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Abstract. The matching pursuit (MP) algorithm is a greedy method for sig-
nal decomposition used in video coding, data compression, and, particu-
larly, analysis of EEG signals in various paradigms, including P300 and
ER(D)S (motor imagery). An important issue for MP implementation is a
correct treatment of normalization of atoms (functions) used in computa-
tions. Failing to account for normalization-related effects may affect both the
numerical stability and the reliability of the algorithm. This paper describes
these normalization effects, evaluates their impact on the algorithm’s per-
formance, and describe the proper approach together with a ready-to-use
implementation, available under a General Public Licence (GPL). Several
performance optimizations used as a part of this implementation are also
described.
Keywords: matching pursuit, time-frequency, wavelet, EEG analysis.

1. Introduction
1.1. Matching pursuit

The Matching Pursuit (MP) algorithm was first proposed by Mallat and Zhang
[1] as a greedy solution to decompose a given signal x into a linear combination of
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functions (gn) from a predefined set D, called a dictionary:

x =

M∑
n=0

αngn . (1)

In general, problem (1) cannot be solved in polynomial time, if functions in
the dictionary do not form an orthogonal set. However, a greedy procedure can be
defined as

R0x = x

Rn+1x = Rnx − 〈Rnx, gn〉 gn (2)

gn = argmaxgn∈D 〈Rnx, gn〉 ,

where x is the signal being decomposed, Rnx is a residual before n-th iteration
(starting from n = 0), and gn is the atom selected in n-th iteration. The above
formulation assumes that all atoms g ∈ D are L2-normalized, i.e. 〈g(t), g(t)〉 =∫

g(t)2dt = 1.
In each step, the best approximation to the current residual Rnx is chosen from

the “dictionary” D and subtracted from the signal after being multiplied (fitted)
with an adaptive scale factor.

It is worth noting, that since the matching pursuit does not provide an exact
solution for (1), it should be referred to as “heuristic”. However, it is traditionally
referred to as an algorithm, and this article will refer to it as such.

The usual choice for the atoms (functions) forming the dictionary is the family
of the Gabor atoms g(s, f0, t0, φ) defined as

g(s, f0,t0,φ)(t) = Kr e−π
( t−t0

s

)2

cos(2π f0(t − t0) + φ) ,

where Kr is the normalization constant.
There are two main reasons for the choice of Gabor atoms. Firstly, the Ga-

bor atoms have the most compact representation on a time-frequency plane, and
therefore are a natural candidate for using matching pursuit in calculating high-
resolution estimates of the time-frequency distribution of the signal’s energy. This
approach has been successfully used to describe the time-frequency microstructure
of EEG event-related (de-)synchronization in [2].

Secondly, the Gabor atoms and multivariate (multi-channel) matching pursuit
have proven to be very useful in solving some advanced problems in EEG analysis,
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such as parametrization of the single-trial evoked potentials [3], providing efficient
pre-processing for the inverse problem in EEG [4], or parametrization of EEG
transients [5].

1.2. Dictionary construction
We start by defining a dictionary for the MP algorithm, by adapting the “op-

timal dictionary” construction from [6]. The construction is based on a single pa-
rameter ε, related to the density of the dictionary. Smaller values of ε correspond to
more fine-grained dictionaries (consisting of a larger number of atoms). Generally,
ε should be close to 0 (e.g. 0.1) for accurate decomposition.

Similarly to the original dyadic dictionary by Mallat [1], the scale parameter
varies exponentially, starting from a pre-defined minimal scale s0 (which could be
problem-specific): s0, s0a, s0a2, . . . whereas the dilation factor a is defined as

a =
1 + ε

√
(2 − ε2)(ε4 − 2ε2 + 2)

(1 − ε2)2 . (3)

For a given scale s, frequency ( f0) and postion (t0) parameters form a regular,
rectangular grid with spacing in both directions defined as

∆f =
1
s

√
−

2
π

log(1 − ε2) (4)

∆t = s

√
−

2
π

log(1 − ε2) . (5)

The phase parameter φ is not taken into account due to the “phase-related equiv-
alence” described in [6] and the reasons which shall be described later in this
manuscript.

