BADANIA DOŚWIADCZALNE ELEMENTÓW I KONSTRUKCJI BETONOWYCH

PUBLIKACJA POD PATRONATEM SEKCJI KONSTRUKCJI Betonowych komitetu inżynierii lądowej i wodnej pan

ZESZYT NR 19

Punching of RC thick plates

Przebicie żelbetowych płyt krępych

Tadeusz Urban Jakub Krakowski Michał Gołdyn Łukasz Krawczyk

Pracę wykonano w ramach projektu badawczego nr N506 158440 finansowanego przez Ministerstwo Nauki i Szkolnictwa Wyższego

Katedra Budownictwa Betonowego Wydział Budownictwa, Architektury i Inżynierii Środowiska Politechniki Łódzkiej Łódź 2013

Department of Concrete Structures Lodz University of Technology, Poland Recenzent / Reviewer prof. dr hab. inż. Michał Knauff

Tłumaczenie / Translation dr inż. Anna Kosińska

Skład tekstu / Preparing of text mgr inż. Jacek Filipczak

©2013 Katedra Budownictwa Betonowego, Łódź, Polska ©2013 Department of Concrete Structures Lodz University of Technology, Poland

ISSN 1230-6010

Katedra Budownictwa Betonowego Politechniki Łódzkiej Al. Politechniki 6, 93-590 Łódź, Polska tel. (48) (42) 6313575, fax (48) (42) 6313584, email: k-65@adm.p.lodz.pl

STRESZCZENIE

Eurokod 2 w obliczeniach nośności na przebicie fundamentów (płyt grubych) uwzględnia smukłość ścinania za pomocą dodatkowej funkcji f(a)=2d/a wprowadzonej do podstawowego wzoru na naprężenia graniczne. Ten dodatkowy składnik powoduje silny wzrost naprężenia granicznego w miarę zbliżania się obwodu kontrolnego *u* do słupa. Celem głównym prezentowanych badań była weryfikacja zależności zalecanej przez Eurokod 2 do obliczeń nośności na przebicie fundamentów i płyt krępych.

W ramach prowadzonego projektu badawczego wykonano i zbadano trzy serie (łącznie 14 sztuk) modeli płyt fundamentowych w skali około 1:2 charakteryzujących się małą smukłością ścinania $\lambda \leq 2$. Modele miały kształt ośmiokątów foremnych wpisanych w okręg o średnicy 1200 mm, ze zlokalizowanym w centrum odcinkiem okrągłego słupa o średnicy 200 mm. Poszczególne modele w każdej serii różniły się grubością płyty, która wynosiła 150, 200, 250, 300 i 350 mm. Zbrojenie modeli wykonano ze stali o nominalnej granicy plastyczności $f_{yk} = 500$ MPa. Poszczególne serie badawcze wykonywano z tej samej mieszanki betonu towarowego.

W zależności od serii modele różniły się stopniem zbrojenia głównego, jak również jego ukształtowaniem.

Pierwsza seria, licząca pięć modeli, charakteryzowała się stałym układem i średnicą zbrojenia niezależnie od wysokości elementów, co skutkowało zróżnicowaniem stopnia zbrojenia głównego. Część modeli o grubościach płyty 250, 300 i 350 mm i zarazem niskich stopniach zbrojenia wykazała mniejszą nośność od teoretycznej, obliczonej zgodnie z zasadami Eurokodu 2. W związku z podejrzeniem iż sposób badania mógł przyczynić się do tego faktu, w następnych seriach zmieniono sposób kotwienia płyty. Zastosowano sztywny stalowy kołnierz, który wymuszał położenie wylotu rysy ukośnej i zarazem jej nachylenie.

W drugiej serii, liczącej cztery elementy, starano się zachować stały stopień zbrojenia ρ_l niezależnie od wysokości użytecznej *d*. Osiągnięto ten cel różnicując średnice i rozkład zbrojenia głównego. W przeciwieństwie do serii pierwszej, zastosowano dodatkowo zbrojenie obwodowe krępujące odkształcenia w kierunku promieniowym. Jednocześnie, dzięki modernizacji sposobu kotwienia, wymuszano z dużą dokładnością nachylenie stożka przebicia. Wszystkie wyniki badań dla tej serii znalazły się powyżej teoretycznej krzywej, co może świadczyć o pewnym zapasie nośności w stosunku procedury Eurokodu 2.

W pięciu modelach serii trzeciej dla których parametrem zmiennym były wysokość użyteczna *d* i stopień zbrojenia ρ_l , poza elementem najwyższym, w którym występowało tylko zbrojenie obwodowe, wyniki eksperymentalne potwierdziły występowanie zapasu nośności na przebicie zaobserwowanego w serii drugiej. Jednocześnie zauważono, że zjawisko to występuje niezależnie od sposobu skrępowania elementów. We wszystkich modelach tej serii, podobnie jak we wcześniej-szych, wystąpiły radialne pęknięcia przechodzące przez całą miąższość płyty.

Uzyskane wyniki badań potwierdziły poprawność procedury Eurokodu 2 obliczania nośności płyt krępych na przebicie bez zbrojenia na ścinanie. Wykazały jednocześnie, że nośność przebicia płyt krępych o smuklości $\lambda \leq 2$ silnie zależy od poziomu skrępowania strefy przebicia. Bardzo skuteczne skrępowanie można uzyskać za pomocą zbrojenia obwodowego.

SUMMARY

In calculations of the carrying capacity for punching foundations (of thick plates) a shear slenderness is taking into consideration by Eurocode 2 with the help of the additional f(a) = 2d/a function inserted into the basic formula for the limit stresses. This additional element causes the strong increase of the limit stress as the control perimeter *u* is approaching to the column. A verification of the relations recommended by Eurocode 2 was a main aim of presented tests for calculations of the carrying capacity for punching of foundations and thick plates

As a part of carried out research project there were made and tested three series (altogether 14 pieces) of models of foundation plates in the scale about 1:2, being characterized by small shear slenderness $\lambda \le 2$. Models had the shape of regular octagons written down into the circle about diameter 1200 mm, with situated in the centre segment of the round column of the diameter 200 mm. Individual models in every series differed in the thickness of the plate which took out 150, 200, 250, 300 and 350 mm. Reinforcement of the models was made from steel of the nominal yield strength $f_{yk} = 500$ MPa. Individual research series were made from the same concrete mix of the ready-mixed concrete.

Depending on series models differed in the degree of the main reinforcement, like with also forming it.

The first series, counting five models, was characterized by a permanent arrangement and a diameter of the reinforcement independently of the elements height what resulted in diversifying of main reinforcement. Part of models with thicknesses of plate 250, 300 and 350 mm and at the same time the low reinforcement ratio demonstrated the smaller carrying capacity than theoretical, calculated according to principle of Eurocode 2. In the connection with suspicion that the way of examining could to contribute to this fact, in next series the way of anchorage of plates was changed. A stiff steel collar was used, which forced the location of the outlet of the diagonal crack and at the same time its inclination.

In the second series, counting four elements, they were trying to save the permanent ratio of the reinforcement ρ_l independently of the effective depth *d*. This purpose was achieved diversifying diameters and the position of the main reinforcement. In contrast with the first series, additionally a circular reinforcement was used, constraining the deformations in radial direction. At the same time, thanks to the modernization of the way of anchorage, they were forcing with the great accuracy the inclination of punching cone. All research results for these series were above the theoretical curve what can attest to the certain supply of the carrying capacity in the relationship of the Eurocode 2 procedure.

In five models of the third series for which there were a changeable parameters the effective depth *d* and the ratio of the reinforcement ρ_l , except the highest element in which was only a circumferential reinforcement, experimental results confirmed appearing of the supply in the carrying capacity for the punching observed in the second series. At the same time they noticed that this phenomenon was appearing independently of the way of the confinement of elements. In all models of these series, similarly as in earlier, radial cracks going through the entire thickness of the plate appeared.

The obtained research results confirmed the correctness of the procedure of calculating the punching shear capacity for thick plates by Eurocode 2, without shear reinforcement. They demonstrated at the same time, that carrying capacity of punching of thick plates with the slenderness $\lambda \le 2$ strongly depends on the level of the confinement of punching zone. Very effective confinement could be obtained by means of circumferential reinforcement.

SPIS TREŚCI

1.	Wstę	p											7
2.	Bada	inia obo	ce.										9
3.	Bada	inia wła	asne										15
	3.1.	Progra	m bao	lań									15
	3.2.	Badan	ia seri	ii pi	ierw	/sze	j						17
		3.2.1.	Opis	mo	del	i sei	rii p	ierv	vsze	ej			17
		3.2.2.	Wyn	iki	bad	ań s	erii	pie	rws	zej			17
	3.3.	Badan	ia seri	ii dı	rugi	ej							23
		3.3.1.	Opis	mo	del	i sei	rii d	rug	iej				23
		3.3.2.	Wyn	iki	bad	ań s	erii	dru	igie	j			23
	3.4.	Badan	ia seri	ii tr	zeci	iej							29
		3.4.1.	Opis	mo	del	i sei	rii tı	zec	iej				29
		3.4.2.	Wyn	iki	bad	ań s	erii	trz	ecie	j			30
	3.5.	Podsu	mowa	nie	bac	lań	wła	sny	ch				38
4.	Wnie	oski		•						•	•		38
Lit	eratu	ra										•	40
Zał	łączni	k											41

CONTENTS

1.	Intro	duction	ı.											7
2.	Inve	stigatio	ns of	f the	e otl	her	autł	nors						9
3.	Own	invest	igatio	ons										15
	3.1.	Progra	m of	fres	sear	ch								15
	3.2.	Test of	f firs	t se	ries									17
		3.2.1.	Des	crip	otior	1 of	the	firs	t se	eries	s mo	odel	s.	17
		3.2.2.	Test	t res	sults	s of	the	first	t se	ries	mo	odel	S .	17
	3.3.	Test of	f sec	ond	ser	ies								23
		3.2.1.	Des	crip	otior	1 of	the	sec	onc	d sei	ries	mo	del	s23
		3.2.2.	Test	t res	sults	s of	the	seco	ond	l sei	ies	mo	dels	\$23
	3.4.	Test of	f thir	d se	eries	S.								29
		3.2.1.	Des	crip	otior	1 of	the	thir	d s	erie	s m	ode	ls	29
		3.2.2.	Test	t res	sults	s of	the	thir	d s	erie	s m	ode	ls	30
	3.5.	Summ	ary c	of o	wn	inve	estig	gatic	ons					38
4.	Cone	clusions	5.											38
Re	feren	ces												40
Аţ	opend	ix	•											41

OZNACZENIA

- odległość od krawędzi słupa/krawędzi poа _ wierzchni, na której działa obciążenie do analizowanego obwodu kontrolnego
- odległość od krawędzi słupa/krawędzi po-_ a_{λ} wierzchni, na której działa obciążenie do lica stopy fundamentowej
- promień słupa С _
- zmierzona wysokość użyteczna płyty d
- *d_{nom}* wysokość użyteczna płyty
- f(a) funkcja korelacyjna związana ze smukłościa ścinania
- wytrzymałość betonu na ściskanie w jednoosiofc wym stanie naprężenia, badan na walcach o średnicy 150 mm i wysokości 300 mm
- wytrzymałość betonu na ściskanie badana na $f_{c,cube}$ kostkach o boku 150mm
- wartość charakterystyczna wytrzymałości betonu f_{ck} na ściskanie mierzona na walcach 150/300mm, po 28 dniach
- wytrzymałość betonu na rozłupywanie $f_{sp} f_y$
- granica plastyczności stali zbrojenia podłużnego
- wartość charakterystyczna granicy plastyczności f_{vk} stali zbrojeniowej
- granica plastyczności stali zbrojenia poprzeczne f_{vw} _ go
- h _ grubość płyty
- k współczynnik efektu skali
- rozpiętość przesła l
- długość obwodu kontrolnego u
- długość najkrótszego obwodu kontrolnego u_0
- długość podstawowego obwodu kontrolnego u_l
- minimalna wytrzymałość betonu na ścinanie v_{min}
- wytrzymałość na ścinanie płyty bez zbrojenia na v_R przebicie wzdłuż rozważanego przekroju kontrolnego (Eurokod 2)/
- wytrzymałość na ścinanie płyty bez zbrojenia na $V_{R,c}$ przebicie wzdłuż podstawowego przekroju kontrolnego (Eurokod 2)/
- rozwarcie rysy w _
- pole powierzchni pręta zbrojenia A_s _
- E_s moduł sprężystości podłużnej betonu
- E_s _ moduł sprężystości podłużnej stali
- L średnica pola ujemnych momentów radialnych _ (odległość między osiami podpór w badaniu)
- V_{exp} nośność eksperymentalna modelu
- współczynnik zwiekszajacy oddziaływania z _ α_s uwagi interakcję momentu zginającego z siła poprzeczna (wg DIN 1045-1)
- współczynnik zwiększający oddziaływania z β uwagi interakcję momentu zginającego z siłą poprzeczną (wg EC1992-1-1)
- odkształcenie liniowe Е
- _ smukłość / smukłość ścinania λ
- stopień podłużnego zbrojenia rozciąganego — ρ_l
- średnica zbrojenia Ø _

NOTATION

- distance from the edge of the column/edge of the a surface, on which the loading is acting to the analyzed control perimeter
- distance from the edge of the column/edge of the _ a_{λ} surface, on which the load is acting to the face of the column base
- diameter of the column с
- _ measured effective depth of a plate d
- effective depth of a plate _ d_{nom}
- f(a) correlation function corresponding with the shear slenderness
- compressive strength of concrete in one-axis state f_c of stress tested on the cylinders with diameter of 150mm and height of 300mm
- compressive strength of concrete tested on the f_{c,cube} – cubes with the side of 150mm
- characteristic compressive concrete cylinder f_{ck} strength measured on cylinder 150/300mm, at 28 days
- strength of concrete in splitting f_{sp} _
- f_v yield strength of flexure reinforcement
- characteristic yield strength of reinforcement f_{vk}
- yield strength of shear reinforcement f_{yw} _
- depth of plate ĥ _
- factor of scale effect k _
- l _ length of span
- _ length o the control perimeter и
- length of the shortest control perimeter _ u_0
- _ length of the basic control perimeter u_1
- minimum shear strength of concrete v_{min}
- shear strength of plate without punching shear v_R reinforcement along considered control crosssection (Eurocode 2)
- shear strength of plate without punching shear V_{Rc} reinforcement along basic control cross-section (Eurocode 2)
- width of crack w
- A_{s} _ cross sectional area of reinforcement bar
- E_s modulus of longitudinal elasticity of concrete
- E_s _ Young's modulus of concrete
- L _ diameter of negative radial moments area (distance between support axis in test)
- experimental carrying capacity of model V_{exp}
- coefficient increasing effect s due to interaction α_{s} between bending moment and shear force (according to DIN 1045 - 1)
- coefficient increasing effect due to interaction β between bending moment and shear force (according to EC 1992-1-1)

linear strain Е

- slenderness / shear slenderness λ _
- _ ratio of longitudinal tension reinforcement ρ_l
- _ diameter of the reinforcement Ø

1. WSTĘP

W typowych konstrukcjach szkieletowych typu płytowo-słupowego smukłość płyty stropowej, określona jako iloraz rozpiętości przęsła do grubości płyty (l/h), zawiera się ona zwykle w przedziale 20 ÷ 30. Oprócz tak rozumianej smukłości płyt stropowych, w literaturze przedmiotu wprowadzono termin - smukłość ścinania płyt, którego wielkość określa wzór:

$$\lambda = \frac{L - c}{2d} \tag{1}$$

w którym: L - jest średnicą pola ujemnych momentów radialnych w strefie podporowej (odległością pomiędzy osiami podpór w modelowych badaniach eksperymentalnych), c - jest wymiarem poprzecznym boku słupa, a d wysokością użyteczną płyty. Szczegóły oznaczeń wyjaśnia rys. 1.1. Dla typowych płyt stropowych, przy założeniu, że L jest średnicą okręgu wyznaczonego miejscem zerowania się momentów radialnych , smukłość ścinania λ zawiera się w przedziale 5 ÷ 7,5.

