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Abstract. The paper presents details of discretisation of a thermal diffusion
equation in one-dimensional space in terms of the Finite Volume Method. In
the following sections, the method of space discretisation is discussed along
with the approximation of a spatial derivative, matrix notation of a system
of equations, special cases, approximation of three types of boundary condi-
tions and derivative approximation over time. Much attention is also given
to the issue of averaging material properties which can generally be different
in adjacent cells.The study aims to analyse various multilayer structures for
their suitability as heat storage. The launch of studies described in the paper
has been driven by the lack of methods for effective heat storage, which is
currently one of the key problems faced by the renewable energy industry.
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1. Introduction

Flat structures composed of layers with varying material properties and dif-
ferent thickness through which heat passes are often encountered in technology.
Such structures are found in the construction [25, 39, 46, 48], food [53], phar-
maceutical [40], space [27], textile [8, 24] and other industries. Thermal analyses
of multilayer structures are dominated by an analytic approach (in which the the-
ory of thermal resistance is most commonly applied) [31], as well as the numeric
approach in which numerical methods are utilised to seek solutions (Finite Differ-
ence Method [4, 6, 20, 31, 37], the Finite Element Method [17, 54, 55], the Finite
Volume Method [23, 36], the Kansa Meshless Method [26] and others). It should
be added that the analytic approach is mostly applied to stationary systems. For
the analysis of non-stationary heat flow, when boundary conditions (e.g. ambient
temperature dependent on insolation [48]), material properties (e.g. temperature-
dependent heat transfer coefficient [26], or humidity-dependent material param-
eters [15, 50]) are changed, the numerical approach is most commonly adopted.
Furthermore, in addition to standard temperature distribution analyses, the liter-
ature also refers to the works on heat storage in single- or multilayer structures
[14, 29], or works analysing the acoustic properties of such structures [9]. Launch-
ing the study described in this article was driven by the former of the above men-
tioned trends. The objective of the study is to develop such a multilayer structure
by proper selection of the number, thickness and materials of the layers that could
function as heat storage. The absence of effective methods for heat storage is cur-
rently one of the key issues faced by renewable energy engineering [13, 34, 35, 52].

Numerical studies on heat transfer through various material structures have
been conducted since the 1970s. The first numerical analyses referred to modelling
of non-stationary heat transfer through walls with material properties constant in
space and time. Over time, numerical models have gained complexity, mainly for
being applied to solving new issues, requiring the taking into account of other
factors affecting the processes [15, 26, 48, 50]. For quite a long time, the Finite
Difference Method (FDM) has been the leading tool for solving thermal diffu-
sion equations, and there are numerous references to this approach in literature
[47, 21, 22, 30, 33, 38]. The method is still quite common, yet in recent years,
there has been a growing number of works recorded in which the thermal diffusion
equations are solved with the Finite Volume Method (FVM). Examples include the
works of Douglas (2008) [11], Carrillo et al. (2015) [5], Bradii and Herbin (2008)
[2] (in this work, the authors combine FVM with the Finite Element Method), as
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well as Chandrashekar (2016) [7] (here, two different equations are solved with
FVM: thermal diffusion and Navier-Stokes equations). The Finite Volume Method
is distinct by the use of volume and surface balances, whereby the notion of flux
has a significant role in the latter. The flux is defined as a product of any extensive
value and velocity perpendicularly to a given surface. Such concept is more ap-
propriate to diffusion processes than FDM, in which various differential analogues
are referenced to equations and numerical mesh rather than directly to physics
of phenomena. As a consequence, numerical modelling with FVM provides more
information on the course of phenomena and processes than FDM. It should be
added that the thermal diffusion equation can be solved with other methods, e.g.
with the Finite Element Method, but it is still not as good a match for the physics
of phenomena as is FVM.

This article presents the application concept of the Finite Volume Method
(FVM) for analysing one-dimensional heat flow through multilayer structures with
variable material parameters and different thickness. The reason for developing our
own computational code was the observation that the available subject literature
lacks descriptions of solutions to thermal diffusion equations with the Finite Vol-
ume Method. Usually, either simpler solution methods (mainly FDM) or powerful
specialised software programs (e.g. ANSYS Fluent) are used. As it was feared
that, in the course of time, the FDM might reveal some limitations impeding fur-
ther software development, while professional numerical codes can be difficult
to modify (especially those with closed source code), it was decided at the first
stage to develop a proprietary computational tool. This article presents the diffu-
sion equation in a manner typical for FVM. Furthermore, the discussion regarding
the boundary and initial conditions, and the problem of variable material properties
is described, and the use of so called spanning functions for creation of numerical
meshes is proposed. Implementation of a thermal diffusion equation is presented
in a separate article.

The motivation to write this article resulted from the difficulties in finding in
literature all the information needed to write an original numerical code. Admit-
tedly, there are works available on this issue, e.g. Desprésa (2014) [10] or Monteiro
et al. (2011) [28], but they are not exhaustive and are too vague on some points to
be fully useful. Therefore, it has been considered worthwhile to present a detailed
and coherent derivation of numerical schemes. It should be noted that this article is
of a mathematical nature, and issues concerning application of the program being
developed are not covered.
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2. General diffusion process equation in terms of FVM

Consider a control volume V ∈ Ω limited with enclosed area S . Let ~φ denote a
flux of physical value Φ conveyed across the area Ω. Changing the value Φ within
the volume V in time dt is possible in two ways [43, 44]:

• by imbalance of the sum of fluxes ~φ flowing across the area S and perpen-
dicularly to it:

δS = −

∫
S

(~φ · ~n)dS , (1)

• by action within the control volume V sources of the balanced value

δV =

∫
V

sΦdV, (2)

where: ~n - versor of normal direction relative to surface S (the plus sign means
that the flux flows from the control volume, and the minus sign means that it flows
into it); sΦ - source of the value being balanced.