Such construction of the dictionary guarantees the constraints (in terms of the
inner-product-related metric) between adjacent atoms, i.e.√

1 − 〈g(s, f0, t0), g(sa, f0, t0)〉 ≤ ε√
1 − 〈g(s, f0, t0), g(s, f0 + ∆f , t0)〉 ≤ ε (6)√
1 − 〈g(s, f0, t0), g(s, f0, t0 + ∆t)〉 ≤ ε .
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2. Normalization
Since in formula (2) it is assumed that all atoms g are L2-normalized, it is

crucial to fulfill this assumption for all atoms in the dictionary. The normalization
factor for real Gabor atoms, which can be derived from 〈g, g〉 = 1, is equal to

Kr =
23/4

√
s

(
1 + cos(2φ) exp(−2πs2 f 2

0 )
)−1/2

. (7)

This value differs from the normalization value for the envelope function e−π(
t
s )

2

by a constant factor of
√

2 and introduces the additional factor involving an atom’s
phase. We can note that for sufficiently large frequencies (s f0 � 1) the normaliza-
tion constant is asymptotically phase-independent:

KrHF = lim
f0→∞

Kr =
23/4

√
s
. (8)

However, in case of discrete-time signals, the above formulae are valid only
in the range of low frequencies. Whenever f0 approaches the Nyquist frequency
fN , the time discretisation effects come into account and the above formula is no
longer accurate.

To derive the correct formula for a fast-oscillating atom with frequency f0 =

fN − δf (with δf � fN), one can rewrite the oscillating factor of the Gabor atom as

cos(2π( fN − δf )(t − t0) + φ) =

= (−1)n cos(2πδf (t − t0) + (2π fN t0 − φ)) .

Therefore, for f ≈ fN there is a need to calculate “corrected” phase and frequency

f ′ = fN − f (9)

φ′ = 2π fN t0 − φ (10)

so these values can be used exclusively to calculate the corrected normalization
factor

K′r =
23/4

√
s

(
1 + cos(2φ′) exp(−2πs2 f ′20 )

)−1/2
. (11)

Plot 1 compares the different values of normalization factor: the analytically-
derived value of Kr, the phase-independent approximation KrHF, and the corrected
value of high-frequency normalization factor K′r.
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Figure 1: Values of normalization factor K for different normalization strategies
(blue—KrHF, red—Kr, black—combined Kr and K′r) for s = 1 s and sampling
frequency of 128 Hz. Multiple branches of the same colour correspond to different
values of φ.
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Even though the difference between Kr and K′r is significant only for f ≈ fN ,
atoms of such frequencies appear in real-world signal decompositions on a regular
basis. If the normalization is not accounted for correctly, two effects may appear:

• selecting (and substracting) high-frequency atoms will still leave some non-
zero residual in the signal, allowing it to be selected as the best match also
in subsequent iterations,

• high-frequency atom may be selected instead of the correct one if the error
in Kr estimation leads to over-estimating 〈Rnx, gn〉 with the current residual.

The proper analytical treatment of normalization would be to use formula Kr

for small frequencies ( f < 1
2 fN) and formula K′r for large frequencies. Errors in

normalization factor values obtained this way, relative to the values obtained nu-
merically for the discretely-sampled functions are presented in plot 2. The pro-
posed approximation is quite sufficient even for double-precision calculation, with
relative errors not exceeding 10−12.

2.1. Evaluation
As a test, 100 matching pursuit decompositions of randomly-generated white

noise signal segments were performed. Each signal segment consisted of 2048
samples with sampling frequency of 128 Hz. Figure 3 visualizes decomposition
accuracy, defined as

1 −
residual energy
signal energy

= 1 −
∑

i(Rnx)2
i∑

i x2
i

(12)

(where
∑

i is a summation over all signal samples) as a function of the number
of iterations n, both for correct and incorrect (based only on Kr) normalization
strategies.