1. INTRODUCTION

In the typical skeleton slab-column structures the slenderness of the floor slab, that is the quotient of the span length to its thickness (l/h), is included in the range of $20 \div 30$. Except of such assumed slenderness of floor slabs, there is also the term of shear slenderness of slabs introduced into literature of the subject, by the formula:

$$\lambda = \frac{L-c}{2d} \tag{1}$$

where: L - is the diameter of the negative radial moments field in the support zone (distance between the axis of supports in the model experimental tests), c - the size of transversal column side, and d - the effective depth of a slab. Details of the symbols are shown in Fig. 1.1. For typical floor slabs, assuming that L is the diameter of the circle determinates by the place of the zero of radical moments, the shear slenderness λ is included in the range of $5 \div 7,5$.

Rys. 1.1. Definicja smukłości ścinania według [1] Fig. 1.1. Definition of the shear slenderness by [1]

Eksperymentalną weryfikację tego zagadnienia przedstawili Lovrovich i McLean [1]. Wykonali oni dwie serie po pięć modeli płyt kołowych, w których parametrem zmiennym był stosunek rozpiętości przesła płyty do jej grubości. Modele jednej z serii była zbrojona poprzecznie na ścinanie. Grubość płyt wynosiła $h \approx 102 \text{ mm}$ $(d \approx 83 \text{ mm})$, stopień zbrojenia głównego wynosił $\rho_l = 1,75\%$ (Ø $\approx 9,5$ mm, $f_y = 531$ MPa). Zbrojenie poprzeczne w postaci strzemion jednoramiennych wykonano z prętów żebrowanych o średnicy 3,73 mm i granicy plastyczności w przybliżeniu około $f_{yw} = 280$ MPa. Końce strzemion były zagięte na zewnętrznych prętach dolnej i górnej siatki zbrojenia głównego. Obciążenie przykładano poprzez cylinder o średnicy 101,6 mm. Na rysunku 1.2 pokazano wykresy naprężenia stycznego w przekroju kontrolnym, usytuowanym w odległości d/2 od lica słupa w funkcji smukłości ścinania λ . Wyniki tego doświadczenia, mimo niewielkiej skali modeli, potwierdzają, że wpływ smukłości ścinania na nośność przebicia jest analogiczny do tego, jaki występuje w belkach żelbetowych.

Experimental verification of this problem is presented by Lovrovich and McLean [1]. They carried out two series of circular plates, 5 models each, in which the variable parameter was the ratio of span length of the slab to its thickness. The models of one series were reinforced with shear reinforcement. Slab thickness was $h \approx 102 \text{ mm}$ $(d \approx 83 \text{ mm})$, the reinforcement ratio of main reinforcement equals $\rho_l = 1,75\%$ (Ø $\approx 9,5$ mm, $f_v = 531$ MPa). The transverse reinforcement in form of one-leg stirrups was made from ribbed bars with diameter 3,75 mm and yield strength of $f_{vw} = 280$ MPa. The ends of stirrups were bent on the external bars of the lower and upper net of the main reinforcement. The loading was applied by the cylinder with diameter of 101,6 mm. There are shown in Fig. 1.2. the diagrams of the tangent stress in the control crosssection, situated in the distance of d/2 from the slab face in the function of shear slenderness λ . The results of this experiment, in spite of small model scale, confirm, that the influence of the shear slenderness on the punching shear resistance is analogous to that in reinforced concrete beams.

Rys. 1.2. Wpływ smukłości ścinania na przebicie według badań Lovrovicha i McLeana [1] Fig. 1.2. The influence of shear slenderness on the punching by the investigations of Lovrovich and McLean [1]

W typowych stropach międzykondygnacyjnych smukłość ścinania jest zbyt duża ($\lambda > 3$), aby mogła mieć istotne znaczenie na nośność przebicia. Inaczej ma się sprawa w przypadku grubych płyt (np. fundamentowych) i stóp fundamentowych. W Eurokodzie 2 [2] uwzględniono problem smukłości ścinania dla takich przypadków wprowadzając modyfikację do podstawowej procedury obliczeniowej. Sprawdzanie nośności na przebicie fundamentów według Eurokodu 2 wymaga sprawdzenia obwodów kontrolnych, znajdujących się pomiędzy obwodem u_1 w odległości 2*d* od słupa i obwodem u_0 na styku ze słupem. Siłę przebijającą można przy tym redukować o odpór gruntu pod fundamentem, działający na powierzchnię ograniczoną analizowanym obwodem kontrolnym.

Celem przedstawionych badań jest weryfikacja zależności normowej (2), służącej do określania granicznego naprężenia stycznego na długości analizowanego obwodu kontrolnego:

$$v_{R} = 0.18 \cdot k \cdot \sqrt[3]{100\rho_{l}f_{ck}} \cdot \frac{2d}{a}$$

$$v_{R} \ge v_{min} \frac{2d}{a} = 0.035\sqrt{k^{3}f_{ck}} \cdot \frac{2d}{a}$$
(2)

gdzie: k - jestwspółczynnikiem efektu skali $(k = 1 + \sqrt{200/d} \le 2.0; d \le m), \rho_l$ - jest średnim stopniem zbrojenia głównego, f_{ck} – oznacza charakterystyczną wytrzymałość betonu na ściskanie w MPa, d-jest wysokość użyteczną przekroju, a - jest odległością od skraju słupa do rozważanego obwodu kontrolnego u. Porównując powyższy wzór z zależnością służącą do określania naprężenia w przypadku płyt stropowych (płyt smukłych) można zauważyć, iż w wyrażeniu (2) wprowadzona została dodatkowa funkcja f(a)=2d/a, której zadaniem jest odzwierciedlenie wpływu smukłości ścinania. Ten dodatkowy składnik powoduje drastyczny wzrost naprężenia granicznego w miarę zbliżania się obwodu kontrolnego u do słupa. Napreżenie graniczne na obwodzie położonym w odległości a = d jest dwukrotnie większe od podstawowego na obwodzie u_1 .

In typical inter-storey floors, the shear slenderness is to large ($\lambda > 3$), to have significant meaning to the punching shear resistance. There is the different problem in case of thick plates (for instance the footings) and the column bases. In Eurocode 2 [2] the problem of shear slenderness is taken into account for such cases by bringing in the modification to the basic calculation procedure. The verification of the punching shear resistance by Eurocode 2 need to check the control perimeters situated between perimeter u_1 in the distance 2d from column and the perimeter u_0 at the contact with the column. The punching force can be reduced with the upward pressure from soil under the base acting within the surface limited by the analysed control perimeter.

The purpose of presented tests is the verification of the code formula (2), used to the estimation of the limiting tangential stress on the length of the analysed control perimeter:

$$v_R = 0.18 \cdot k \cdot \sqrt[3]{100\rho_l f_{ck}} \cdot \frac{2d}{a}$$

$$v_R \ge v_{min} \frac{2d}{a} = 0.035\sqrt{k^3 f_{ck}} \cdot \frac{2d}{a}$$
(2)

a

а k - isthe factor of scale effect where: $(k = 1 + \sqrt{200/d} \le 2.0; d \text{ in mm}), \rho_l$ - the average ratio of main reinforcement, f_{ck} – characteristic compressive cylinder strength of concrete, a – effective depth of a cross-section, a – the distance from the edge of column to the considered control perimeter u. Comparing above-mentioned formula with the equation used to estimate stresses in case of floor slabs (slender slabs) we can see, that in the expression (2) there is additional function f(a)=2d/a, which should show the influence of the shear slenderness. This additional component causes the drastic increase of the ultimate stress as the control perimeter is approaching to the column. The ultimate stress on the perimeter situated in the distance a = d is two times larger than the basic one on the perimeter u_1 .

2. BADANIA OBCE

Początki badań dotyczących przebicia płyt sięgają pierwszej dekady XX wieku, kiedy to Talbot [3] podjął pierwsze próby opisu tego procesu. W latach 1909-1912 prowadził on na Uniwersytecie w Illinois badania eksperymentalne dotyczące przebicia ław (114 modeli) oraz stóp fundamentowych (83 modele). Były one wykonane z powszechnych wówczas w użyciu materiałów, natomiast mieszankę betonową przygotowywano ręcznie. W rezultacie wytrzymałość uzyskiwanego betonu była niewielka i zawierała się w przedziale $13 \div 20$ MPa. Stosowano pręty gładkie jak i karbowane, jednakże ich przyczepność do betonu była stosunkowo słaba. Skutkowało to tym, iż jedynie w niektórych przypadkach udało się doprowadzić do zniszczenia modeli na skutek przebicia, które to Talbot określił mianem "diagonal tension failure". Zazwyczaj przyczyną zniszczenia była utrata przyczepności pomiędzy zbrojeniem podłużnym a betonem. Efektem prac były zalecenia dotyczące stosowania prętów o mniejszych średnicach przy jednoczesnym zwiększeniu ich otuliny do 50 mm.

Badania Talbota były kontynuowane w latach 40. przez Richarta [4], który zaplanował wykonanie 8 serii elementów. Rozpatrywał on zarówno fundamenty pasmowe, jak i stopy fundamentowe oraz stopo-słupy. W celu symulowania równomiernego odporu podłoża stosował on wykorzystywane również wcześniej rozwiazanie polegające na sytuowaniu modeli na sprężynach samochodowych. Richart zauważył, iż elementy posiadające dodatkowe zbrojenie poprzeczne ulegały zniszczeniu na przebicie, a nie w wyniku utraty przyczepności zbrojenia. Stwierdził także, iż wzrost wysokości użytecznej powoduje zmniejszenie naprężeń stycznych, które prowadzą do zniszczenia płyty. Obserwacje dotyczące zniszczenia fundamentów o znacznych rozmiarach na skutek kombinacji przebicia i zwykłego ścinania znalazły dużo później odzwierciedlenie w europejskich przepisach dotyczących wymiarowania płyt na przebicie.

W latach 1967-1980 w Instytucie Otto Grafa w Stuttgarcie po kierunkiem Dieterle [5], prowadzono badania dotyczące przebicia płyt. Ich celem była doświadczalna weryfikacja wpływu na nośność czynników takich jak: stopień zbrojenia, geometria płyty oraz smukłość ścinania. Modele wykonano z betonu o wytrzymałości zawierającej sie w przedziale 21 ÷ 31 MPa. Stosowano stal gatunku o granicy plastyczności około 500 MPa. Zmianie uległ także układ stanowiska badawczego. Elementy badano w pozycji odwróconej, natomiast obciążenie przekazywano na płytę za pomocą kilkudziesięciu siłowników hydraulicznych. Zabieg ten miał odzwierciedlać równomierny odpór podłoża pod stopą. Zauważono, iż przy niedostatecznej liczbie zbrojenia podłużnego dochodziło do zniszczenia na skutek zginania (seria B). Znaczne jego zwiększanie okazało się jednak bezcelowe, gdyż nie mogło ono zostać wykorzystane na skutek przedwczesnego odspajania otuliny. Badania elementów serii C wykazały, iż wielkość słupa ma wpływ na nośność elementu na przebicie. Stwierdzono ponadto, iż naprężenia poprzeczne w stanie zniszczenia były w przypadku płyt krępych znacznie wyższe niż w płytach smukłych (seria H i D).

2. INVESTIGATIONS OF THE OTHER AUTHORS

The beginning of the punching shear tests for slabs has gone back to the first decade of the XX century, when Talbot [3] started with first attempt to describe that process. He carried out at the University of Illinois in years 1909-1912 the experimental investigations concerning the punching shear of continuous foundations (114 models) and column bases (83 models). They were made from the materials general used at that time, but the concrete mix was prepared by hand. In result, the strength of the obtained concrete was small, in range of $13 \div 20$ MPa. There were used both smooth as well as ribbed bars, but their adhesion to the concrete was rather weak. It had such effect, that only in some cases it was possible lo lead to the failure of models due to punching , which was described by Talbot as "diagonal tension failure". Usually the purpose of failure was the loss of adherence between the longitudinal reinforcement and the concrete. The effects of this work were the recomme3ndations referring the use of the bars of smaller diameters and at the same time the increase of the cover to 50 mm.

The investigation of *Talbot* were continued in 40-th years by *Richart* [4], who has planned and made 8 series of elements. He has taken into account both the strip foundation as well as column bases and feet-column. In purpose to simulate the uniform upward pressure from soil, he used also previous solution that is location the models on the car springs. *Richart* has noticed, that elements with additional transversal reinforcement failed in punching, but not as a result of adhesion loss of the reinforcement. He claimed also, that the increase of the effective depth causes the diminuation of shear stresses, which leads to the failure of slab. Observations referring the big foundations failure due to combination of punching and common shear found later their reflex in European principles referring the design of slabs in punching.

In years 1967-1980 in Otto-Graff Institute in Stuttgart there were carried out tests referring punching shear of slabs under the direction of Dieterle [5]. their purpose was experimental verification of the influence such parameters as: reinforcement ration, slab geometry and the shear slenderness. Specimens were made from concrete with strength in range of 21 ÷ 31 MPa. There were used type of steel with yield strength of 500 MPa. The test stand was also different. Models were tested in reverse position, but loading was applied to the slab by means of dozens of hydraulic presses. That process should reflex uniform upward pressure under foot. There was noticed, that at insufficient amount of longitudinal reinforcement the failure in bending took place (series B). The big increase of this reinforcement was useless, because it could not be utilize due to earlier lossening of cover. tests of the series C elements showed, that the dimensions of the column has influence on the punching shear resistance of the element. There was noticed also, that shear stress in the limit state of failure were for thickset slabs much higher than for slender slabs (series H and D).

Uznano zatem, iż smukłość ścinania jest ważnym parametrem dla analizy przebicia. *Dieterle* rozpatrywał także wpływ kształtu zbrojenia poprzecznego na nośność (seria S). Stosowanie prętów odgiętych wprawdzie zwiększało nośność na przebicie, jednak dochodziło do przedwczesnego zniszczenia słupa. Stwierdził on także, iż zbrojenie na przebicie powinno być właściwie zakotwione zarówno w strefie ściskanej jak i rozciąganej oraz rozłożone w taki sposób, by przecinało rysę ukośną (tworzącą się pod kątem około 45°). Sugerował on, by pierwszy rząd zbrojenia był położony w odległości około 0,25*d* od krawędzi słupa.