After appropriate transformations (details in [41]) we obtain the following
mathematical expression:

∂Φ

∂t
+ div(~φ) = sΦ. (3)

It is worth mentioning that the equation (3) has a very strong equivalent in fluid
mechanics. If no sources are available, and the value Φ represents density of fluid
ρ, the equation (3) becomes a classical mass balance equation in control volume
[43]:

∂ρ

∂t
+ div(ρ~v) = 0, (4)

where ρ~v is the fluid mass flux.
If the flux ~φ is proportional to value gradient Φ, then (3) will take the form:

∂Φ

∂t
+ div(−α · ∇Φ) = sΦ (5)

or

∂Φ

∂t
− α · ∇2Φ = sΦ, (6)
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where α is the proportionality factor.
Depending on physical interpretation, the equation (6) can describe various

processes with diffusive character, for example the heat flow. Substituting Fourier’s
law [1, 3, 12, 19, 49] for equation (6):

~qT = −λ · ∇T, (7)

where: ~qT - density of heat flux perpendicularly to the surface across which
the heat flows [W/m2], λ - heat transfer coefficient [W/(m · K)], ∇T - temperature
gradient [K/m]; so called thermal diffusion equation will be obtained:

∂T
∂t
− λ · ∇2T = sT , (8)

where sT is the source of heat [K/s].
Another example of a process with the same physical mechanism is the phe-

nomenon of component diffusion in a mixture. Substituting for equation (6) the
Fick’s first law [16, 49, 56]:

~jC = −D · ∇C, (9)

where: ~jC - amount of substance flowing through the unitary cross section in a
unit of time [mol/(m2·s)], D - diffusion factor [m2/s],∇C - substance concentration
gradient [mol/m4]; the equation takes the form:

∂C
∂t
− D · ∇2C = sC , (10)

where sC is the source of component concentration [mol/(m2 · s)].
Similarly, by means of the general equation (6), other processes can be ex-

pressed, such as electrical media flow in semiconductors, or Markov processes.
The discussion that follows applies exclusively to the thermal diffusion equation.

3. Boundary and initial conditions of a numerical solution

One-dimensional heat flow through a flat homogeneous structure is described
in the literature with the aid of a parabolic differential partial equation [4, 6, 20,
31]:
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∂T
∂t
−
∂

∂x

(
λ

cpρ

∂T
∂x

)
= S (t, x), (11)

for x ∈ [xA, xB] and t ∈ [0, tk], where: T (t, x) - temperature [◦C], t - time [s], tk
- end time [s], x - spatial coordinate [m], λ - heat transfer coefficient [W/(m ·K)], cp

- material specific heat [J/(kg · K)], ρ - material density [kg/m3]. Function S (t, x)
represents additional internal heat sources [K/s].

The equation (11) is an equivalent of the expression (8), yet the heat trans-
fer coefficient has been replaced with the temperature balance factor, also taking
into consideration the material density and specific heat. This action is essential to
analyse changes of heat accumulated in individual areas (cells of numerical grid)
rather than only the temperature distribution.

In a general case, the material parameters can depend on both the location
(heterogeneous structure) and time (degrading structure), then λ = λ(t, x), cp =

cp(t, x) and ρ = ρ(t, x). Further in the article the material parameters are denoted
with an overall symbol D = D(t, x). The dimension of that component is [m2/s].

To provide an unambiguous solution to the equation (11) it is necessary to
determine the initial condition:

T (0, x) = T0(x), (12)

where T0(x) is a known function, and boundary conditions valid in points xA

and xB at any time t ∈ [0, tx].
To ensure the universality of the solution, various types of boundary conditions

have to be introduced (they are provided for xA; for xB defined accordingly). In
further solutions, it is proposed to consider:

a) The Dirichlet condition defining temperature value at the wall end

T (t, xA) = TA(t). (13)

b) The Neumann condition defining heat flux passing through the wall in time

λ

cpρ

∂T
∂x

(t)

∣∣∣∣∣∣
A

= FA(t), (14)

where FA(t) is the heat flux reaching the wall at the point xA.
c) The mixed condition determining the relationship between the flux passing

through the wall in time t and outside temperature difference Tin, temperature at
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the wall edge TA and loss (described with the factor α) while passing through the
wall edge

λ

cpρ

∂T
∂x

(t)

∣∣∣∣∣∣
A

= α(TA(t) − Tin(t)). (15)

4. Problem of variable material parameters

Differential equation (11) can be solved numerically. Historically, the first such
solution was achieved using the Finite Difference Method, in which the derivatives
are replaced with appropriate finite difference schemes, based on the values deter-
mined in the subsequent nodes of the mesh [1, 18, 51]. Such a scheme, written for
one axis of a coordinate system, can take the form:

T t+∆t
i − T t

i

∆t
+

λ

cpρ

−T t
i−1 + 2T t

i − T t
i+1

(∆x)2 = 0, (16)

where: i - node number [−], t - time [s], ∆t - time step [s], ∆x - spatial step [m].
However, the scheme (16) is not suitable for modelling multilayer structures,

as it is insensitive to the spatial variability of material parameters λ, cp and ρ. Re-
gardless of what values are taken by the parameters in individual nodes or cells
of the mesh, the solution always tends to the linear form which, for instance, for
multilayer walls, is opposite to the observations. Patankar (1980) [32] proposed
to solve that problem by the application of harmonic weighted averaging of ma-
terial characteristics. Kadioglu et al. (2008) [20] proposes the use of arithmetic
weighted averaging, and demonstrates that in some instances it is more favourable
than harmonic averaging. The indications provided in the cited works relate to so-
lutions based on the Finite Difference Method, yet they can be used to develop a
numerical scheme conforming to the Finite Volume Method concept. This issue is
described further.