Without the correct treatment of atom normalization, all white noise decompo-
sitions demonstrated incorrect behaviour. After several initial steps, the algorithm
usually started to select the same high-frequency atom in subsequent iterations.

To evaluate this effect on a more realistic example, a similar analysis was per-
formed on eighteen 20-second segments of a single channel EEG recording. The
signal was filtered with a high-pass filter to remove DC offset and drift. Results are
presented in Figure 4. Although the difference is less pronounced than in the case
of white noise decomposition, it is still significant.
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Figure 2: Relative error for the proposed normalization strategy for s = 1 s and
sampling frequency of 128 Hz.

2.2. Discussion

Since the standard approach in biomedical signal analysis is to apply low-pass
filtering prior to the MP decomposition, the erroneous behavior is probably unno-
ticed in most cases, and therefore neglected in many implementations. However,
even for the filtered signals, high frequency atoms can still appear because of ac-
cumulated numerical residues from previous iterations.

The alternative approach to this problem would be to numerically re-normalize
the best atom found in a given iteration to acquire the correct value of α (see eq. 1).
However, this may lead to selecting a sub-optimal atom in any given iteration, since
un-normalized products 〈Rnx, gn〉, used as a criterion for selecting the best atom,
could not be properly compared.
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Figure 3: Decomposition quality for white noise signals for Kr-only (dashed red
line) and correct (solid black line) normalization strategies.

3. Implementation

The normalization-aware version of MP algorithm has been implemented as
an autonomous software package empi, written in C++ (2011 standard). The only
external dependency is the FFTW library, chosen as the implementation of the Fast
Fourier Transform due to its superior performance and compatibility with various
architectures.

To take advantage of multi-threading (or multi-processor) architecture avail-
able currently in virtually all customer-grade personal computers, OpenMP paral-
lelization has been introduced.

The software (current version: 0.4.1) is available from https://github.
com/develancer/empi under a General Public Licence (version 3) as both C++
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Figure 4: Decomposition quality for EEG signal segments for Kr-only (dashed red
line) and correct (solid black line) normalization strategies.

source code and precompiled binaries for Linux and Microsoft Windows1.
Apart from the correct treatment of atom normalization, a number of optimiza-

tions were implemented in empi. Some of the optimizations can be applied not only
to matching pursuit with Gabor dictionaries, but to much wider spectrum of signal
analysis algorithms (e.g. wavelet analysis), and therefore will be described in the
following section.

3.1. Fast Fourier Transform
We introduce complex Gabor atoms as

G(s, f0, t0) = Kc exp
(
−π

( t − t0
s

)2
+ 2πi f0(t − t0)

)
, (13)

1both 32-bit and 64-bit OS versions are supported
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where Kc is a (much simpler) normalization constant, identical to the normalization
factor of the envelope function alone:

Kc =
21/4

√
s
. (14)

The relation between complex and real Gabor atoms is pretty straightforward:

g(s, f0, t0, φ) =
Kr

Kc
<(G(s, f0, t0)eiφ) , (15)

where < stands for the real part of the complex number. This simple substitution
allows to perform a major part of the computations on complex Gabor atoms.

This approach allows us to make an important optimization. The full formula
for the scalar product of the signal with a complex Gabor atom can be written as

〈x,G(s, f0, t0)〉 = Kc

∑
t

x(t)e−π
( t−t0

s

)2

e2πi f0(t−t0) , (16)

which is essentially the formula for a windowed discrete Fourier transform with
a Gaussian window function. Therefore, the calculations may be performed with
Fast Fourier Transform implementation, resulting in a significant decrease of the
computation time. It is worth noting, that this technique may be applied not only
to Gabor atoms, but any family of atoms consisting of an oscillating factor and the
“envelope” factor with finite support.