Tematyka przebicia płyt niezbrojonych poprzecznie była również przedmiotem badań Kordiny i Nöltinga [6], którzy rozważali zniszczenie przy obciążeniu osiowym oraz mimośrodowym. Elementy badano w pozycji odwróconej. Obciążenie przykładano za pomocą układu siłowników, którymi można było sterować niezależnie. Pozwalało to na symulację nierównomiernego odporu podłoża. Autorzy badań stwierdzili, iż zniszczenie nastepuje na skutek zmiażdżenia betonu znajdujacego się na styku płyty ze słupem. Fakt ten tłumaczono występowaniem stanu trójosiowego ściskania na skutek skrępowania betonu przez otaczającą płytę. Rysa zniszczenia, biegnąca początkowo po kątem około 35° ulega w dalszej części zakrzywieniu i dociera do słupa pod katem $45 \div 90^{\circ}$. Fakt kruchego zniszczenia pozwolił stwierdzić, iż przebicie jest zjawiskiem zależnym nie tylko od ścinania, lecz także od zginania, co uwzględnia się poprzez wprowadzenie do zależności normowych powiązanego parametru - stopnia zbrojenia podłużnego. Rezultatem badań było wprowadzenie do ówczesnego wydania normy niemieckiej DIN 1045 (1978) zmodyfikowanych zależności obliczeniowych. Założono liniowy rozkład naprężeń ścinających na długości obwodu kontrolnego, przyjmując, iż poprzez siły poprzeczne przekazywane jest 40% oddziaływania od momentu zginającego. Najważniejszą zmianę stanowiło wprowadzenie współczynnika zwiększającego wpływ naprężeń poprzecznych α_s na skutek interakcji siły poprzecznej i momentu zginającego. Zapis ten znajduje także odzwierciedlenie w obecnych przepisach normowych – można utożsamiać go z parametrem β występującym w Eurokodzie 2.

W latach 1980-1983 zespół badawczy Hallgren, Kinnunen i Nylander [7] rozpoczął badania, których celem było ustalenie wpływu różnych czynników na przebicie płyt krępych. Rozważanymi zmiennymi były: wytrzymałość betonu, stopień zbrojenia na zginanie, sposób zakotwienia zbrojenia na zginanie, zastosowanie i rodzaj zbrojenia na ścinanie, sposób obciążenia oraz kształt płyty. Wykonano i zbadano 14 modeli (S1 ÷ S14): 12 płyt kwadratowych o boku 850 mm oraz 2 płyty okrągłe o średnicy 960. Zachowano stałą grubość płyt, która wynosiła około 275 mm, przy wysokości użytecznej równej około 240 mm. Do wykonania modeli stosowano beton o wytrzymałości na ściskanie 18 ÷ 50MPa (badanie wykonano na kostkach sześciennych o boku 150 mm) oraz stal o średniej granicy plastyczności równej około 620 MPa. Obciążenie było przykładane punktowo wzdłuż obwodu lub równomiernie na całej powierzchni. Modele ulegały zniszczeniu na skutek przebicia, w efekcie którego powstawał charakterystyczny stożek o nachyleniu pobocznicy od 50 do 60°.

There was admitted so, that shear slenderness is an important parameter for the analysis of punching. *Dieterle* examined also the influence of the shear reinforcement shape on the punching shear resistance (series S). Apply the bent bars increases the punching capacity, but it occurred the earlier destruction of the column. He has stated, that punching shear reinforcement should be properly anchorages both in the compression zone as well as in tension zone and distributed in such way, that to cross the diagonal crack (under angle of 45°). He suggested, that the first row of the reinforcement should be situated in the distance about 0,25*d* from column face.

The problem of punching of slabs without shear reinforcement was also the subject of Kordina and Nölting [6] investigations. They have considered the failure under axial load and under eccentric load. Element were tested in the reverse position. The load was applied by means of hydraulic press system, acting independent. It allowed to simulate the ununiform upward pressure from soil. The authors of these tests stated, that failure takes place due to crush of concrete at the contact slab-column. That fact was explained by occurring the 3-axis compression state due to confinement of the concrete by surrounding plate. The failure crack, propagating at first at the angle of about 35°, undergoes the inclination in farther part and reaches the column with angle $45 \div 90^{\circ}$. The fact of brittle failure allowed to state, that punching is the phenomenon that depend not only on shear but also on bending, which is taken into consideration by introduction to the code formulas the related parameter - the longitudinal reinforcement ratio. The result of those investigation was the introduction to the then German standard edition DIN 1045 (1978), the modified calculation relationship. There was assumed the linear distribution of the compression stresses on the length of control perimeter, establishing that there are 40% action from the bending moment bringing in by the shear forces. The most important change was introduction the factor, that increases the influence of the shear stresses α_s due to interaction of the shear force and bending moment. that formula has also at present the reflex in the code recommendation - it can be identify as a parameter β appeared in Eurocode 2.

In years 1980-1983 the research team Hallgren, Kinnunen and Nylander [7] started the tests, which had the aim to estimate the influence of the various factors on the punching shear of thickset slabs. The considered variable were: concrete strength, bending reinforcement ratio, the way of the anchorage of bending reinforcement, the application and kind of shear reinforcement, the way of loading and the shape of slab. there were made and tested 14 models $(S1 \div S14)$: 12 square plates with side 850 mm and 2 circular plates with diameter 960mm. The depth of the slab was kept constants, equals about 275 mm, and the effective depth was about 240 mm. The models were made from concrete of the compressive strength $18 \div 50$ MPa (test was made on the cube samples of the side 150 mm) and the steel with average yield strength about 620 MPa. The loading was applied in points along the perimeter or uniformly on the whole surface. Models failed due to punching, in effect of that was the creation the characteristic cone with inclination of the side surface equals 50 to 60°.

Na podstawie wyników badań przedstawiono następujące wnioski dotyczące wpływu różnorodnych czynników na przebicie:

- kąt rysy wywołanej przebiciem obserwowany w badanych płytach fundamentowych wynosił od 50° do około 60°; kąt ten był zatem znacznie bardziej stromy aniżeli w przypadku rys obserwowanych w badaniach smuklejszych płyt,
- wytrzymałość betonu na ściskanie miała duży wpływ na nośność przebicia; maksymalne naprężenia tnące zwiększają się wraz z wytrzymałością betonu na ściskanie w dużo większym stopniu niż w przypadku badań płyt smuklejszych; wzrost wytrzymałości betonu z 18 (S7) do 50 MPa (S1), spowodował zwiększenie siły niszczącej z 622 do 1363 kN, czyli o ponad 100%; parametr wytrzymałości betonu okazał się najistotniejszym ze wszystkich rozważanych w relacjonowanych badaniach,
- wytrzymałość na przebicie płyt nieznacznie wzrasta ze wzrostem stopnia zbrojenia na zginanie; wpływ stopnia zbrojenia na zginanie na maksymalne naprężenia tnące jest znacznie mniejszy niż wytrzymałość betonu; zwiększenie stopnia zbrojenia z 0,25 (S8) do 0,40 % (S2) spowodowało wzrost nośności z 915 do 1015 kN,
- rodzaj zakotwienia zbrojenia na zginanie, lub jego brak, nie ma istotnego wpływu na siłę przebijającą płyty fundamentowe; w przypadku płyt, które zbrojone były za pomocą prętów odgiętych/zakrzywionych zakończonych dodatkowymi odgięciami możliwe było uzyskanie znacznych sił po wystąpieniu przebicia – płyty S2 i S9 zachowały zdolność do przenoszenia większych obciążeń po zniszczeniu, podczas gdy obciążenie stopy z prętami prostymi (S3) spadło gwałtownie po osiągnięciu wartości maksymalnej,
- płyty fundamentowe wyposażone w zbrojenie na przebicie osiągały o około 35 ÷ 55 % wyższe siły niszczące niż odpowiadające im płyty bez zbrojenia na przebicie,
- płyty fundamentowe ze zbrojeniem w formie prętów odgiętych miały o 15% wyższą wytrzymałość na przebicie niż odpowiadające im płyty z pionowymi strzemionami; płyty fundamentowe z prętami odgiętymi przy zniszczeniu miały większe przemieszczenia niż płyty ze strzemionami,
- rodzaj mocowania prętów odgiętych, tj. stosowanie dodatkowego odgięcia, nie miał wpływu na nośność na przebicie,
- rodzaj obciążenia, tj. punktowe bądź powierzchniowe, nie miał wpływu na nośność płyt na przebicie,
- kształt płyt (kwadratowe, okrągłe) nie miały wpływu na siłę niszczącą.

Celem badań *Timm* [8] było opracowanie modelu numerycznego, który w możliwie najlepszy sposób opisywałby mechanizm zniszczenia płyt fundamentowych, a także stworzenie nowych formuł służących do wymiarowania fundamentów. Modelowaniu MES towarzyszyły również badania eksperymentalne na 10 modelach płyt w skali 1 : 2 oraz 1 : 3. Miały odwzorowywać płyty rzeczywiste o grubości 60 cm i wymiarach w rzucie 4,2 oraz 6,0 m. Obciążenie przekazywano za pomocą siłownika na słupek połączony monolitycznie z płytą. On the basis of tests results the following conclusions concerning the influence of diverse factors on the punching were made:

- angle of the crack due to punching observed in tested foundation plates took out from 50° to about 60°; and so this angle was much steeper than in the case of observed cracks in examinations of more slender plates,
- the concrete compressive strength had considerable influence to the carrying capacity of the punching; maximum shear stresses are increasing together with the concrete compressive strength in the much greater degree than in the case of tests of more slender plates; increase in the concrete compressive strength around 18 (S7) to 50 MPa (S1), caused increasing failure force around 622 to 1363 kN, that is about over the 100%; the parameter of the strength of concrete showed itself most essential of everyone considered in related investigations,
- the punching shear resistance of slabs slightly is growing with the height of reinforcing ratio for bending; the influence of reinforcing ratio on bending to maximum shear stresses is much smaller than the strength of concrete; increasing reinforcing ratio around 0,25 (S8) to 0,40 % (S2) caused the increase in the carrying capacity around 915 to 1015 kN,
- the kind of anchorage of the reinforcement for bending or its missing have no essential influence on punching force in foundation plates; in the case of plates which were reinforced with the help of bent-up/curved bars finished with additional bend, getting considerable forces was possible after the appearance of punching plates S2 and S9 kept the ability to transfer greater loads after damage, while loading the foot with straight bars (S3) fell violently after achieving the maximum value,
- foundation plates equipped with punching shear reinforcement achieved about 35 to 55 % higher failure forces than plates suiting them without punching shear reinforcement,
- foundation plates with the reinforcement of the form of bent bars had the higher resistance to the punching about 15% than plates suiting them with vertical stirrups; foundation plates with bent bars at failure had greater displacement than plates with stirrups,
- kind of fixing of the bent bars, i.e. use additional bend , didn't have the influence on the carrying capacity for the punching,
- kind of loading, i.e. spot or surface, didn't have the influence on the carrying capacity of plates for the punching,
- shape of plates (square, round) didn't have the influence on failure force.

The aim of *Timm* investigations [8] was working out the numerical model, which in possibly the best way would describe the mechanism of destroying foundation plates as well as creating new formula how to design the foundations. MES modeling was also accompanied by experimental tests on 10 models of plates in scale 1:2 and 1:3. They were supposed to copy real plates about the thickness of 60 cm and dimensions in the projection 4.2 and 6.0 m. Loading was being transmitted with the help of hydraulic jack to the small column connected monolithic with the plate.

Stosowano beton o wytrzymałości od 33 do 41 MPa oraz stal o granicy plastyczności równej około 500 MPa. Założony stopień zbrojenia podłużnego wahał się w przedziale 1,18 ÷ 1,25%. W trzech seriach badawczych analizowano wpływ na nośność na przebicie takich czynników, jak grubość oraz smukłość płyty oraz kształt zbrojenia poprzecznego (strzemiona, "stojaki", "stojaki" z nakładkami).

W trakcie badań mierzono odkształcenia na powierzchni betonu strefy ściskanej oraz rozciąganej. Obserwowano charakterystyczną dla płyt krępych zmianę charakteru odkształceń promieniowych po wystąpieniu rysy ukośnej. Prowadzono również pomiary odkształceń na zbrojeniu poprzecznym, w miejscach spodziewanej rysy ukośnej. Do chwili zniszczenia modelu obserwowano większe wytężenie wewnętrznych obwodów zbrojenia na przebicie. Pozwala to przypuszczać, iż rozwój rysy ukośnej zaczyna się wewnątrz elementu. Największa szerokość rysy na poziomie obciążenia maksymalnego wynosiła 0,4 mm. W modelach bez zbrojenia na przebicie pierwsze rysy powstawały przy około 40% obciążenia maksymalnego. Powstawaniu rys promieniowych w strefie podpór towarzyszył rozwój rys obwodowych blisko krawędzi słupa.

Obserwacje poczynione w trakcie badań pozwoliły *Timm* na sformułowanie wniosków dotyczących wpływu różnych czynników na zniszczenie płyt smukłych i krępych na skutek przebicia. Zostały one przedstawione w Tablicy 2.1.

Concrete was being applied about the strength from 33 to 41 MPa and steel of the yield strength equal about 500 MPa. The assumed longitudinal reinforcement ratio swayed in the period 1.18 to 1.25%. In three research series an influence on the carrying capacity for punching such parameters was being analyzed as the thickness and the slenderness of the plate and the shape of shear reinforcement (stirrups, "stands", "stands" with covers).

In the process of tests strains were being measured on the surface of concrete of the compressive and tensile zone. There was observed change of the character of radial strains characteristic for thickset plates after the appearance of the diagonal crack. Measurements of strains were also being conducted on the shear reinforcement, in places of expected an inclined crack. Till the moment of failure of the model they were observing bigger effort of the internal circumferences of the punching shear reinforcement. It lets suppose, that development of the diagonal crack is beginning inside the element. The biggest crack width on the level of the maximum loading took out 0.4 mm. In models without punching reinforcement first crack came into existence at round about the 40% of the maximum load. The appearance of radial cracks in the supports zone was accompanied by development of perimeter cracks close to the column edge.

Observation made in the process of tests let Timm for expressing conclusions concerning the influence of different factors on destroying slender and thickset plates as a result of punching. They are presented in the Table 2.1.