5. The problem of variable thickness of the layers

The discussion presented in the works of Patankar and Kadioglu et al. refers
to regular meshes, i.e. with fixed spatial steps. This solution performs well in the
case of structures composed of layers with comparable thicknesses. When the layer
thickness differences are significant, the mesh has to be generated so as to enable
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proper action of the numerical scheme in the thinnest layer. This condition might
require building meshes composed of tens or hundreds of thousands of cells. Re-
grettably, the larger the number of mesh cells, the greater the computer RAM and
computing power required.

A solution to the above issue can be the use of so called spanning functions
which control the distribution of the mesh nodes and their local concentration.
Such functions are used as a standard in numerical fluid mechanics for modelling
phenomena occurring at the wall layer, where the fluid viscosity is of critical im-
portance, or for the modelling of issues related to impact waves. The most com-
monly used spanning functions include:

a) linear function (Fig. 1 example 1): f = i−1
N−1 ,

b) exponential function (Fig. 1 example 2): f =

exp

(
α i−1

N−1

)
−1

exp(α)−1 ,

c) hyperbolic tangent based function (Fig. 1 example 3): f = 1+

tanh

(
α

(
i−1
N−1−1

))
tanh(α) ,

d) hyperbolic sine based function (Fig. 1 example 4): f =

sinh

(
α i−1

N−1

)
sinh(α) .

Symbols in the equations denote, respectively: N - number of nodes, i - current
node number, α - node distribution control factor.

To calculate the coordinates of individual boundary points, use the following
formula:

xi = f xA + (1 − f )xB, (17)

where: xi - node coordinate [m], xA - mesh start (first node) coordinate [m], xB

- mesh end (last node) coordinate [m].
Figure 1 shows distribution examples of mesh nodes obtained from the four

above mentioned spanning functions. In addition to the linear function case, the
distribution is asymmetric. To achieve symmetry in the node distribution of each
layer of the wall, it has to be divided into halves and the equation (17) applied,
whereby to calculate the coordinates of nodes in the first half of the wall, the vari-
ables xA and xB have to swap positions. The method works when the number of
nodes is greater than three.
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Figure 1: Example of mesh node distribution (α = 1.5)

6. Space discretisation - basis of the numerical scheme

The majority of methods for numerical solution of partial differential equations
are based on nodes distinguished in calculation space (in this case, it is the section
[xA, xB]) and on cells or elements built on them (naming is usually related to a
specific numerical method).

An example of discretisation of a one-dimensional space (section [xA, xB])
consistent with the Finite Volume Method [43, 44] can bee seen in Fig 2. The nodes
are denoted xn

i , where i = 1, ...,N. The symbol xc
i , where i = 1, ...,M, (M = N−1),

can be identified with central points of computational cells built on the basis of
nodes or with entire cells. xc

i specifically signifies the section [xn
i , x

n
i−1]. This is

a one-dimensional representation of finite (or control) volume, for which balance
equations are composed in FVM. Still, the superscripts n signify references to
nodes, and superscripts c denote cells (identified with their central points). ∆xn

i
signifies the distance between nodes xn

i and xn
i+1, while ∆xc

i denotes the distance
between centres of adjacent cells, xc

i and xc
i+1. Further in the paper, to simplify the

notation, the expressions "cell i" (Fig. 2) and "node i" are used (always the node
on the left side of the cell i).

7. Numerical solution to a heat transfer equation

The equation (11) is considered in the form:
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Figure 2: Symbols used in numerical schemes

∂T
∂t
−
∂F
∂x

= 0, (18)

where

F =
λ

cpρ

∂T
∂x

(19)

is the heat flux. For an equation in this form, the approximation scheme will
be derived.

In the initial consideration, for the sake of simplicity, we assume a steady-state
case and equation contains no evolution component:

−
∂

∂x

(
λ

cpρ

∂T
∂x

)
= 0, (20)

for x ∈ [xA, xB] and t ∈ [0, tk].
Using the flux of heat (19), we consider the equation in the form:

−
∂F
∂x

= 0. (21)

Boundary conditions will be taken into account later.
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8. Approximation of spatial derivative

Based on discretisation of computational domain (Fig. 2), derivative ∂F/∂x in
the cell i can be expressed in the form of surface balance typical for FVM, here in
a 1D form:

∂F
∂x

∣∣∣∣∣∣
i
u

Ft,n
i+1 − Ft,n

i

∆xn
i

. (22)

Ft,n
i denotes the flux of heat flowing into the cell (through a node with the

coordinate xn
i ), while Ft,n

i+1 is the flux of heat leaving it (through a node with the
coordinate xn

i+1), and symbol t represents the point in time. As a consequence of
the assumption that there are no heat sources present in this case, both fluxes have
to be equal.

