. They use both printers interchangeably.

As a result of an agent noticing an object, his emotional state changes slightly
(it gets closer to the opinion about the object). This means that agents who are
walking through the F location are often irritated at just the sight of the printer.

A similar situation took place in the case of the manager. Occasionally, he
performs a “GiveAScarySpeech” rule. While he is doing that, other agents can
attend to the meeting room and listen to the speech. The emotional result of hearing
the speech is mainly related to fear. This however means that over time, the opinion
employees about the manager may become more and more fearful. This in turn
causes the manager to be cease being a participant in certain actions performed by
other agents (like arguing). Even in cases where the manager himself decides to
perform a positive “TellJoke” action, the receiving agent can become even more
scared than amused after hearing the joke.

Each agent owns a telephone located on his desk. The phone can occasionally
start ringing and the agent then has to pick it up in time and talk for a moment
while responding to a call. However, there is a risk that the agent will not be able
to answer the phone in time and the action of responding to a phone call will fail.
During the tests, it turned out that most often this happened to agents who had their
desks located the farthest from other popular places in the office (like the kitchen).
This was the most visible in the case of two bots owning desks at the back of the
office, not far from the previously mentioned, unpopular printer. This in turn made
them on average to be in a worse mood.

The table in the kitchen with several chairs was used both for the “GrabAS-
nack” and “GrabAMeal” actions, and each of its chairs can be reserved separately
by the agents. These two actions are a good example of how agents can temporarily



J. Rogalski, D. Szajerman 181

Table 1: Examples of emotional states and the corresponding willingness to work
and to take a break

ES WorkMood BreakMood
0.5 0.5 0.5 0.5 0.3988 0.1614
0.0 0.0 0.0 0.0 0.1908 0.1614
1.0 1.0 1.0 1.0 0.2209 0.3151
0.6 0.5 0.5 0.7 0.4198 0.2297
0.6 0.5 0.4 0.2 0.4070 0.0964
0.2 0.5 0.5 0.5 0.3614 0.1453

reserve some objects to perform an action, so many agents can perform the same
(or similar) action at the same time.

8. Tests

8.1. Emotion tests

Both the verification of the emotional state and of other aspects of the model
were based on measurements of the aforementioned productivity of the bots. Each
rule available in the simulation has been assigned two numerical values, which in
turn tell us about how much a given rule is related to work and how closely it is
related to avoiding work. On the basis of these, we can then define 3 measures
associated with it: the amount of work currently being performed, the willingness
of the agent to work and the willingness to take a break from work. They are
defined as follows:

Productivity is defined as the average value of work done in recent actions.
Each successive value of productivity is defined as the previous productivity halved
and increased by the work value associated with the action just performed.

Willingness to work is obtained by calculating the average score of actions
multiplied by their respective degrees of work relation.

The willingness to take a break is obtained by calculating the average score
of actions multiplied by heir degree of relation to avoiding work.

In the Table 1 there are several example emotional states and the corresponding
willingness to work / take a break

The smallest willingness to work was achieved for the most extreme ES val-
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ues. For ES = (0.6, 0.5, 0.6, 0.7) the mood for work was the greatest (because the
agent was in a generally good mood), but the result of willingness to take a break
was also big (because willingness to take a break largely depends on the awaitance
of the agent). For ES = (0.6, 0.5, 0.4, 0.5) the desire to break turned out to be the
smallest.

The chart 3 shows the productivity of an agent along with the subsequent ac-
tivities he performs. This relationship was presented in conjunction with his for
awaitance and anger emotions, which had a big impact on the willingness to work
and rest of the agent and thus on his productivity.

Figure 3: Agent’s productivity depending on his value of awaitance and anger emo-
tions.

8.2. Memory tests

Let’s begin with the amount of memories created during the simulation and
total agent memory capacity.

The minimum value of the edge weight Wmin used in the simulation is equal
to 0.001. Bearing in mind that the maximum combined weight of all edges in the
graph should not exceed 1, the graph is able to store a maximum of 1

Wmin
= 1000

associations. In practice however, the importance of associations are constantly
changing so this is very unlikely. The 4 figure shows how the average number of
memories and associations of all bots evolves during the simulation.

As visible in the figure 4, the total number of associations does not get even
close to the maximum number of associations which is equal to 1000. It is also
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Figure 4: Average number of memories and associations among the agents during
the simulation.

clearly visible that the graph’s growth starts to stabilize at a certain point. This
gives us a good perspective on the amount of computer memory the agent requires
to operate. Based on that we can draw some conclusions on how to adjust the
agent’s memory based on how much we want him to remember at once. By reduc-
ing Wmin, we are able to easily increase the memory capacity of agents. In addition,
two more factors influence how the memory is constructed. These are the initial
importance of memory association and the base value of associacion importance
increase when an edge is used.

The figure 5 contains the plot of evolution of agents’ average opinion of office
manager.

As can be seen in the chart, at some point in the simulation, the employee’s
opinion has changed significantly. This change resulted from the manager has
performed “OrganizeAScaryMeeting” action, which has significantly changed the
employee’s opinion about his supervisor. For the rest of the simulation, this opin-
ion was slowly returning to normal, because the manager did not perform more
unliked activities and behaved otherwise normally.

Due to the nature of the algorithm, the computing cost associated with finding
the action participant has remained at approximately the same level. However,
there in some cases, a rare situation occurred when a participant was not found.
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Figure 5: Evolution average employee opinion of the office manager as the simu-
lation progresses.

The rarity of this occurrence may have been partly due to the small scale of the
simulation and it is necessary to conduct larger-scale tests in the future to test
whether the algorithm will remain efficient.

9. Conclusions

The following activities have been recognized as the main goals of the work:

• Proposing a model of virtual agents that simulate memory and personality.

• Implementation of the proposed model in a selected game engine.

• Creating an efficient way of choosing actions to perform.

• Implementation of a simulation in which the model described in this paper
is used, further examination and categorization of agent behavior resulting
from the nature of the designed system.

• The ability to customize the implementation for varying kinds of games.

These goals have been to a large extent achieved. A goal that has not been
fully achieved though is the proper verification of the model. Although the most
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important elements of it have been presented in form of examples, no large-scale
have been carried out to statistically prove its operation.

Above described results show clear potential of the system in form of many
lifelike behaviour mechanisms that come with the addition of more complex mem-
ory to emotion based agent systems. An interesting direction of exploration may
be to extend the model by integrating an agent personality system.
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