Tablica 2.1.	Różnice pomiędz	y płytami sm	nukłymi i kręp	ymi według	badań [8]
Table 2.1 Di	ifferences betwee	n slender and	d thick plates	hv tests [8]	

	płyty smukłe / slender plates	płyty krępe / thick plates
Zniszczenie Failure	naprężenia ściskające w pobliżu styku płyty ze słupem przekraczają wytrzymałość be- tonu na ściskanie compressive stresses close to the slab- column joint exceed the concrete compression strength	naprężenia styczne powodują powstanie rysy ukośnej, która przecina strefę ściskaną shear stresses cause the creation of diagonal crack that crosses the compression zone
Rozmiar słupa Column dimension	niewielki wpływ na nośność small influence on the capacity	duży wpływ na nośność big influence on the capacity
Stopień zbrojenia podłużnego Ratio of the longitudinal reinforcement	wpływa na nośność strefy ściskanej influence on the compression zone capacity	niewielki wpływ na nośność small influence on the capacity
Klasa betonu Concrete class	nośność proporcjonalna do wytrzymałości betonu przy jednakowym mechanicznym stopniu zbrojenia capacity proportional to the concrete strength at the same mechanic reinforcement ratio	nośność proporcjonalna do wytrzymałości betonu capacity proportional to the concrete strength
Zbrojenie na przebicie Punching shear reinforce- ment	przejmuje siły poprzeczne i powoduje zwiększenie nośności strefy ściskanej takes the shear forces and causes the increase of the compression zone capacity	opóźnia proces przekształcania się rysy ukośnej w rysę zniszczenia delay the process of transformation of the diagonal crack into the failure crack
Sposób obciążenia The way of loading	niekorzystne jest przykładanie obciążenia poprzez sztywną przekładkę it is not profitable to apply the load through the rigid separator	brak wpływu na nośność no influence on the capacity

Dane zebrane w trakcie badań posłużyły do kalibracji modelu numerycznego (MES). Obliczenia prowadzono przy użyciu programu do analizy nieliniowej DIANA, rozpatrując przy tym wpływ różnorodnych warunków brzegowych na zachowanie elementu. Ustalone za pomocą obliczeń numerycznych nośności na przebicie wykazywały znaczną zgodność z wartościami ustalonymi w ramach doświadczeń prowadzonych przez autorkę pracy. *Timm* starała się w opracowanym modelu numerycznym możliwie najwierniej odtworzyć proces tworzenia się rys na skutek zginania. Jednak z uwagi na przyjęty sposób modelowania rys poprzez "rozmazanie" (smeared crack model), ich położenie nie zawsze odpowiadało rzeczywistości.

Wyniki badań oraz obliczenia pokazały, że nośność określana na podstawie normy niemieckiej DIN 1045-1 [9] nie zawsze odpowiada wynikom eksperymentalnym. Z tego względu Timm wprowadziła własną zależność służaca do określania nośności na przebicie dla płyt fundamentowych w strefie słupów wewnętrznych. Wyrażenie to znacznie odbiega od spotykanych dotychczas. Wprowadza między innymi odmienną definicję współczynnika efektu skali, obwodu kontrolnego (inne położenie), a także uwzględnia dodatkowy parametr jakim jest smukłość ścinania. Założono stały udział betonu w przenoszeniu naprężeń ścinających. Obliczenia własne wykazały, iż proponowana zależność nie zawsze poprawnie opisuje nośność badanych elementów. Średnia wartość stosunku nośności eksperymentalnej do obliczeniowej wynosiła 1,62 przy współczynniku zmienności 0,38.

Bardzo ważne dla rozważanego zagadnienia są badania Heggera, Sherifa, Häuslera i Rickera [10, 11] wykonane w warunkach zbliżonych do rzeczywistych, polegających na oparciu modeli stóp fundamentowych na piasku lub wywierania nacisku wielopunktowego na podeszwy stóp za pomocą siłowników hydraulicznych (patrz rvs. 2.1). Zbadano w sumie 22 modele (DF1 ÷ DF22) w postaci kwadratowych płyt połączonych z odcinkami słupów również o przekroju kwadratowym. Boki płyt miały wymiary 0,9 ÷ 1,8m, a ich wysokość użyteczna wynosiła $0.15 \div 0.47$ m. Pieć modeli oprócz zbrojenia głównego miało zbrojenie poprzeczne na przebicie. Modele zostały wykonane betonu o wytrzymałości na ściskanie 19 ÷ 38 MPa (wytrzymałość walcowa), a zbrojenie ze stali o granicy plastyczności około 550 MPa. Stopień zbrojenia głównego wynosił 0,6 ÷ 1,0%. Smukłość ścinania badanych modeli zawierała się w przedziale: $a/d = 1,27 \div 2,50$. Parametr ten został zdefiniowany nieco inaczej przez autorów tych badań, co zostało pokazane na rys. 4. Wyniki tych badań pozwoliły na sformułowanie następujących wniosków:

- nachylenie rysy ukośnej zależy od stosunku a_{λ}/d , gdzie a_{λ} jest wysięgiem wspornika stopy (dla $a_{\lambda}/d = 1,25$ nachylenie rysy wynosiło około 45°, $a_{\lambda}/d = 2,0$ było mniejsze od 35°),
- nośność na przebicie również silnie zależy od a/d (wraz ze zmniejszaniem się smukłości wzrasta nośność),
- zbrojenie na ścinanie może istotnie zwiększyć nośność na przebicie, ale jest coraz mniej skuteczne wraz ze spadkiem a/d,

Collected data in the process of tests served for the calibration of the numerical model (MES). Calculations were being led with the program to non-linear analysis DIANA, examining the influence of diverse border conditions on the behavior of the element. Established by means of numerical calculations carrying capacities for the punching show considerable conformity with the values established as part of experience conducted by the author of the work. *Timm* tried in the worked out numerical model possibly most faithfully to reconstruct the process of being formed cracks as a result of bending. However because of the adopted way of modeling cracks through "smearing" (smeared crack model), their position not always has answered the reality.

Research results and calculations showed, that carrying capacity determined on the basis of DIN 1045-1 German code [9] not always meets experimental results. On that account Timm implemented the own relation serving for determining the punching carrying capacity for foundation plates in the zone of internal columns. This expression is running much away from the formulas met so far. It introduce among others different definition of the factor of the effect of the scale, control perimeter (different location), and also it is taking into consideration an additional parameter which is the shear slenderness. A permanent participation of concrete in transfer the shear stresses was assumed. Own calculations showed that the proposed relation not always correctly described the carrying capacity of examined elements. Medium value of the relationship of the experimental carrying capacity to the calculated one took out 1,62 at the rate of the changeability 0,38.

There are very important to a considered problem the investigations of Hegger, Sherif, Häusler and Ricker [10, 11] made in conditions close for real, consisting on basing models of column bases on sand or of exerting manypoints pressure to soles of feet by means of hydraulic presses (look Fig.2.1). Essentially 22 models were examined (DF1 to DF22) in the form of square plates joined to segments of columns also of the square diameter. Sides of plates had dimensions 0.9 to 1.8 m, and their effective depth amounted $0.15 \div 0.47$ m. Five models apart from the main reinforcement had the shear reinforcement for punching. Models were made from the concrete with compressive strength $19 \div 38$ MPa (cylinder strength), and reinforcement from steel of yield strength equals about 550 MPa. The main reinforcement ratio was 0.6 -1.0 %. The shear slenderness of tested models was in the range: a/d = 1, 27 ÷ 2,50. Parameter was defined a little different by the authors of these tests, that was shown in Fig.4. Tests results allowed to formulate the following conclusions:

- the inclination of diagonal crack depends on the relationship a_{λ}/d , where a_{λ} is the reach of the foot corbel (for $a_{\lambda}/d = 1,25$, the crack inclination was about 45°, $a_{\lambda}/d = 2,0$ was less than 35°),
- the carrying capacity for punching also strongly depends on *a/d* (together with reducing slenderness the carrying capacity is growing),
- shear reinforcement can indeed increase the carrying capacity for the punching but it is less and less effective together with the *a/d* fall,

- modele stóp badane na piasku wykazywały większą nośność niż modele analogiczne badane za pomocą siłowników hydraulicznych; wyjaśnienie tego faktu autorzy tłumaczą koncentracją odporu gruntu pod słupem.
- models of bases tested on sand demonstrated the greater carrying capacity than analogous models examined with the help of hydraulic jacks; authors are justifying explaining this fact with the concentration of the resistance of ground beneath the column.

Rys. 2.1. Stanowiska w badaniach *Heggera* i innych [10, 11] Fig. 2.1. Test stands in the investigations of *Hegger* and the others [10,11,]

Rys. 2.2. Definicja smukłości ścinania przyjęta przez autorów pracy (po lewej) oraz *Heggera* (po prawej) Fig. 2.2. Definition of the shear slenderness assumed by the authors of this work (on the left), and *Hegger* (on right)

3. BADANIA WŁASNE

3.1. Program badań

Głównym celem prowadzonych badań było zweryfikowanie poprawności funkcji przyjętej w EC2, opisującej przyrost naprężeń stycznych na obwodach kontrolnych w stopach fundamentowych, a dokładniej, zależności uwzględniającej smukłość ścinania w płytach w postaci f(a) = 2d/a.

Tablica	31	Koleinoćć	i hadai	nia
raunca	5.1.	Rolejnose	Juada	ma
Table 2	1 0	nananiam	ofthe	toot

3. OWN INVESTIGATIONS

3.1. Research program

The main aim of carried out tests was verification of the correctness of the function accepted in EC2, describing the increase in shear stresses on the control perimeters in column bases and more precisely, the relation taking into consideration the shear slenderness of slab in the form: f(a) = 2d/a.

Table 5.1. Suc	cession of the test		
Lp. / No.	Seria I / Series I	Seria II / Series II	Seria III / Series III
1	P-15-0.25	P-20-0.40	P`-15-0.31
2	P-20-0.21	P-25-0.40	P'-20-0.22
3	P-25-0.17	P-30-0,39	P-25-0.27
4	P-30-0.14	P-35-0,39	P-30-0.22
5	P-35-0.12	-	P-30-0.00

Modele miały kształt ośmiokątów foremnych o boku 500 mm i szerokości 1200 mm, ze zlokalizowanym w centrum odcinkiem okrągłego słupa o wysokości i średnicy 200 mm. Zbrojenie modeli wykonano ze stali o nominalnej granicy plastyczności $f_{yk} = 500$ MPa. Siatki zbrojeniowe w zależności od serii różniły się rozstawem i średnicą zbrojenia. Przyjęto, że:

- dla serii pierwszej parametrami zmiennymi były: wysokość użyteczna *d* i stopień zbrojenia ρ_l (stały układ i średnica zbrojenia),
- dla serii drugiej parametrem zmiennym była wysokość użyteczna d, a stałym - stopień zbrojenia ρ_l (zmienny układ i średnica zbrojenia),
- dla serii trzeciej parametrami zmiennymi były: wysokość użyteczna *d* i stopień zbrojenia ρ_l (stały układ zbrojenia), poza elementem oznaczonym P-35-0,00, w którym występowało tylko zbrojenie obwodowe (brak zbrojenia głównego - rozciąganego).

Dokładna charakterystyka modeli przedstawiona została w załączniku. Models had the shape of regular octagons with the side of 500 mm and breadths of 1200 mm, with the localized in the centre segment of the round column for heights and diameter equal 200 mm. Reinforcement of models was carried out from steel of the nominal yield strength $f_{yk} = 500$ MPa. The reinforcement nets depending on series differed in the spacing and the diameter of the reinforcement. They accepted, that:

- for the first series there were changeable parameters: effective depth *d* and ratio of the reinforcement ρ_l (constant arrangement and a diameter of the reinforcement),
- for the second series an effective depth was a changeable parameter, but a constant – ratio of the reinforcement ρ_l (the changeable was arrangement and the diameter of the reinforcement),
- for the third series there were changeable parameters: effective depth d and the ratio of the reinforcement pl (constant arrangement of the reinforcement), except of P-35-0,00 element in which only a circular reinforcement appeared (lack of main tensile reinforcement).

Accurate characterization of models is presented in the appendix.

Rys. 3.1. Schemat i zdjęcie stanowiska badawczego Fig. 3.1. Scheme and the photo of the test stand

Modele każdej z serii wykonane zostały z betonu towarowego. Parametry betonu kontrolowano na próbkach normowych: walcowych o średnicy 150 mm i wysokości 300 mm oraz na kostkach sześciennych o wymiarze boku 150 mm. Wszystkie modele miały zlokalizowany w centrum odcinek okrągłego słupa, z betonu wysokiej wytrzymałości ($f_{ck} \approx 90$ MPa) wykonanego kilka dni po betonowaniu płyty.

Badania przeprowadzono na specjalnym stanowisku badawczym (patrz rys. 3.1), do którego modele zamocowane były ośmioma śrubami w układzie radialnym o promieniu 400 mm. W pierwszej serii do zakotwienia wykorzystano stalowe podkładki o wymiarze 100 x 150 mm i grubości 20 mm (rys. 3.2.a). Jednak ten sposób zamocowania nie wymuszał jednoznacznie kąta nachylenia stożka przebicia. Z tego powodu w pozostałych seriach wykorzystano specjalnie zaprojektowany stalowy kołnierz, składający się z ośmiu niezależnych segmentów (rys. 3.2.b). Zrealizowane w ten sposób zakotwienie modeli wymusiło jednoznacznie wylot rysy niszczącej.

Obciążenie modeli realizowano za pomocą baterii czterech siłowników hydraulicznych umożliwiających przyłożenie maksymalnej siły do 2000kN.

Models of every of series were made from the readymixed concrete. Parameters of concrete were controlled on standard samples: cylinder of the diameter of 150 mm and the height of 300 mm and on cube-shaped samples with the dimension of the side of 150 mm. All models had the segment of the round column situated in the centre, from the high strength concrete ($f_{ck} \approx 90$ MPa) made a few days after concreting the plate.

Examinations were carried out on the special test stand (see Fig. 3.1), to which models were fixed with eight screws in the radial system on the radius of 400 mm. In the first series to make anchorage the steel pads were used with dimension 100 x 150 mm and the thickness of 20 mm (Fig.3.2.a). However this way of fastening didn't force explicitly the inclination of the punching cone. For this reason in remaining series a specially designed steel collar, consisting of eight independent segments was used (Fig.3.2.b) Carried out in this way anchorage of models forced explicitly outlet of the failure crack.

Loading of the models was being carried out with the help of four batteries of hydraulic jacks enabling to put maximum load of 2000kN.

Rys. 3.2. Sposoby blokowania śrub kotwiących: a) seria pierwsza, b) seria druga i trzecia Fig. 3.2. Ways of the blockade of anchorage screws: a) the first series, b) second and third series

Siłę przykładano poprzez słupek (rys. 3.1.) według ścisłego harmonogramu. Na każdym etapie obciążenia wykonywano pomiary:

- odkształceń na powierzchni betonu w bliskim sąsiedztwie słupka, za pomocą tensometrów o bazie 50 mm (rys. 3.3.),
- odkształceń zbrojenia głównego za pomocą tensometrów o bazie 10 mm,
- rejestrowano również rozwój rys, dokonując w kilku miejscach pomiaru ich szerokości za pomocą lupki Brinella o elementarnej działce 0,05 mm.