In the subsequent step, when replacing the derivative ∂T/∂x in the equation
(19) with the differential quotient, a representation of the flux Ft,n

i is obtained in
the form of the following differential scheme:

Ft,n
i = Dn

i

T t,c
i − T t,c

i−1

∆xc
i−1

. (23)

Terms of the equation (23) require commentary. Note that to determine a dis-
crete value of a flux in the node i, temperature values T in the cells around that
node are used, namely the cells i − 1 and i (Fig. 2). As previously mentioned, the
discrete temperature T can be interpreted as a value in a central point of the cell
T t,c

i . It can be understood that the temperature is constant in the entire cell. Simi-
larly, material parameters of the centre λ, cp and ρ and an auxiliary coefficient D
refer to cell (hence indices c):

Dc
i =

λc

cc
pρc . (24)

Meanwhile, the index n in the coefficient Dn
i in (23) means that represents

the material properties in the node i. Therefore, its value depends on the material
parameters of the both adjacent cells:

Dn
i = f

(
λc

i−1

cc
p,i−1ρ

c
i−1
,
λc

i

cc
p,iρ

c
i

)
. (25)
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Most commonly, weighted averaging is used as f [20, 32]: harmonic or arith-
metic.

For a harmonic weighted average, the value of parameter Dn
i is expressed as:

Dn
i,harm =

∆xn
i−1 + ∆xn

i
∆xn

i−1
Dc

i−1
+

∆xn
i

Dc
i

. (26)

For the arithmetic weighted average, it yields:

Dn
i,aryt =

∆xn
i−1Dc

i−1 + ∆xn
i Dc

i

∆xc
i−1 + ∆xc

i
. (27)

Similarly, the representation of a flux passing through the second edge is de-
termined as:

Ft,n
i+1 = Dn

i+1

T t,c
i+1 − T t,c

i

∆xc
i

. (28)

Taking into account the relationships (23) and (28), the approximation (22)
takes the form of:

∂F
∂x

∣∣∣∣∣∣
i
u

Ft,n
i+1 − Ft,n

i

∆xn
i

= Dn
i+1

T t,c
i+1 − T t,c

i

∆xc
i ∆xn

i
− Dn

i

T t,c
i − T t,c

i−1

∆xc
i−1∆xn

i
, (29)

where Dn
i and Dn

i+1 stand for harmonic (26) or arithmetic (27) averages.
The relationship (29) in the case of homogeneous structures, or in the case of a

uniform division of the space into cells, is simplified. This will be presented further
in the paper.

The relationship (29) has to be fulfilled in all computational cells, and there-
fore, substituting (29) for (21), or the entire numerical mesh, not a single equation,
but a system of equations is obtained:

Ft,n
i+1 − Ft,n

i

∆xn
i

= Dn
i+1

T t,c
i+1 − T t,c

i

∆xc
i ∆xn

i
− Dn

i

T t,c
i − T t,c

i−1

∆xc
i−1∆xn

i
= 0, (30)

for i = 2, ...,M − 1, where M is the number of mesh cells.
Arranging components with respect to temperatures in individual cells, the

system of equations (30) transforms into:
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Figure 3: Cell numbering and matrix index range scheme

−
Dn

i

∆xc
i−1∆xn

i
T t,c

i−1 +

[
Dn

i

∆xc
i−1∆xn

i
+

Dn
i+1

∆xc
i ∆xn

i

]
T t,c

i −
Dn

i+1

∆xc
i ∆xn

i
T t,c

i+1 = 0, (31)

for i = 2, ...,M − 1. Note that ((30) and ((31) do not include schemes for the
extreme cells i = 1 and i = M. Their definition requires taking into account the
boundary conditions, which will be given further explanation in later sections. For
the time being, we should assume that these schemes are also known.

9. Discretization scheme in a matrix form

A sequence of equations (31) can be presented in a matrix form as a system of
linear equations:

A · T = B. (32)

Due to the construction method, A is a tridiagonal matrix, the dimension of
which depends on the number of cells M as well as on the type of boundary con-
ditions adopted (Fig. 3):

a) If, on two edges, Dirichlet conditions are assumed, then the number of un-
knowns equals M − 2 (the number of cells reduced by two known solutions in the
first and last cell of the mesh), and the size of matrix A will be (M − 2) × (M − 2);

b) If, on one of the edges, the Drichlet condition is assumed and the Neumann
or mixed condition on the other, then the number of unknowns will increase by 1,
and the size of matrix A will be (M − 1) × (M − 1);

c) If, on two edges, the Neumann or mixed condition is defined, then the num-
ber of unknowns will equal the number of cells in the space, and the size of matrix
A will be M × M.
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Further in the paper, it is assumed that elements of the matrix A are indexed
from 2 to M−1. Additional unknowns, created by imposing the Neumann or mixed
condition, are determined explicitly based on temperature values from the previous
time step. Such an approach does not deteriorate the quality of the solution, but it
is much more convenient to implement.

Non-zero elements of the matrix A on the diagonal (elements Ai,i) equal to

Ai,i =

(
Dn

i

∆xc
i−1

+
Dn

i+1

∆xc
i

)
1

∆xn
i
, (33)

for i = 2, ...,M − 1; under the diagonal (elements Ai,i−1)

Ai,i−1 = −
Dn

i

∆xc
i−1

1
∆xn

i
, (34)

for i = 2, ...,M − 1; and over the diagonal (elements Ai,i+1)

Ai,i+1 = −
Dn

i+1

∆xc
i

1
∆xn

i
, (35)

for i = 2, ...,M − 1.
Other elements A equal zero. Such matrix structure results from the fact that

every differential scheme (31) combines the temperatures assigned to three adja-
cent cells only.