3.2. Phase optimization
For given (s, f0, t0), the optimal phase φopt maximizing the inner product can

be calculated as
φopt = arg 〈x,G(s, f0, t0)〉 . (17)

With such phase, ∣∣∣∣〈x, g(s, f0, t0, φopt)
〉∣∣∣∣ =

Kr

Kc
|〈x,G(s, f0, t0)〉| . (18)

Therefore, it is not necessary to include phase parameter in dictionary construction,
as the optimal phase φopt can be found in a straightforward manner for any given
set of parameters (s, f0, t0).
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3.3. Priority queue

To improve the selection of the optimal atom in each step, similarly to the
approach used in [7], a priority queue was introduced to store (and update) current
values of 〈Rnx, g〉 for each atom g in the dictionary. In each iteration, the best fit
can be selected in O(1) time by the Find-Max operation introduced in the standard
Max-Heap implementation from [8].

After selecting an optimal atom in each iteration, values stored in the priority
queue have to be updated, with the help of an additional Decrease-Key operation.
However, from the formula

〈Rn+1x, g〉 = 〈Rnx − αgn, g〉 = 〈Rnx, g〉 − α〈gn, g〉 (19)

it is clear that the inner products between updated residual and all atoms g orthog-
onal to currently selected gn (〈gn, g〉 ≈ 0) do not require to be recalculated between
iterations.

This optimization is utilized by noticing that the absolute value of the inner
product between Gabor atoms (both real and complex) is bounded by the inner
product of their Gaussian envelopes. For every two complex Gabor atoms G1 =

G(s1, f1, t1) and G2 = G(s2, f2, t2), this upper bound can be calculated as:

|〈G1,G2〉| ≤

√
2s1s2

s2
1 + s2

2

exp
−π(t1 − t2)2

s2
1 + s2

2

 . (20)

Therefore, if the above scalar product is estimated to be below given threshold
(e.g. 10−15), the pair of atoms may be treated as orthogonal and no inner product
update have to be performed.

3.4. Multivariate Matching Pursuit
In case of analysing multichannel data, which is usually the case in EEG anal-

ysis, it is useful to take into account possible relations between simultaneous data
in different channels. Therefore, the resulting decomposition of each channel will
depend also on the data in every other channel. More specifically: in every itera-
tion, atoms selected for all channels share the same values of parameters s, f0 and
t0. Three variants of multivariate MP were implemented, as defined in [6]:

• MMP1: in every iteration, atoms selected for all channels share the same
phase φ and the parameters maximize the sum of the moduli of inner prod-
ucts

∑
c |〈Rnxc, g(s, f0, t0, φ)〉|.
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• MMP2: in every iteration, atoms selected for all channels share the same
phase φ and the parameters maximize the sum of the inner products∑

c 〈Rnxc, g(s, f0, t0, φ)〉.

• MMP3: in every iteration, atoms selected for all channels are allowed to
have different phases, and the parameters maximize the sum of the moduli
of inner products

∑
c |〈Rnxc, g(s, f0, t0, φc)〉| .

Due to the linearity of the inner product, decomposition in MMP2 variant can
be performed on a single signal, constructed as a sum of all channels, since

∑
c

〈
Rnxc, g(s, f0, t0, φ)

〉
=

〈∑
c

Rnxc

 , g(s, f0, t0, φ)
〉
.

This feature of MMP2 allows for a significant speed-up, compared to MMP1. After
each iteration, the selected atom gn has to be projected onto every channel to cal-
culate the coefficients α (see eq. 1) for each channel. This additional step, however,
is not computationally expensive.

4. Conclusions

This paper studies the effect of atom normalization on the performance and
reliability of the matching pursuit algorithm. It was shown that the incorrect treat-
ment of normalization may impede both the numerical stability of the algorithm, as
well as its key feature—selecting the optimal atom at each step. A semi-analytical
normalization strategy has been evaluated and shown to be accurate with the rela-
tive error not exceeding 10−12. Also, a ready-to-use C++ implementation, combin-
ing the introduced normalization strategy with a range of described optimization,
has been provided on an open-source licence.
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