Pomiary rejestrowano za pomocą systemu akwizycji danych SAD, który umożliwiał pomiar i zapis odczytywanych danych w programie komputerowym. W poszczególnych seriach różnił się układ tensometrów, ponadto dla serii trzeciej dokonywano pomiaru przyrostu grubości płyty (puchnięcia betonu). Force was being put through the column (Fig. 3.1) according to the strict schedule. At every stage of the load measurements were carried out:

- deformations on the concrete surface at the near vicinity of column, by means of electric resistance strain gauges of 50mm length (Fig. 3.3).
- strains of main reinforcement by means of electric resistance strain gauges of 10 mm basis,
- a propagation of cracks was also being registered making the measurement of their width in a few places by means of Brinella small magnifying glass with the basic plot 0,05 mm.

Measurements were being recorded with the help of system of the data activation SAD which enabled the measurement and the record of read data in a computer program. In individual series a layout of electric resistance strain gauges differed, and additional for the third series they were making the measurement of the increase in the plate thickness (swelling of concrete).

Rys. 3.3. Lokalizacja tensometrów na powierzchni betonu dla serii pierwszej i drugiej. Fig. 3.3. Location of electric resistance strain gauges on the surface of concrete for first and second series

3.2. Badania serii pierwszej

3.2.1. Opis modeli serii pierwszej

Modele serii pierwszej różniły się między sobą wysokością użyteczną d i stopniem zbrojenia ρ_l . Zbrojenie płyt modeli wykonane było z prętów o średnicy Ø8 (rys. 3.4). Na rysunku 3.5 pokazano jeden z modeli tej serii na stanowisku badawczym.

3.2. Test of the first series

3.2.1. Description of the first series models

Models of the first series differed between themselves with the effective depth *d* and reinforcement ratio ρ_l . Reinforcement of the plates models was made from bars of the diameter Ø8 (Fig. 3.4). In Figure 3.5 one of models was shown from this series on test stand.

Rys. 3.4. Widok zbrojenia modelu P-35-0.12 Fig. 3.4. View of the reinforcement of model P-35-0.12

Badania modeli były poprzedzane inwentaryzacją rys skurczowych. Obciążenie przykładano stopniowo zwiększając siłę co 40 lub 80 kN co około 10 min. Pod koniec badania, po zaobserwowaniu objawów zbliżania się stanu granicznego nośności, przyrost siły zmniejszano o połowę.

3.2.2. Wyniki badań serii pierwszej

Wszystkie modele serii wykonane były z tych samych materiałów. Betonowanie płyty przeprowadzono 7 lipca 2011r. i użyto w tym celu betonu towarowego klasy C16/20 o maksymalnym wymiarze kruszywa 16mm.

Rys. 3.5. Widok modelu P-20-0.21 podczas badania Fig. 3.5. View of the P-20-0.21 model during test

Tests of models were preceded by stocktaking of shrinkage cracks. The load was being put gradually increasing force every 40 or 80 kN at about 10 mm. At the end of the examination, after observing the manifestations of approaching the ultimate limit state of carrying capacities, the increase in force was being reduced by one - half.

3.2.2. Test results of first series

All models of series were made of the same materials. Concreting the plate in was carried out 7 July 2011r. and they used the ready-mixed concrete of the C16/20 class with the maximum dimension of 16mm aggregate. Natomiast betonowanie słupków przeprowadzono jedenaście dni później, wykorzystując beton o wysokiej wytrzymałości.

Badania poszczególnych modeli odbywały się w różnych terminach. Najwcześniej badany był model P-20-0.21 (28 września 2011r.), a jako ostatni model P-35-0.12 (26 października 2011r.). W dniu badania poszczególnych elementów określano rzeczywistą wytrzymałość betonu za pośrednictwem próbek sześciennych i walcowych. Tablica 3.2. zawiera zestawienie wytrzymałości betonów oraz ich wiek w trakcie prowadzenia badań. However concreting columns was carried out eleven days later, using concrete with the high strength.

Examinations of individual models took place in various dates. Earliest a P-20-0.21 model was examined (28 September 2011r.), and as the last P-35-0.12 model (26 October 2011r.). In the day of test of individual elements a real strength of concrete was determined by cube-shaped and cylinder samples. Table 3.2 contains the comparison of concrete strength and their age during making the tests.

Tablica 3.2. Parametry wytrzymałościowe i wiek betonu modeli ser	ii I
Table 3.2. Strength parameters and concrete age of Series I	

10010 3.2. 50	rengui puru	inclus and		e uge of be	1103 1						
				Pły	ta / Plate	•				Słupek /	Column
	Wiek	Liczba		Liczba		Liczba		Liczba		Liczba	
Seria I	betonu	próbek	f	próbek	f	próbek	f	próbek	F	próbek	f
Series I	Concrete	Samples	Jcm,cube	Samples	Jcm	Samples	Jsp	Samples	L_{cm}	Samples	J cm, cube
Series I	age	number		number		number		number		number	
	[dni]	[szt]	[MDa]	[szt]	[MDa]	[szt]	[MDa]	[szt]	[GDa]	[szt]	[MDa]
	[days]	[pieces]	[IVII a]	[pieces]	[IVII a]	[pieces]	[IVII a]	[pieces]	[UI a]	[pieces]	[IVII a]
P-15-0.25	92	-	-	3	27,0	3	3,2	3	22,6	-	-
P-20-0.21	83	3	30,5	3	26,2	-	-	3	21,5	2	89,0
P-25-0.17	99	3	31,5	3	29,0	-	-	3	22,9	-	-
P-30-0.14	106	-	-	3	29,0	3	3,0	3	22,3	-	-
P-35-0.12	111	3	33,5	3	31,0	-	-	3	22,2	3	86,0
średnia			21.9		28.1		2 1		22.2		975
average			51,0		20,4		5,1		22,5		07,5
$f_{cm,cube} - v$	vytrzymało	ść betonu 1	na kostka	ch 150 x15	50 x 150	mm / conc	rete strei	ngth on cul	be 150x1	150x150 m	m
f_{cm} – v	f_{cm} – wytrzymałość betonu na walcach 150 x 300 mm / concrete strength on cylinders 150x300 mm										
f_{sp} – v	f_{sp} – wytrzymałość betonu na rozłupywanie / concrete strength in splitting										
E_{cm} – n	noduł spręż	ystości bet	tonu / mo	dulus of e	lasticity j	pf concrete	;				

Zbrojenie główne płyt modeli wykonano z prętów o średnicy Ø8 mm i średniej granicy plastyczności f_{ym} = 565 MPa. Siatka zbrojenia głównego została pokazana na rys. 3.6. W Tablicy 3.3 zestawiono parametry zbrojenia głównego płyt modeli serii I. The main reinforcement of models of plates was made from bars with the diameter Ø8 mm and the average yield strength $f_{ym} = 565$ MPa. The net of the main reinforcement was shown on the Fig. 3.6. In the Table 3.3. parameters of main reinforcement of series I plates models were put together.

Tablica 3.3. Parametry zbrojenia głównego modeli serii I Table 3.3. Parameters of main reinforcement of series I models

Średni	ica nominalna	A_{sm}	f_{yh}	f_{yl}	f_{ym}	E_s						
Nom	inal diameter	$[mm^2]$	[MPa]	[MPa]	[MPa]	[GPa]						
	Ø8	49,85	569,4	560,7	565,0	203,5						
A_{sm} –	średnie pole pr	zekroju pr	ęta / averag	ge cross-se	ction of the	e bar						
f_{yh} –	górna granica j	plastycznos	ści / top yie	eld strengtł	1							
f_{yl} –	dolna granica p	olastycznoś	ści / low yi	eld strengt	h							
f_{ym} –	średnia granica	średnia granica plastyczności / average of yield strength										
\dot{E}_s –	moduł sprężys	tości stali /	modulus o	of elasticity	of steel							

Uzyskane nośności eksperymentalne (V_{exp}) poszczególnych modeli zestawiono w Tablicy 3.4 wraz z pomierzonymi wartościami średnimi wysokości użytecznej płyt i odpowiednim stopniem zbrojenia ρ_l . Obtained experimental carrying capacities (V_{exp}) individual models were put together in Table 3.4. together with measured medium values of the effective depth of plates and the suitable grade of the reinforcement ρ_l .

Rys. 3.6. Układ zbrojenia głównego modeli serii I Fig. 3.6. Arrangement of the main reinforcement of series I models

Tablica 3.4. Nośność modeli serii I Table 3.4. Carrying capacity of series I models

2								
Seria I	h	d_{nom}	d	$ ho_l$	V_{exp}			
Series I		[mm]		[%]	[kN]			
P-15-0.32	150	118	118	0,31	273			
P-20-0.21	200	168	177	0,21	391			
P-25-0.17	250	218	223	0,17	480			
P-30-0.14	300	268	272	0,14	622			
P-35-0.12	350	318	324	0,12	740			
 <i>h</i> – wysokość płyty / depth of the plate <i>d_{nom}</i> – nominalna wysokość użyteczna / nominal effective depth <i>d</i> – średnia wysokość użyteczna zmierzona po badaniu mean effective depth measured after test 								
V _{mm} – siła nis	zczaca / failur	e force						

Na każdym poziomie obciążenia inwentaryzowano rozwój zarysowania i dla kilku rys o największej szerokości dokonywano pomiarów ich rozwarcia. Zwykle rysy o największym rozwarciu znajdowały się w pobliżu obrysu słupa. Na rysunku 3.7 porównano wykresy rozwoju szerokości rys o największym rozwarciu w funkcji wytężenia definiowanego jako stosunek obciążenia do nośności elementu. Odnotowano maksymalne rozwarcie rysy w = 1,4 mm dla modelu P-30-0.14, najmniejsze zaś dla modelu P-35-0.12. On every level of the loading a development of cracking was being inventoried and for a few cracks with biggest width they were making measurements of their width. Cracks with the greatest width have usually been found in the vicinity of the contour of the column. In the Figure 3.7 graphs were compared to the development of the width of cracks with the greatest width in the function of effort defined as the relation of the load to the carrying capacity of element. A maximum width of the crack was noticed w = 1,4 mm for the P-30-0.14 model, smallest whereas for the P-35-0.12 model.

Rys. 3.7. Porównanie rys o maksymalnej szerokości rozwarcia w modelach serii I w zależności od wytężenia elementów Fig. 3.7. Comparing cracks with the maximum width in models of series I in the relation from effort of the elements

Wykresy na rys. 3.8 pokazują średnie odkształcenia zbrojenia głównego płyty na krawędzi słupa. Za wyjątkiem modelu P-20-0.21, we wszystkich modelach odkształcenie to nie przekroczyło wartości $\varepsilon_{ym} = 2,78\%$ reprezentującej granicę plastyczności stali. Graphs on Fig. 3.8 are demonstrating averages strains of the plate reinforcement on the edge of the column. Except of P-20-0.21 model, in all models this strain didn't exceeded value $\varepsilon_{ym} = 2.78\%$ representing the yield strength of steel.

Rys. 3.8. Porównanie średnich odkształceń zbrojenia na krawędzi słupa modeli serii pierwszej Fig. 3.8. Comparison averages strains of the reinforcement on the edge of the column for models of the first series

Odkształcenia zbrojenia głównego płyty w strefie przy podporach były zbliżone do zera w zakresie obciążeń stanowiących $70 \div 80\%$ nośności elementu. Znaczący przyrost odkształceń obserwowano dopiero po zbliżeniu się do stanu granicznego nośności. Może to świadczyć o zmianie mechanizmu pracy płyty, który w stanie granicznym nośności zmierza do modelu typu S – T. Strains of the main reinforcement in the support zone were close to zero in the range of loads of 70 - 80% of the carrying capacity of element. The meaning increase in strains was being observed only after approaching to the ultimate limit stat of the carrying capacity. It can attest to the change of the mechanism of the work of the plate, which in the limit state of carrying capacities is aiming at the model of the type S – T.

Rys. 3.9. Porównanie średnich odkształceń zbrojenia w strefie podpór modeli serii pierwszej Fig. 3.9. Comparison of mean reinforcement strains in the support zone for the first series models

Na rysunku 3.10 pokazano wykresy średnich odkształceń radialnych w sąsiedztwie słupa. Można zauważyć, że wraz ze zmniejszeniem smukłości, a wzrostem wysokości płyty, maleją wartości bezwzględne odkształceń. W przypadku płyt grubszych P-30-0.14 i P-35-0.12 w początkowej fazie obciążenia odnotowano rozciąganie. Podczas badań zarejestrowano maksymalne średnie odkształcenie dla najcieńszej płyty $\varepsilon_m = 0,59\%$, natomiast dla najgrubszej $\varepsilon_m = 0,36\%$. In the Fig. 3.10 diagrams of average radial deformations were shown in the vicinity of the column. It is possible to notice, that together with reducing the slenderness but the increase in the depth of the plate, absolute values of strains are diminishing. In the case of thicker plates P-30-0.14 and P-35-0.12 there was noticed tension in the initial phase of the loading. During tests there was a maximum average strain recorded for the thinnest plate $\varepsilon_m = 0,59\%$, however for thickest $\varepsilon_m = 0,36\%$.

Rys. 3.10. Porównanie średnich odkształceń zbrojenia w strefie podpór modeli serii pierwszej Fig. 3.10. Comparison of mean reinforcement strains in the support zone for the first series models

Na rysunku 3.11 pokazano wyniki badań modeli serii pierwszej w formie punktów reprezentujących $v_{R,exp}(u)/v_{R,c}(u_1)$ w funkcji smukłości ścinania a/d. Linią ciągłą oznaczono krzywą teoretyczną przyjętą w Eurokodzie 2. In Fig.3.11 picture test results of models were shown for the first series in the form of points representing $v_{R,exp}(u)/v_{R,c}(u_1)$ in the function of shear slenderness. With solid line a theoretical curve was marked assumed in Eurocode 2.

Wartości eksperymentalne znajdujące się pod krzywą świadczą o przeszacowaniu nośności przez normę EC2. Pewnym wytłumaczeniem tych rozbieżności może być metodyka badania, która umożliwiała powstawanie nieregularnych kształtów wylotu rysy ukośnej. Aby wyeliminować wpływ tego zjawiska na wyniki badań, w następnych seriach zastosowano sztywny kołnierz podporowy ściśle determinujący wylot rysy ukośnej. Experimental value being under the curve proves about over-estimation the carrying capacities by the EC2 code. A methodology of test which enabled coming into existence of irregular shapes of the outlet of the diagonal crack can be certain explaining of these divergences. In order to eliminate this phenomenon on test results, in next series the stiff collar was used closely determining the outlet of the inclined crack.

Rys. 3.11. Wartości stosunku $v_{exp}(u) N_{R,c}(u_1)$ w zależności od smukłości ścinania a/d – seria pierwsza Fig. 3.11. Values of the ratio $v_{exp}(u) N_{R,c}(u_1)$ in the relation of shear slenderness a/d – first series

Analizując morfologię rys zniszczonych modeli, zaobserwowano powstanie rys radialnych przechodzących przez całą miąższość płyt (patrz rys. 3.12). Wyjątek stanowiła płyta P-15-0.25 o największej smukłości, w której nie powstały tego typu pęknięcia. Rozerwanie modeli płyt krępych można tłumaczyć jako efekt odkształceń ukośnych krzyżulców ściskanych. Analyzing the morphology of cracks of models after failure, there was observed a creation of radial cracks going through the entire thickness of plates (see Fig. 3.12). A plate P-15-0.25 was the exception with the greatest slenderness, in which cracks of this type didn't arise. It is possible to explain tearing of models of thick plates as the effect of deformation of the inclined compression struts.