The (column) vector T includes the unknown temperatures T c
i . B denotes the

(column) vector of the right hand side with elements Bc
i . The superscript c means

that vectors elements are linked to the cells. In a general case, the size of vectors
T and B also depends on the type of boundary conditions imposed; here however,
since a constant size of the matrix A is assumed, this will equal M − 2.

While in the space there are no sources, the elements of the vector B, except
possibly for the first and last elements, equal zero. In the case of heat sources
present in the domain, their performance is expressed in the scheme by non-zero
elements Bc

i of the vector B.

10. Special cases

The scheme discussed in the previous section, and the resulting form of the
matrix A, refers to the most general case, significant in the context of the problem
being solved. Several special cases can be distinguished.
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Case 1 - nodes distributed uniformly, various values of material parameters.
As in this case ∆xc

i = ∆xc
i−1 = ∆xn

i = ∆xn
i−1 = ..., the formulas describing elements

of the matrix A are simplified:

Ai,i =
Dn

i + Dn
i+1

(∆x)2 , Ai,i−1 = −
Dn

i

(∆x)2 , Ai,i+1 = −
Dn

i+1

(∆x)2 . (36)

The formulas for the averaged values of the coefficient D will also be simpli-
fied:

Dn
i,harm =

∆x + ∆x
∆x

Dc
i−1

+ ∆x
Dc

i

=
2Dc

i−1Dc
i

Dc
i + Dc

i−1
,Dn

i,aryt =
Dc

i−1 + Dc
i

2
. (37)

Case 2 - non-uniformly distributed nodes, constant value of the parameter D
(homogeneous case):

Ai,i =

(
1

∆xc
i−1

+
1

∆xc
i

)
D

∆xn
i
, Ai,i−1 = −

D
∆xc

i−1

1
∆xn

i
, Ai,i+1 = −

D
∆xc

i

1
∆xn

i
. (38)

Case 3 - uniformly distributed nodes, constant value of the parameter D:

Ai,i =
2D

(∆x)2 , Ai,i−1 = −
D

(∆x)2 , Ai,i+1 = −
D

(∆x)2 . (39)

In this case, the matrix A takes the form:

A =
D

∆x2



2 −1 0 ... 0
−1 2 −1 ... ...

0 −1 2 ... 0

... ... ...
. . . −1

0 ... 0 −1 2


. (40)

This form is most commonly found in literature [1, 18, 38, 41, 51] in terms of
the Finite Difference Methods. In this special case, the equivalent of the scheme
(31) has the form:

−
D

∆x2 T t,c
i−1 +

2D
∆x2 T t,c

i −
D

∆x2 T t,c
i+1 = 0, (41)

where i = 2, ...,M − 1.
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Figure 4: Scheme of a numerical mesh at the left wall edge

11. Approximation of boundary conditions

The boundary conditions have to be taken into account in the numerical scheme.
They affect the value of the first (index 2) and last (index M − 1) element of the
matrix A and the first and last element of the right hand side vector B. Similarly,
as in the case of the matrix A, it is further assumed that the elements of vectors B
and T are indexed from 2 to M − 1. Therefore, consistency is maintained between
the indices of matrix and vector elements and cell numbering.

Dirichlet boundary condition. When imposing the Dirichlet condition (Eq.
13), it is assumed that the temperature value in the first cell is known and is T t,c

A
(vector T t,c has no element with index 1, hence the new symbol; similarly, further
in the paper, the symbol T t,c

B is introduced, which denotes the temperature in the
last cell of the mesh). The scheme (30) for the second cell takes the form (Fig. 4):

Ft,n
3 − Ft,n

2

∆xn
2

= Dn
3

T t,c
3 − T t,c

2

∆xc
2∆xn

2
− Dn

2

T t,c
2 − T t,c

A

∆xc
1∆xn

2
= 0. (42)

After arranging with respect to temperatures, the first equation of the system
of equations (31) is obtained:
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[
Dn

2

∆xc
1∆xn

2
+

Dn
3

∆xc
2∆xn

2

]
T t,c

2 −
Dn

3

∆xc
2∆xn

2
T t,c

3 =
Dn

2

∆xc
1∆xn

2
T t,c

A . (43)

The right side of the equation (43) constitutes the first element (with index 2)
of the vector Bc:

Bc
2 =

Dn
2

∆xc
1∆xn

2
T t,c

A . (44)

In the special case of a zero boundary condition (T t,c
A = 0) Bc

2 = 0.
On the right hand site of the domain, the equations (42) and (43) take the form:

Ft,n
N−1 − Ft,n

N−2

∆xn
M−1

= Dn
N−1

T t,c
B − T t,c

M−1

∆xc
M−1∆xn

M−1
− Dn

N−2

T t,c
M−1 − T t,c

M−2

∆xc
M−2∆xn

M−1
= 0 (45)

and

−
Dn

N−2

∆xc
M−2∆xn

M−1
T t,c

M−2 +

[ Dn
N−2

∆xc
M−2∆xn

M−1
+

Dn
N−1

∆xc
M−1∆xn

M−1

]
T t,c

M−1 =
Dn

N−1

∆xc
M−1∆xn

M−1
T t,c

B ,

(46)
where T t,c

B is the known temperature value in the last cell of the mesh.
Therefore, the last element of the vector Bc (with index M − 1) takes the form:

Bc
M−1 =

Dn
N−1

∆xc
M−1∆xn

M−1
T t,c

B . (47)

In the special case of a zero boundary condition (T t,c
B = 0) Bc

M−1 = 0.
Neumann boundary condition. In case of the Neumann condition (Eq. 14), it

is assumed that the value of the heat flux passing through the wall edge is known.
Therefore, the balance of heat fluxes for the first cell (finite volume) takes the form
(Fig. 5):

Ft,n
A = Ft,n

2 = Dn
2

T t,c
2 − T t,c

A

∆x2
1

, (48)

whereby, according to the concept adopted in this paper, for value T t,c
2 , the

temperature from the previous time step is substituted.
After transformation, the temperature value in the first cell is:
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Figure 5: Scheme of a numerical mesh at the right wall edge

T t,c
A = T t,c

2 − Ft,n
A

∆xc
1

Dn
2
. (49)

Particularly for Ft,n
A = 0 (insulated wall edge), this yields: T t,c

A = T t,c
2 .

The analogical formula for the last cell of the mesh can be defined as:

Ft,n
N−1 = Dn

N−1

T t,c
M−1 − T t,c

B

∆xc
M−1

= Ft,n
B . (50)

Therefore:

T t,c
B = T t,c

M−1 −
Ft,c

B

Dn
N−1

∆xc
M−1. (51)

Particularly for Ft,n
B = 0 (isolated domain), this yields: T t,c

B = T t,c
M−1.

Mixed boundary condition. The mixed boundary condition (Eq. 15) relates
the value of the (unknown) temperature in the extreme cell of the domain and the
(known external) temperature outside the domain to the heat flux passing through
that boundary.

To describe the heat flux flowing from the outside to the inside (centre) of the
first cell of the mesh, Newton’s law of cooling can be applied [42]:
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qN = αin∆T (52)

or, in the case in question:

qN = αin(T t
in − T t,c

A ). (53)

The heat absorption coefficient αin [W/(m2 ·K)] is a parameter dependent upon
the types of materials, including the layers between which heat is absorbed, and
upon the conditions present at the interface of the layers.

The flux of heat transferred from the first to the second cell of the mesh can be
presented in accordance with the Fourier law [42]:

qF = −λ
∂T
∂x
, (54)

which is discretised for the computational mesh in the form:

qF = λ
T t,c

A − T t,c
2

∆xc
1

. (55)

The heat transfer coefficient λ [W/(m · K)] is a material feature and generally
represents the function of temperature. To maintain consistency with the physi-
cal model presented above, instead of the coefficient λ, the more general material
parameter D is applied.

Since both fluxes have to be equal, the equations (53) and (55) can be equated
by sides:

αin(T t
in − T t,c

A ) = Dn
2

T t,c
A − T t,c

2

∆xc
1

(56)

From that point, the formula for temperature in the first cell of the mesh can
be determined as:

T t,c
A =

αin∆xc
1T t

in + Dn
2T t,c

2

αin∆xc
1 + Dn

2
. (57)

Here, also for the value T t,c
2 , the temperature from the previous time step is

substituted.
The flux flowing from inside of the domain to the last cell of the mesh can be

defined accordingly:
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qF = Dn
N−1

T t,c
M−1 − T t,c

B

∆xc
M−1

(58)

and then outside:

qN = αout(T
t,c
B − T t

out). (59)

After equating the right sides of both equations and performing such transfor-
mations as before, the formula for the temperature in the last cell of the mesh will
be obtained:

T t,c
B =

Dn
N−1T t,c

M−1 + αout∆xc
M−1T t

out

Dn
N−1 + αout∆xc

M−1
. (60)

12. Time discretization

Up to now, except for explicit boundary conditions, we have not discussed the
issue of evolution of the modelled phenomenon in time. The superscripts at the
variables t denoted references to a certain (discrete) moment of time t.

The time interval encompassing the process of the phenomenon being studied
has to be discretised by dividing the time span [0, tk] into sections equal in length
to the time step ∆t. Within the framework of this work, we assume a constant time
step for a given simulation.

Approximation of a time derivative in the Eq. (11) with a differential quotient
spanned over discretization time step, is expressed with the formula:

∂T
∂t
u

T t+∆t,c
i − T t,c

i

∆t
. (61)

Having substituted the equations (61) and (30) for (18), a full approximation
of the equation (11) will be obtained:

T t+∆t,c
i − T t,c

i

∆t
−

[
Dn

i+1

T t,c
i+1 − T t,c

i

∆xc
i ∆xn

i
− Dn

i

T t,c
i − T t,c

i−1

∆xc
i−1∆xn

i

]
= 0 (62)

for i = 2, ...,M − 1.
This equation can be presented more generally as:
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CT t+∆t,c −CT t,c + AT ∗,c = Bc, (63)

where T ∗,c denotes the temperature vector for the time step t or t + ∆t, depend-
ing on the method of calculations in time further adopted. C is a matrix with the
same dimensions as the matrix A, having non-zero elements with the value 1/∆t
only on the diagonal.

By substituting T ∗,c = T t,c, an explicit scheme is obtained, and every temper-
ature distribution in a next time step is calculated based only on the temperature
history. For the first time step, a table of initial values T t=0,c (initial condition) is
required. Since these are diagonal matrices, it is sufficient to solve the equation:

T t+∆t,c = ∆t(CT t,c − AT t,c + Bc). (64)

It must be emphasized that the explicit scheme is conditionally stable, whereby
the limitation refers to the relationship of the maximum permissible time step in
combination with the size of the spatial mesh.

∆t ≤
1
2

D(∆x)2. (65)

In the case of irregular meshes, the length of the smallest cell should be con-
sidered as ∆x.

If T ∗,c = T t+∆t,c is adopted, the following implicit scheme is obtained:

CT t+∆t,c −CT t,c + AT t+∆t,c = Bc. (66)

After transformations, the following system of equations is obtained:

(C + A)T t+∆t,c = Bc + CT t,c. (67)

Another option is to use the Crank-Nicolson scheme (semi-explicit and semi-
implicit). In such a case:

CT t+∆t,c −CT t,c +
1
2

AT t,c +
1
2

AT t+∆t,c = Bc. (68)

Regardless of the approach to the solution of equation in the time provided,
the matrices and vectors in individual formulas are the same.

From the technical point of view, the fundamental difference between the ex-
plicit and implicit schemes is the necessity to solve (linear) systems of equations
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for the implicit schemes. In the case of explicit schemes, solutions in the following
time step are determined independently for each point (cell).

13. Summary

The following recommendation could be formulated for further implementa-
tion of the presented numerical schemes:

1. An equation of any diffusion process can be written in a form typical to the
Finite Volume Method.

2. The application of the Finite Volume Method appears to be very favourable
for its being well matched to the physics of diffusion processes in which the fluxes
of balanced values play the key role.

3. The application of spanning functions for the creation of numerical meshes
should noticeably influence the performance of the computational code, particu-
larly in the case of structures comprising layers with significantly different thick-
nesses.

4. Creating and using independent computational software seems to be the op-
timum solution due to the full control of all calculation aspects, in particular the
possibility of any modification of the mathematical model and calculation proce-
dures.

5. Developing detailed numerical schemes requires an accurate definition of
indices of individual table variables. Figures presenting the computational mesh in
the centre and at the edges of the space being modelled have proven to be of great
help.

6. The description of numerical schemes and implementation in a selected pro-
gramming language have to be performed simultaneously. Therefore, it will be
relatively easy to discover errors in the program or in its description.

7. In the implementation of differential equations, good planning of the names
of variables and constants present in the program is of high practical importance.
They should correspond to the symbolism used in the description and refer to the
nature of the tasks being completed. Relevant figures are also very helpful at this
stage.



W. Sobieski, A. Trykozko 235

References

[1] Ashgriz N., Mostaghimi J.: An Introduction to Computational Fluid Dynam-
ics. Chapter 20 in Fluid Flow Handbook. McGraw-Hill Publisher, J. Saleh Edi-
tor, United States 2002.

[2] Bradji A., Herbin R.: Discretization Of The Coupled Heat And Electrical Dif-
fusion Problems By The Finite Element And The Finite Volume Methods. IMA
Journal of Numerical Analysis, Vol. 28(3), 2008, 469-495.

[3] Burger M.: Numerical Methods for Incompressible Flow. Lecture notes [on-
line], URL: ftp://ftp.math.ucla.edu/pub/camreport/cam04-12.pdf (available at
2010-01-12), Darmstadt University of Technology, Germany, March 2004.

[4] Burch D.M., Thomas W.C., Mathena L.R., Licitra B.A., Ward D.B.: Transient
Heat and Moisture Transfer in Multi-Layer, Non-Isothermal Walls - Compari-
son of Predicted and Measured Results. Proceedings of Thermal Performance of
the Exterior Envelopes of Buildings IV, Clearwater Beach, FL, 4-7 Dec. 1989,
513-531.

[5] Carrillo J.A., Chertock A., Huang Y.: A Finite Volume Method for Nonlinear
Nonlocal Equations with a Gradient Flow Structure. Communications in Com-
putational Physics, Vol. 17(1), 2015, 233-258.

[6] Cebo-Rudnicka A.: The influence of selected parameters of spray cooling and
thermal conductivity on heat transfer coefficient (in Polish). PhD Thesis. AGH
University of Science and Technology, Kraków (Poland) 2011.

[7] Chandrashekar P.: Finite volume discretization of heat equation and compress-
ible Navier-Stokes equations with weak Dirichlet boundary condition on tri-
angular grids. International Journal of Advances in Engineering Sciences and
Applied Mathematics, Vol. 8(3), 2016, 174-193.

[8] Das A., Alagirusamy R., Kumar P.: Study of heat transfer through multilayer
clothing assemblies: a theoretical prediction. AUTEX Research Journal, Vol.
11(2), 2011, 54-60.

[9] Díaz J.J.C., Rabanal F.P.A, Nieto P.J.G, López M.A.S.: Sound transmission
loss analysis through a multilayer lightweight concrete hollow brick wall by



236 Discretisation of Thermal Diffusion Equation . . .

FEM and experimental validation. Building and Environment, Vol. 45, 2010,
2373-2386.

[10] Despré s B.: Non-linear schemes for the heat equation in 1D. ESAIM: Math-
ematical Modelling and Numerical Analysis, Vol. 48(1), 2014, 107-134.

[11] Douglas V.N.: Finite Volume algorithms for heat conduction. Technical Re-
port for the period December 2009 - May 2010 AFRL-RW-EG-TR-2010-049.