Rys. 3.12. Radialne pęknięcie modeli serii pierwszej: a) P25-0.17, b) P-30-0.14 Fig. 3.12. Radial cracks of first series models: a) P25-0.17, b) P-30-0.14

3.3. Badania serii drugiej

3.3.1. Opis modeli serii drugiej

Modele serii drugiej różniły się między sobą wysokością użyteczną d, starano się natomiast zachować stały stopień zbrojenia ρ_l . Osiągnięto ten cel różnicując średnice i rozkład zbrojenia głównego. W drugiej serii, w przeciwieństwie do pierwszej, zastosowano dodatkowo zbrojenie obwodowe krępujące odkształcenia w kierunku promieniowym. Dokładna charakterystyka modeli została przedstawiona w załączniku.

Ze względu na konieczność bardziej precyzyjnego wymuszenia kąta nachylenia stożka przebicia, w serii drugiej, jak i trzeciej, użyto sztywnego stalowego kołnierza kotwiącego (rys. 3.2.b). W ten sposób wylot rysy ukośnej był determinowany wewnętrzną krawędzią kołnierza, co powodowało przecięcie teoretycznej rysy ukośnej z powierzchnią środka ciężkości zbrojenia dla różnych wartości a (rys. 3.13).

3.3. Tests of the second series

3.3.1. Description of the second series models

Models of the second series differed between themselves with the effective depth d, they were trying however to save constant reinforcement ratio ρ_l . That purpose was achieved by diversifying diameters and the arrangement of the main reinforcement. In the second series, in the opposite to first, additionally a circumferential reinforcement constraining strains in radial direction was used. The accurate characterization of models was presented in Appendix.

With regard to the need to force more precise the inclination of the cone, in second, as well as third series, they used stiff steel anchorage collar (Fig. 3.2.b). In this way the outlet of the inclined cracks was determined with internal edge of the collar what caused the intersection of the theoretical inclined crack with the surface of the centre of gravity of the reinforcement for various value a(Fig.3.13).

Rys. 3.13. Teoretyczne rysy ukośne w modelach serii drugiej Fig. 3.13. Theoretical inclined cracks in second series models

Analogicznie jak dla serii pierwszej, badania rozpoczynały się od inwentaryzacji rys skurczowych i przykładania obciążenia wstępnego o wartości ~4 kN po wcześniejszym wycentrowaniu tłoka względem środka słupka. Przyrost obciążenia następował stopniowo co około 10 min, w zależności od grubości płyty o wartość od 20 kN do 80 kN. W miarę zbliżania się do stanu granicznego nośności przyrost siły zmniejszano.

3.3.2. Wyniki badań serii drugiej

Betonowanie płyt przeprowadzono 2 grudnia 2011r. używając w tym celu betonu towarowego klasy C20/25 o maksymalnym wymiarze kruszywa 16 mm. Natomiast betonowanie słupków przeprowadzono pięć dni później i wykorzystano w tym celu beton o wysokiej wytrzymałości. As by analogy as for the first series, tests started oneself from stocktaking of shrinkage cracks and apply of initially loading with \sim 4 kN value after previous centering a pistons with account of the centre of the column. The increase in the load followed gradually in every 10 min. depending on the thickness of the plate for value from 20 kN till 80 kN. When approaching to the ultimate limit state of carrying capacities, the increase in load was being reduced.

3.3.2. Test results of second series

Concreting the plates was carried out 2 December 2011 using the ready-mixed concrete of the C20/25 class to this purpose with the maximum dimension of the aggregate of 16 mm. However concreting the columns was carried out five days later and to this purpose concrete of high strength was used.

Najwcześniej badany był model P-20-0.40 (15 marca 2012r.), jako ostatni natomiast P-35-0.40 (17 kwietnia i 10 maja 2012r.). W pierwszym terminie nie udało się zniszczyć płyty ze względu na zbyt mały zakres obciążenia maszyny wytrzymałościowej. Po przeprowadzeniu kilku cykli obciążania-odciążania zdecydowano się na dokończenie badania w późniejszym terminie. Po wykonaniu niezbędnej modernizacji i przeskalowaniu urządzenia na zakres 0-2000 kN badanie zostało dokończone.

W dniu badania poszczególnych elementów określano rzeczywistą wytrzymałość betonu za pośrednictwem próbek sześciennych i walcowych. W tablicy 3.5 zestawiono wytrzymałości betonów oraz ich wiek w czasie badania. At the earliest a P-20-0.40 model was examined (15 March 2012), as last however P-35-0.40 (of 17 April and of 10 May 2012r.). In the first time they didn't manage to destroy the plate with regard to the too small range of testing machine. After carrying out a few cycles load-ing-lightening they made a decision for completing test at a later date. After carrying out the essential modernization and scaling the test machine to the range of 0-2000 kN, test was completed.

In the day of test of individual elements a real strength of concrete was determined using cube-shaped and cylinder samples. In the Table 3.5 strengths of concrete and their age during tests were put together.

Tablica	3.5.	Parar	netry i	wiek	bada	nych	beton	ów mo	odeli s	erii d	drug	iej	
Table 3	5 T	able c	of nara	meter	s and	age	of the t	tested	concr	etes	of se	http://	series

				Pły	ta / Plate	;				Słupek /	Column
	Wiek	Liczba		Liczba		Liczba		Liczba		Liczba	
Sorio II	betonu	próbek	f	próbek	f	próbek	f	próbek	Б	próbek	f
Series II	Concrete	Samples	Jcm,cube	Samples	Jcm	Samples	Jsp	Samples	L_{cm}	Samples	Jcm,cube
Series II	age	number		number		number		number		number	
	[dni]	[szt]	[MD ₀]	[szt]	[MDa]	[szt]	[MDa]	[szt]	[GDa]	[szt]	[MD ₀]
	[days]	[pieces]	[IVIFa]	[pieces]	[IVIF a]	[pieces]	[IVIF a]	[pieces]	[Ora]	[pieces]	[IVIFa]
P-20-0.40	104	4	37,3	4	32,2	4	3,15	2	96,2	-	-
P-25-0.40	111	4	37,4	3	33,5	4	3,20	-	-	-	-
P-30-0.40	118	4	39,8	4	31,8	4	3,25	2	94,5	2	95,9
P-35-0.40	155	4	38,6	4	32,0	4	3,10	2	107,5	2	97,0
średnia			20.2		22.4		2 1 9		00.2		06.5
average			30,5		32,4		5,10		99,5		90,5
$f_{cm,cube} - v$	vytrzymało	ść betonu r	na kostka	ch 150 x15	50 x 150	mm / conc	rete strei	ngth on cul	be 150x1	50x150 m	m
f_{cm} – v	f_{cm} – wytrzymałość betonu na walcach 150 x 300 mm / strength on cylinders 150x300 mm										
f_{sp} – v	f_{sp} – wytrzymałość betonu na rozłupywanie / concrete strength In splitting										
$\vec{E} = n$	noduł spreż	vstości het	onu / mo	dulus of el	lasticity of	of concrete					

Do wykonania zbrojenia dla modelu P-20-0.40, wykorzystano pręty o średnicy Ø8 mm, dla modelu P-25-0.40 i P-30-0.40 o średnicy Ø10 mm a dla modelu P35-0,40 Ø12mm. Siatka zbrojenia głównego miała zmienny rozstaw (patrz rys. 3.14 i załącznik). Wytrzymałości prętów zestawiono w tablicy 3.6.

Uzyskane nośności eksperymentalne (V_{exp}) poszczególnych modeli zestawiono w tablicy 3.7, wraz z wartościami średnimi wysokości użytecznych elementów oraz stopniami zbrojenia ρ_l . To make the reinforcement for the P-20-0.40 model, there were used bars of the diameter $\emptyset 8$ mm, for the P-25-0.40 model and P-30-0.40 with the diameter $\emptyset 10$ mm but for the P35-0,40 model $\emptyset 12$ mm. The net of the main reinforcement had changeable distance (see the Fig. 3.14 and Annex). Strength of bars were put together in the Table 3.6.

Obtained experimental carrying capacities (V_{exp}) individual models were put together in the Table3.7, together with averages values of the effective depth of elements and the reinforcement ratio ρ_l .

Table 5.0. I arameters of the removeing steel of the second series							
Seria II	Średnica nominalna	A_{sm}	f_{yh}	f_{yl}	f_{ym}	E_s	
Series II	Nominal diameter	$[mm^2]$	[MPa]	[MPa]	[MPa]	[GPa]	
P-20-0.40	Ø8	49,85	548,7	540,2	544,0	203,1	
P-25-0.40	Ø10	77,71	546,8	532,8	544,0	211,5	
P-30-0.40	Ø10	78,40	548,7	540,2	540,0	203,5	
P-35-0.40	Ø12	112,8	587,3	573,0	580,2	204,3	
A_{sm} -średnie pole przekroju pręta / average cross-section of the bar							
f_{yh} –górna granica plastyczności / top yield strength							
f_{yl} –dolna granica plastyczności / low yield strength							
f_{ym} –średnia granica plastyczności / average of yield strength							
E_s –moduł sprężystości stali / modulus of elasticity of steel							

Tablica 3.6. Parameters of the reinforcing steel of the second series

b)

Rys. 3.14. Zbrojenie płyt modeli serii drugiej, a) P-20-0.40, b) P-25-0.40, c) P-30-0.40, d) P-35-0.40 Fig. 3.14. Reinforcement of plates of the second series, a) P-20-0.40, b) P-25-0.40, c) P-30-0.40, d) P-35-0.40

Seria II	h	d_{nom}	d	$ ho_l$	V_{exp}			
Series II		[mm]	[%]	[kN]				
P-20-0.40	P-20-0.40 200		174	0,40	665			
P-25-0.40	250	218	220	0,40	920			
P-30-0.40	300	268	271	0,40	1280			
P-35-0.40 350		318	318	0,40	2000			
 h – wysokość płyty / depth of the plate d_{nom} – nominalna wysokość użyteczna / nominal effective depth d – średnia wysokość użyteczna zmierzona po badaniu mean effective depth measured after test ρ_l – stopień zbrojenia / reinforcement ratio V_{evn} – siła niszczaca / failure force 								

Tablica 3.7. Nośn	ość modeli s	serii drugiej	
Table 3.7. Carryir	ng capacity o	of the second	series

Na rysunku 3.15 porównano wykresy rozwoju szerokości rys o największym rozwarciu w funkcji wytężenia elementu. Rejestrowano rysy o szerokości 0,3 mm przy obciążeniu stanowiącym 65 ÷ 70% siły niszczącej. In Fig.3.15 graphs of the width development of cracks with the greatest width were compared in the function of element effort. Cracks were being recorded for width 0,3 mm at the load equals $65 \div 70\%$ of failure force.

in second series models in the function of element effort

Wykresy na rys. 3.16 pokazują średnie odkształcenia zbrojenia głównego płyty na krawędzi słupa. Odkształcenia te przekroczyły wartości ε_{ym} , reprezentujące granice plastyczności, we wszystkich modelach za wyjątkiem P-25-0.40. Z poniższego wykresu widać również, że przyrost odkształceń w modelu P-35-0.40 podczas ponownego obciążania elementu był prawie liniowy, aż do chwili osiągnięcia siły maksymalnej, przyłożonej w pierwszym badaniu – 1600kN. Diagrams in Fig.3.16 are demonstrating average strains of main plate reinforcement on the edge of the column. These strains exceed value $\varepsilon_{ym,}$, representing yield strength, in all models except P-25-0.40. From the undermentioned diagram one can also see that the increase in strains in the P-35-0.40 model during new loading the element was almost linear, until the moment of achieving maximum force, applied in the first test - 1600kN.

Rys. 3.16. Porównanie średnich odkształceń zbrojenia na krawędzi słupa modeli serii drugiej Fig. 3.16. Comparison of average strains of the reinforcement on the column edge of second series models

Na rysunku 3.17 przedstawiono średnie odkształcenia zbrojenia dla modelu P-35-0.40 z dwóch badań. Wynika z niego, że stal zbrojeniowa odkształciła się trwale w trakcie pierwszej próby obciążania o wartość $\varepsilon_s = 0.35\%$ i osiągnęła granice plastyczności dopiero podczas drugiego badania, tuż przed zniszczeniem modelu. In Fig. 3.17 there are shown average strains of the reinforcement for P-35-0.40 model from two tests. It results from it that steel reinforcement deformed permanently during the first effort of loading for value $\varepsilon_s = 0,35\%$ and reached yield strengths only while second test, right before failure the model.

Rys. 3.17. Porównanie średnich odkształceń zbrojenia na krawędzi słupa modelu P-35-0.40 serii drugiej Fig. 3.17. Comparison of average strains of the reinforcement on the column edge of P-35-0.40 model of second series

Średnie odkształcenia radialne w sąsiedztwie słupa dla modeli drugiej serii przedstawia rys. 3.18. Podobnej jak w serii pierwszej, wraz ze zmniejszeniem smukłości, maleją wartości bezwzględne odkształceń, ponadto w przypadku płyt grubszych P-30-0.40 i P-35-0.40 następowała zmiana znaku odkształceń. Podczas badań zarejestrowano maksymalne średnie odkształcenie dla najcieńszej płyty $\varepsilon_m = -0,89\%$, natomiast dla najgrubszej $\varepsilon_m = -0,21\%$. Mean radial strains in vicinity of column for second series models are presented in Fig. 3.18. Similar like in the first series, together with reducing the slenderness, absolute values of strains are diminishing, moreover in the case of thicker P-30-0.40 and P-35-0.40 plates a change of the sign of strains took place. During tests there was a maximum average strain recorded for the thinnest plate $\varepsilon_m = -0,89\%$, but for the thickest one $\varepsilon_m = -0,21\%$.

Rys. 3.18. Wykresy średnich odkształceń radialnych na powierzchni betonu w sąsiedztwie słupa, dla modeli serii drugiej Fig. 3.18. Diagrams of average radial strains on the concrete surface in vicinity of the column, for the second series models

Zastosowanie sztywnego stalowego kołnierza kotwiącego w znacznej mierze ograniczyło przypadkowość propagacji ukośnej rysy niszczącej. Na rysunku 3.19 pokazano przebieg rys ukośnych na przekrojach modeli. Applying the stiff steel anchorage collar to a large measure limited the randomness of the propagation of the inclined failure crack. In Fig. 3.19 propagation of inclined cracks on cross-sections of models was shown.

Rys. 3.19. Widok przeciętych modeli serii drugiej Fig. 3.19. View of intersected models of the second series

Analizując wyniki drugiej serii badań, można zauważyć iż, wszystkie wartości eksperymentalne znajdują się powyżej teoretycznej krzywej, co może świadczyć o dodatkowym zapasie nośności (rys. 3.20). Wyjaśnieniem tego faktu może być wystąpienie sił membranowych, wynikających z zastosowania dodatkowego zbrojenia obwodowego powodującego skrępowanie badanych elementy. Analyzing results of the second series of tests it is possible to noticed that, all experimental values are above the theoretical curve what can prove additional supply of the carrying capacity (Fig. 3.20). This fact can be explained by appearance of diaphragmatic forces, resulting from use an additional circumferential reinforcement causing confinement of examined elements.

Podobnie jak w serii pierwszej, najbardziej krępe elementy serii drugiej ujawniły charakterystyczne radialne pęknięcia przechodzące przez całą grubość płyt (rys. 3.21).

Rys. 3.21. Widok radialnych pęknięć na powierzchni ściskanej płyt modeli serii drugiej a) P30-0.40, b) P-35-0.40 Fig. 3.21. View of the radial cracks on the compression surface of the plates of second series a) P30-0.40, b) P-35-0.40

3.4. Badania serii trzeciej

3.4.1. Opis modeli serii trzeciej

Zmiennym parametrem modeli serii trzeciej była wysokość użyteczna *d* i stopień zbrojenia ρ_l , poza elementem oznaczonym P-35-0.00, w którym występowało tylko zbrojenie obwodowe (rys. 3.22). W tej serii zaprojektowano dwie płyty: P'-15-0.31 i P'-20-0.22 które miały zbliżony stopień zbrojenia do płyt o tej samej grubości z serii pierwszej. Dokładna charakterystyka modeli przedstawiona jest w załączniku.

3.4.1. Description of third series models

A changeable parameter of models of the third series was the effective depth *d* and the reinforcement ratio ρ_l , except of P-35-0.00 element in which only a circumferential reinforcement appeared (Fig. 3.22). In these series two plates were designed: P'-15-0.31 and P'-20-0.22 which had reinforcement ratio approximate to the plates with the same thickness from the first series. The accurate characterization of models is presented in the annex.

Rys. 3.22. Przekrój modelu P-35-0.00 serii trzeciej Fig. 3.22. Cross-section of third series model P-35-0.00

Rys. 3.23. Widok modelu P'-20-0.22 serii trzeciej na stanowisku badawczym Fig. 3.23. View of the model P'-20-0.22 of third series in the test stand

As similarly as in the first series, the most thick elements of the second series revealed characteristic radial cracks going through the entire thickness of plates (Fig. 3.21). W serii trzeciej prócz pomiarów odkształceń zbrojenia głównego, zbrojenia obwodowego i betonu w bliskim sąsiedztwie słupka na dwóch obwodach, wykonywano również pomiar zmian grubości płyty pod obciążeniem. Lokalizację czujników pomiarowych (indukcyjnego i mechanicznego) pokazano na rys. 3.22. i 3.23.

3.4.2. Wyniki badań serii trzeciej

Modele serii trzeciej wykonane były z betonu towarowego klasy C20/25, o maksymalnym wymiarze kruszywa 16 mm. 16 października 2012r. przeprowadzono betonowanie płyt, natomiast betonowanie słupków kilka dni później stosując beton o wysokiej wytrzymałości. In the third series apart from measurements of strains of the main reinforcement, circumferential reinforcement and concrete in the close vicinity of the column on two perimeters, a measurement of changes of the plate thickness was also carried out under the load. Location of measuring strain gauges (inductive and mechanical) are shown in Fig. 3.22. and Fig. 3.23.

3.4.2. Test results of third series

Models of the third series were made of manufacture concrete of C20/25 classes, with the maximum dimension of the aggregate of 16 mm. Concreting plates was carried out at 16 October 2012r., however concreting columns a few days later applying high strength concrete.

Rys. 3.24. Widok modeli serii trzeciej po zakończeniu betonowania płyt Fig. 3.24. View of third series after ending of concreting the plates

W tablicy 3.8. zestawiono wyniki badań wytrzymałości betonu na ściskanie przeprowadzone w dniach badań poszczególnych modeli. There are presented in table 3.8 the test results of concrete strengths in compression carried out at the days of tests of the individual models.

Tuble 5.6. Strength and concrete age of the places of third series models								
	Płyta / Plate							
	Wiek	Liczba		Liczba		Liczba		
Soria III	betonu	próbek	ſ	próbek	f_{sp}	próbek	E_{cm}	
Series III	Concrete	Samples	Jcm	Samples		Samples		
Series III	age	number		number		number		
	[dni]	[szt]	[MD ₂]	[szt]	[MPa]	[szt]	[GPa]	
	[days]	[pieces]	[IVII a]	[pieces]		[pieces]		
P'-15-0.31	111	3	33,7	3	3,4	2	25,3	
P'-20-0.22	114	3	37,3	3	3,4	3	26,5	
P-25-0.27	119	3	37,0	3	3,1	3	27,3	
P-30-0.22	121	3	36,0	3	3,1	3	27,1	
P-35-0.00	126	5	37,0	3	3,4	5	27,1	
średnia / average			36,2		3,3		26,7	
f_{cm} – wytrzymałość betonu na walcach 150x300 mm								
concrete strength on cylinders 150x300 mm								
f_{sp} – wytrzymałość betonu na rozłupywanie / concrete strength in splitting								
E_{cm} – moduł sprężystości betonu / modulus of elasticity of concrete								

Tablica 3.8. Wytrzymałości i wiek betonu płyt modeli serii trzeciej Table 3.8. Strength and concrete age of the plates of third series models

Zbrojenie płyt modeli P'-15-0.31 i P'-20-0.22 wykonano z prętów o średnicy 8 mm, modele P-25-0.27 i P-30-0.22 miały zbrojenie z prętów o średnicy 10 mm, a w modelu P-35-0.40 zbrojenie obwodowe wykonano z prętów Ø12 mm.

Schematy zbrojenia poszczególnych płyt pokazano na rys. 3.25 i 3.26 oraz w załączniku. Parametry wytrzymałościowe zbrojenia zawiera tablica 3.9.

Rys. 3.25. Zbrojenia płyt modeli serii trzeciej P'-15-0.32, P'-20-0.22, P-25-0.27, P-30-0.22 Fig. 3.25. Reinforcement of the plates of third series models P'-15-0.32, P'-20-0.22, P-25-0.27, P-30-0.22

Reinforcement of P'-15-0.31 and P'-20-0.22 models was made from bars with the diameter 8 mm, P-25-0.27 and P-30-0.22 models had reinforcement from bars with diameter 10 and in the P-35-0.40 model the circumferential reinforcement was made from bars of 12 mm.

Scheme of the reinforcement of individual plates are shown in Fig. 3.25 and 3.26 and in the appendix. Strength parameters of the reinforcement contains Table 3.9.

Rys. 3.26. Zbrojenie w modelu P-35-0.00 Fig. 3.26. Reinforcement of P-35-0.00 model

Tuble 5.9.1 arameters of the femilifering steer of second series							
Średnica nominalna	A_{sm}	f_{yh}	f_{yl}	f_{ym}	E_s		
Nominal diameter	$[mm^2]$	[MPa]	[MPa]	[MPa]	[GPa]		
Ø8	51,26	543,8	521,9	532,9	219,3		
Ø10	80,73	538,8	528,9	533,9	206,2		
Ø12	113,27	539,5	525,7	532,6	204,7		
A_{sm} – średnie pole pr	średnie pole przekroju pręta / average cross-section of the bar						
f_{yh} – górna granica	górna granica plastyczności / high yield strength						
f_{yl} – dolna granica	dolna granica plastyczności / low yield strength						
f_{ym} – średnia granic	średnia granica plastyczności / average yield strength						
\dot{E}_s – moduł sprężys	moduł sprężystości stali / modulus of elasticity of steel						

Tablica 3.9. Parametry stali zbrojeniowej modeli serii drugiej Table 3.9. Parameters of the reinforcing steel of second series

Uzyskane nośności eksperymentalne (V_{exp}) poszczególnych modeli zestawiono w tablicy 3.10, wraz z wartościami średnimi wysokości użytecznych elementów oraz stopniami zbrojenia ρ_l .

Na rysunku 3.27 porównano wykresy rozwoju szerokości rys o największym rozwarciu w funkcji wytężenia elementu. Odmiennie zbrojony model P-35-0.00 odbiegał znacznie pod względem przebiegu rozwoju rys od pozostałych modeli. W większości modeli stosunkowo wcześnie, przy wytężeniu około 50%, rejestrowano rysy o szerokościach maksymalnych dopuszczalnych przez normę. Odnotowano maksymalne rozwarcie rysy w = 3,9 mm dla modelu P-35-0.00 (bez zbrojenia na zginanie) zaś w = 1,0mm dla modelu P-30-0.22. Obtained experimental carrying capacities(V_{exp}) of individual models were put together in Table 3.10, together with averages values of effective height and reinforcement ratio of the elements ρ_l .

In the Fig. 3.27 graphs of the development of cracks of maximum width were compared in the function of elements effort. Differently reinforced P-35-0.00 model ran away much in respect of the cracks development from remaining models. In the majority of models relatively early, at the effort about 50%, the limit values of width, acceptable by codes were being achieved. A maximum crack width was noticed w = 3,9 mm for the P-35-0.00 model (without reinforcement for bending) whereas w = 1,0mm for the P-30-0.22 model.

Tablica 3.10. Nośność modeli serii trzeciej Table 3.10. Load carrying capacities of third series

Tuche 2:10: Doud vallying expansion of anna series							
Seria III	h	d_{nom}	d	$ ho_l$	V_{exp}		
Series III		[mm]	[%]	[kN]			
P'-15-0.31	150	118	127	0,31	351		
P'-20-0.22	200	168	175	0,22	503		
P-25-0.27	250	215	222	0,27	824		
P-30-0.22	300	265	274	0,22	950		
P-35-0.00	350	0	0	0	992		
h – wysokość płyty / depth of the plate							

d_{nom} – nominalna wysokość użyteczna / nominal effective strength

d – średnia wysokość użyteczna zmierzona po badaniu

- average effective depth measured after test
- stopień zbrojenia / reinforcement ratio

 V_{exp} – siła niszcząca / failure force

Średnie odkształcenia zbrojenia głównego płyty na krawędzi słupa przekraczały wartość wynikającą z granicy plastyczności ε_{ym} we wszystkich modelach – patrz rys. 3.28.

Rysunek 3.29 przedstawia wykresy średnich odkształceń zbrojenia obwodowego modeli ze zbrojeniem głównym na zginanie. Average strains of the main reinforcement of plates on the column edge exceeded value resulting from the yield strength ε_{ym} in all models- see Fig. 3.28.

Fig. 3.29 presents diagrams of mean strains of the circular reinforcement of models with the main reinforcement for bending.

Rys. 3.28. Porównanie średnich odkształceń zbrojenia na krawędzi słupa modeli serii trzeciej Fig. 3.28. Comparison of mean strains in the reinforcement on column edge for third series models

W przypadku modelu P-35-0.00 prowadzono pomiary odkształcenia zbrojenia obwodowego na trzech poziomach. Na rysunku 3.30 pokazano średnie odkształcenia zbrojenia obwodowego na poszczególnych poziomach. Do poziomu wytężenia płyty równego około 40% odkształcenia były praktycznie zerowe. Po przekroczeniu tej wartości obciążenia można było zaobserwować stopniowy przyrost odkształceń. Na poziomie najwyższym (najbliższym górnej powierzchni płyty) i w środku grubości zbrojenie było rozciągane. Na najniższym poziomie zaobserwowano niewielkie ściskanie zbrojenia. W przypadku poziomu górnego i środkowego zbrojenie zostało uplastycznione w stanie granicznym zniszczenia. In the case of the P-35-0.00 model measurements of strains in the circumferential reinforcement were being carried out on three levels. In Fig. 3.30 average strains of the circumferential reinforcement on individual levels were shown. To the effort level of plates equal about 40%, strains were practically zero. After crossing this value of loading it was possible to observe gradually increase in strains. On the highest level (closest to the upper surface area of the plate) and in the middle of thickness, reinforcement was tensioned. On the most bottom level little compression of the reinforcement was observed. In the case of the upper and centre level the reinforcement stayed yield in the ultimate limit state of failure.

Rys. 3.29. Porównanie średnich odkształceń zbrojenia obwodowego serii trzeciej Fig. 3.29. Comparison of the mean strains of circular reinforcement for third series

Rys. 3.30. Odkształcenia średnie zbrojenia obwodowego modelu P-35-0.00 Fig. 3.30. Mean strains of the circumferential reinforcement for P-35-0.00 model

Średnie odkształcenia radialne na powierzchni betonu w bezpośrednim sąsiedztwie słupa pokazano na rys. 3.31. Podobnie jak w poprzednich seriach, wraz ze zmniejszeniem smukłości płyt, maleją wartości bezwzględne odkształceń, natomiast w przypadku płyt grubszych następuje zmiana charakteru odkształceń. Odkształcenia radialne na drugim obwodzie osiągały znacznie mniejsze wartości (patrz rys. 3.32). Mean radial strains on the concrete surface in immediate vicinity of column are shown in Fig. 3.31. As similarly as in previous series, together with the reduction of slendernesses of plates, absolute values of strains are diminishing, however in the case of thicker plates a change of character of deformations is taking place. Radial strains on the second circumference achieved much smaller values (see Fig. 3.32).

Rys. 3.31. Średnie odkształcenia radialne na powierzchni betonu na obwodzie pierwszym w sąsiedztwie słupa Fig. 3.31. Mean radial strains on concrete surface on the first perimeter in vicinity of column

Rys. 3.32. Średnie odkształcenia radialne na powierzchni płyty na drugim obwodzie Fig. 3.32. Mean radial strains on the plate surface on the second perimeter

Na rysunku 3.33 i 3.34 pokazano odkształcenia obwodowe na powierzchni ściskanej płyt. Można zauważyć, że wielokrotnie przekraczają one wartości odkształceń radialnych.

Na rysunku 3.35 pokazano zmiany grubości płyty w funkcji wytężenia. Do poziomu wytężenia około 40% zmiany te są zerowe. Powyżej tego poziomu zaczynają osiągać wartości mierzalne. Można ten fakt kojarzyć z początkiem kształtowania się rys ukośnych. In Fig. 3.33 and 3.34 circumferential strains were shown on the compressive surface of plates. It is possible to notice, that they exceed repeatedly values of radial strains.

In Fig. 3.35 changes of the plate thickness were shown in the function of effort. To the level of effort equals about 40%, these changes are zero. Above this level they are starting achieving measurable value. It is possible to combine this fact with the beginning of creation of inclined cracks.

Rys. 3.33. Średnie odkształcenia obwodowe na pierwszym obwodzie Fig. 3.33. Mean circumferential strains on the first perimeter

Rys. 3.34. Średnie odkształcenia obwodowe na drugim obwodzie Fig. 3.34. Mean circumferential strains on second perimeter

Rys. 3.35. Zmiana grubości płyt w funkcji wytężenia Fig. 3.35. Change of plate thickness in the function of effort

Wyniki badań serii trzeciej potwierdzają występowanie pewnego zapasu nośności w przypadku elementów skrępowanych (rys.3.36). We wszystkich elementach, podobnie jak w modelach wcześniejszych serii, wystąpiły radialne pęknięcia przechodzące przez całą grubość płyty. Research findings of the third series are confirming existing of certain supply of the carrying capacity in the case of confined elements (Fig. 3.36). In all elements, as similarly as in models of earlier series, radial cracks going through the entire thickness of the plate appeared.