[12] Feistauer M.: Finite Volume and Finite Element Methods in CFD (Numer-
ical Simulation of Compressible Flow) [on-line], Faculty of Mathematics and
Physics, Charles University, Prague 2007.

[13] Ferone C., Colangelo F., Frattini D., Roviello G., Cioffi R. di Maggio R.: Fi-
nite Element Method Modeling of Sensible Heat Thermal Energy Storage with
Innovative Concretes and Comparative Analysis with Literature Benchmarks.
Energies, Vol. 7, 2014, 5291-5316.

[14] Gantenbein P., Rindt C.: Collection of experimental data on the behavior of
TCM/PCM-materials to benchmark numerical codes. Report A3.2 of the Work-
ing Group on Numerical Modelling, December 2012.

[15] Germi S.S., Rahimi B., Sadat S.A.K.: the moisture influence on a brick wall.
International Journal of Advances in Engineering and Technology, Vol. 8(3),
2015 256-260.

[16] Gómez H., Colominas I., Navarrina F., Casteleiro M.: A hyperbolic model for
convection-diffusion transport problems in CFD: Numerical analysis and appli-
cations. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales.
Serie A: Matemt́icas (RACSAM), Vol. 102(2), 2008, 319-334.

[17] Gong J., Xuan L., Ming P., Zhang W.: An Unstructured Finite-Volume
Method for Transient Heat Conduction Analysis of Multilayer Functionally
Graded Materials with Mixed Grids. Numerical Heat Transfer, Part B: Fun-
damentals, Vol. 63, 2013, 222-247.

[18] Johnson N., J.: Review of Numerical Methods. 5th Annual Conference of the
CFD of Canada, CFD97, May 1997, Victoria, British Columbia.



W. Sobieski, A. Trykozko 237

[19] Jouhaud J.C., Sagaut P., Labeyrie B.: A Kriging Approach for CFD/Wind
Tunnel Data Comparison. Journal of Fluids Engineering, Vol. 128(4), 2006,
847-855.

[20] Kadioglu S.Y., Nourgaliev R.R., Mousseau V.A.: A Comparative Study of
the Harmonic and Arithmetic Averaging of Diffusion Coefficients for Non-
Linear Heat Conduction Problems. Idaho National Laboratory, Idaho Falls
(US), March 2008.

[21] LeVeque R.J.: Finite Difference Methods for Differential Equations. Lecture
Notes. University of Washington. Version of September 2005.

[22] Majchrzak E., Turchan Ł: The finite difference method for transient
convection-diffusion problems. The Finite Difference Method for transient
convection-diffusion problems. Scientific Research of the Institute of Mathe-
matics and Computer Science, Vol. 11(1), 2012, 63-72.

[23] Martin K., Escudero C., Erkoreka A., Flores I, Sala J.M.: Equivalent wall
method for dynamic characterisation of thermal bridges. Energy and Buildings,
Vol. 55, 2012, 704-714.

[24] Matusiak M., Kowalczyk S.: Thermal-insulation properties of multilayer tex-
tile packages. AUTEX Research Journal, Vol. 14(4), December 2014.

[25] Mavromatidis L., Bykalyuk A., Mankibi M., Michel P., Santamouris M.: Nu-
merical investigation of a wall’s optimum multilayer thermal insulation posi-
tion. Proceedings of Building Simulation 2011: 12th Conference of Interna-
tional Building Performance Simulation Association, Sydney, 14-16 November.

[26] Mierzwiczak, M. Steadystate heat conduction in a plate with temperature de-
pendent thermal conductivity. Scientific Papers University of Technology. En-
gineering and Production Management, Vol. 9, 2008, 67-79.

[27] Miyakita T., Hatakenaka R., Sugita H.: Evaluation of Thermal Insulation Per-
formance of a New Multi-Layer Insulation with Non-Interlayer-Contact Spacer.
45th International Conference on Environmental Systems, 12-16 July 2015,
Bellevue, Washington.

[28] Monteiro E., Almeida R., Rouboa A.: Finite Volume Method Analysis of
Heat Transfer in Multi-Block Grid During Solidification. Chapter 5 in book



238 Discretisation of Thermal Diffusion Equation . . .

”Heat Transfer - Mathematical Modelling, Numerical Methods and Information
Technology”, edited by Aziz Belmiloudi, 2011. ISBN 978-953-307-550-1.

[29] Navarro L., de Gracia A., Colclough S., Browne M, McCormack S.J., Grif-
fiths P., Cabeza L.F.: Thermal energy storage in building integrated thermal
systems: A review. Part 1. active storage systems. Renewable Energy, Vol. 88,
2016, 526-547.

[30] Olsen-Kettle L.: Numerical solution of partial differential equations. The
University of Queensland, School of Earth Sciences, Centre for Geoscience
Computing. ISBN: 978-1-74272-149-1.

[31] Pakanen J.: Conduction of heat through slabs and walls: A differential-
difference approach for design, energy analysis and building automation ap-
plications. VTT Publications, Finland 2009.

[32] Patankar S.V.: Numerical heat transfer and fluid flow. Hemisphere, New
York, 1980.

[33] Patil P.V., Prasad J.S.V.R.K.: The unsteady state finite volume numerical grid
technique for multidimensional problems. International journal of advances in
applied mathematics and mechanics, Vol. 2(2), 2014, 78-87.
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