Rys. 3.37. Widok przeciętych modeli serii trzeciej Fig. 3.37. View of intersected third series models

Rys. 3.38. Widok powierzchni rozciąganej modelu P-35-0,00 serii trzeciej po zniszczeniu Fig. 3.38. View of tensioned surface of P-35-0.00 model from third series after failure

3.5. Podsumowanie badań własnych

Na podstawie wyników badań własnych 14 modeli można stwierdzić, wyraźny wpływ smukłości płyty na krytyczne naprężenia styczne. Przyjęcie przez Eurokod 2 smukłości $\lambda = 2$, jako granicy tego wpływu, można uznać za poprawne. Zauważono również znaczący wpływ skrępowania strefy podporowej otaczającą ją konstrukcją. W przypadku prezentowanych badań, efekt skrepowania był wywoływany za pomocą zbrojenia obwodowego, które zastosowano w modelach serii II i III. Na rysunku 3.39 pokazano wyniki badań własnych na tle krzywej normowej Eurokodu 2. Na osi poziomej tego wykresu oznaczono smukłość ścinania płyty (a/d), zaś na osi pionowej stosunek stycznych naprężeń krytycznych korespondujących z obwodem u do napreżeń stycznych odpowiadajacych podstawowemu obwodowi kontrolnemu u_1 . Punkty reprezentujące wyniki badań własnych modeli P-35-0,12, P-30-0,14, P-25-0,17 (seria I) oraz P-35-0,00 (seria III) znalazły się poniżej teoretycznej krzywej normowej - a zatem po stronie niebezpiecznej. Wymienione modele serii I są modelami stosunkowo krępymi bez zbrojenia obwodowego, zaś element P-35-0,00 (najbardziej krępy z modeli serii III) miał wyłącznie zbrojenie obwodowe (nie zastosowano zbrojenia głównego ortogonalnego). Pozostałem punkty odpowiadające wynikom badań własnych znalazły się ponad hiperbola normowa, co świadczy o pewnym zapasie nośności w stosunku do rezultatów obliczeń zgodnie z Eurokodem 2.

3.5. Summary of own investigations

On the basis of own investigations of 14 models it can be state an unmistakable influence of the slab slenderness on the critical shear stresses. Assumption by EC2 a slenderness of $\lambda = 2$, as the limit of this influence can be recognized as correct. It was noticed also the significant influence of support zone confinement by surrounding construction. In presented tests the confinement effect was caused by the circumferential reinforcement, which was used in II and III series models. In the Fig. 3.39 results of own tests were shown relating to the standard curve of EC2. On the horizontal axis of this graph a shear slenderness of the slab was indicated (a/d), whereas on the vertical axis ratio of tangent critical stresses corresponding with the perimeter u to the tangent stresses for basic control perimeter u_1 Points representing own test results of P-35-0,12, P-30-0,14, P-25-0,17 models (series I) and P-35-0,00 (series III) were below the theoretical standard curve - that is on the dangerous side. Nominated models of series I are models relatively thickset without the perimeter reinforcement, but P-35-0,00 element (most thickset of series III) had only a perimeter reinforcement (a main orthogonal reinforcement wasn't used). The rest of points related to the own tests were above the standard hyperbola, what is attesting to the certain supply of the carrying capacity with respect to results of calculations according to Eurocode 2.

Rys. 3.39. Wartości stosunku $v_{exp}(u)v_{R,c}(u_1)$ w zależności od smukłości ścinania a/d – badania własne Fig. 3.39. Values of the ratio $v_{exp}(u)v_{R,c}(u_1)$ in relation of shear slenderness a/d – own investigations

4. WNIOSKI

Na rysunku 4.1 zestawiono wyniki porównania zarówno badań własnych, jak również dostępnych w literaturze przedmiotu. Okazuje się, że większość wyników badań eksperymentalnych modeli o bardzo małej smukłości $\lambda \leq 1,2$ znajduje się po stronie niebezpiecznej w stosunku do krzywej Eurokodu 2. Taki stan rzeczy można tłumaczyć sposobem badania modeli.

4. CONCLUSIONS

In the Fig. 4.1 the results of the comparison both of own tests, as well as tests available in the literature on the subject were set together. It turns out, that majority of experimental test results of models of the very small slenderness $\lambda \le 1.2$ is on the dangerous side with respect to the Eurocode 2 curve. It is possible to explain such a state of things with the way of tests of the models.

W badaniach obcych eksperyment odwzorowywał raczej sytuację stóp fundamentowych. Szczególnie badania *Heggera* i współautorów [10, 11] ściśle nawiązywały do realiów oddziaływania gruntu na stopę fundamentową, podobnie jak badania *Hallgrena i in.*, w których część modeli obciążana była w sposób powierzchniowy za pomocą układu siłowników. Należy również zauważyć, iż konstrukcja zbrojenia głównego modeli ograniczała się wyłącznie do prętów tworzących siatkę ortogonalną. In outside tests experiment copied rather situation of column bases. Especially tests of *Hegger* and co-authors [10, 11] closely referred to the reality of the ground influences to the column bases, similarly to *Hallgren* and others tests, in which the part of models was loaded in the surface way by means of hydraulic presses set-up. One should also notice that the construction of main reinforcement of models was limited only to bars forming the orthogonal net.

Rys. 4.1. Wartości stosunku $v_{exp}(u)/v_{R,c}(u_1)$ w zależności od smukłości ścinania a/d – badania własne i obce Fig. 4.1. Values of the ratio $v_{exp}(u)/v_{R,c}(u_1)$ in relation of the shear slenderness a/d – own and other investigations

Biorac pod uwage wyniki badań własnych, jak również obcych, należy stwierdzić, że mamy do czynienia z dwiema różnymi sytuacjami - krępej płyty ciągłej i z natury rzeczy krępej stopy fundamentowej. W pierwszym przypadku, strefa podporowa płyty jest otoczona przęsłowymi fragmentami konstrukcji, które ograniczają swobodę odkształceń poprzecznych. Wywołują tym samym efekt skrępowania, korzystny z punktu widzenia pracy płyty fundamentowej. W krępych stopach fundamentowych efekt skrępowania może być wywołany jedynie przez zbrojenie główne. Schematy przekazywania oddziaływań pokazano na rys. 4.2. O istocie znaczenia dla nośności na przebicie oddziaływania zbrojenia obwodowego, reprezentowanego przez strzałki oznaczone numerem 2 na rys. 4.2, świadczy wynik uzyskany w badaniach modelu P-35-0,00.

Taking into consideration the own tests results, as well as also the foreign tests, one should state that we are dealing with two different situations - of thick continuous slab and from the nature of the thing of the thick column base. In the first case, the support zone of the slab is surrounded with span fragments of structures which constrain the easy of transverse strains. They cause in that way the effect of confinement which is beneficial for the work of footing slab. In the thick column bases the effect of confinement can be cause only by the main reinforcement. Schemes of transfer influences were shown in Fig. 4.2. About the substance of meaning for the carrying capacity for punching an influence of the circumferencial reinforcement, represented by arrows marked with number 2 on the Fig. 4.2, is providing the result get in test of the P-35-0,00 model.

Rys. 4.2. Schematy działania efektu membranowego w płytach krępych i stopach fundamentowych:
1 – obciążenie zewnętrzne, 2 – siły krępujące wywołane ograniczeniem odkształceń przez konstrukcję znajdującą się na zewnątrz strefy przebicia, 3 – siły w zbrojeniu głównym – efekt ściągu Fig. 4.2. Operation diagrams of membrane effect in thick slabs and column bases:
1 – external loading, 2 – confining forces due to restraint of strains by the construction existing outside punching zone, 3 – forces in the main reiforcement – effect of stay.

LITERATURA / REFERENCES

- [1] Lavrovich J.S, McLean D.I: Punching Shear Behavior of Slabs with Varying Span-Depth Ratios. ACI Structural Journal, V.87, No 5, September-October 1990, s. 507÷512;
- [2] EN 1992-1-1:2004 Design of concrete structures. General rules and rules for buildings.
- [3] Talbot A.: Reinforced Concrete Wall Footings and Column Footings. University Of Illinois Bulletin, Vol. X, N. 27, 1913;
- [4] Richart F.E.: Reinforced Concrete Wall and Column Footings, Journal of the American Concrete Institute, Vol. 20, 1948;
- [5] Dieterle H.: Zur Bemessung quadratischer Stützenfundamente aus Stahlbeton. DAfStb, Heft 387, Berlin, 1987;
- [6] Kordina K., Nölting D.: Tragfähigkeit durchstanzgefährdeter Stahlbetonplatten, DAfStb, Heft 371, Berlin, 1986
- [7] Hallgren M., Kinnunen S., Nylander B.: Punching shear tests on column footings. Nordic Concrete Research, Stockholm, 1998;
- [8] Timm M.: Durchstanzen von Bodenplatten unter rotationsymmetrischer Belastung, DAfStb, Heft 547, Berlin, 2004;
- [9] DIN 1045-1, Tragwerke aus Beton, Stahlbeton und Spannbeton. Teil 1: Bemessung und Konstruktion, Juli 2001, Beton Kalender 2002;
- [10] Hegger J., Ricker M., Sherif A.G.: Experimental Investigations on Punching Behavior of Reinforced Concrete Footings, ACI Structural Journal, Vol. 103, No. 4, July-August 2006, s. 604-613;
- [11] Hegger J., Häusler F., Ricker M.: Zur Durchstanzbemessung von ausmittig beanspruchten Stützen-knoten und Einzelfundamenten nach Eurocode 2, Beton- und Stahlbetonbau, Vol. 103, No. 11, November 2008, s. 727-734.

Załącznik

Wyniki pomiarów

Badania zostały wykonane w Laboratorium Badawczym Materiałów i Konstrukcji Budowlanych Katedry Budownictwa Betonowego Politechniki Łódzkiej (akredytacja w PCA nr AB536) w ramach projektu N506 158440 finansowanego przez Ministra Nauki i Szkolnictwa Wyższego.

Appendix

Results of measurements

Tests were made in Testing Laboratory for Materials and Concrete Structures (Accreditation Certificate in PCA no. AB536) Department of Concrete Structures, Faculty Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology within the limits of the investigation project No. N506 158440, granted by the Minister of Science and Higher Education.

Odkształcenie betonu płyty / Strain of concrete slab

Lokalizacja czujników / Location of gauges

Ο

Ο

Odkształcenie stali na krawędzi słupa / Strain of steel at the edge of the column

V		M/M	Odkształcenie / Strain				
v		v/v _{exp}	2s	3s	6s	7s	śr./av.
kN		-	‰	‰	‰	‰	‰
0		0,00	0,000	0,000	-0,001	0,000	0,000
4		0,01	0,005	0,002	-0,003	0,004	0,002
20		0,07	0,019	0,016	0,010	0,018	0,016
40		0,15	0,043	0,036	0,026	0,031	0,034
60	р	0,22	0,083	0,072	0,042	0,048	0,061
60	ĥ	0,22	0,090	0,072	0,039	0,051	0,063
80	р	0,29	0,147	0,106	0,089	0,069	0,103
80	k	0,29	0,158	0,115	0,097	0,074	0,111
100	р	0,37	0,256	0,173	0,169	0,111	0,177
100	k	0,37	0,280	0,186	0,186	0,123	0,194
120	р	0,44	0,398	0,254	0,243	0,200	0,274
120	k	0,44	0,433	0,276	0,107	0,232	0,262
140	р	0,51	0,607	0,402	0,311	0,377	0,269
140	k	0,51	0,667	0,450	0,390	0,419	0,482
160	р	0,59	1,354	1,051		0,882	1,096
160	k	0,59	1,473	1,079		0,919	1,157
180	р	0.66	2,102	1.275		1.179	1.519
180	k	0.66	2,179	1.121	d)	1,191	1,497
200	p	0.73	2 440	1 345	ıßn	1 438	1 741
200	k	0.73	2 531	1,355	. ga	1 489	1 792
220	n	0.81	2 991	1 592	e of	1 627	2 070
220	P k	0.81	3 206	1,002	Inre	1,540	1 989
220	n	0,01	2 9 1 7	1,222	fai	1,040	1,909
240	P V	0,00	2,017	1,210	ka	1,020	1,002
240	n	0,00	0.904	1,140	lini	1,014	1,207
200	P k	0,95	0,004	1,025	czl	1,744	1,191
260	к	0,95	0,603	0,960	nie	1,700	1,103
265		0,97	0,800	0,962	Izei	1,830	1,197
270		0,99	0,849	1,488	koc	1,864	1,400
271		0,99	0,853	1,547	zsr	1,873	1,424
272		1,00	0,867	1,715	2	1,895	1,492
273		1,00	0,889	0,561		1,911	1,120
273		1,00	0,893	0,528		1,914	1,112
273		1,00	0,898	0,486		1,920	1,101
271		0,99	0,905	0,440		1,928	1,091

Lokalizacja czujników / Location of gauges

Odkształcenie stali na podporach / Strain of steel on the support

Lokalizacja czujników / Location of gauges

Naprężenie stali na krawędzi słupa / Stress of steel at the edge of column

			M/M	Naprężenie / Stress				
			v/v _{exp}	2s	3s	6s	7s	śr./av.
	kN		-	MPa	MPa	MPa	MPa	MPa
	0		0,00	0	0	0	0	0
	4		0,01	1	0	-1	1	0
	20		0,07	4	3	2	4	3
	40		0,15	9	7	5	6	7
	60	p	0,22	17	15	9	10	12
	60	K	0,22	18	15	8	10	13
	80	p lr	0,29	30	22	18	14	21
	80 100	ĸ	0,29	32	23	20	15	23
	100	р Ъ	0,37	52	30	39	23	30
	120	n	0,37	81	52	49	41	56
	120	k	0,44	88	56	43 22	41	53
	140	p	0,11	124	82	63	77	86
	140	k	0.51	136	92	79	85	98
	160	р	0,59	276	214		179	223
	160	k	0,59	300	220		187	235
	180	р	0,66	428	259		240	309
	180	k	0,66	443	228		242	305
	200	р	0,73	497	274	əɓr	293	354
	200	k	0,73	515	276	gaı	303	365
	220	р	0,81	565	324	e of	331	421
	220	k	0,81	565	249	Inre	313	405
	240	р	0,88	573	246	fai	330	383
	240	k	0,88	212	233	ka j	328	258
	260	р	0,95	164	209	iniu	355	242
	260	k	0,95	163	195	CZI	363	241
	265		0,97	163	196	nie	372	244
	270		0,99	173	303	dze	379	285
	271		0,99	174	315	zko	381	290
	272		1,00	176	349	sn	386	304
	273		1,00	181	114		389	228
	273		1,00	182	107		389	226
	273		1,00	183	99		391	224
	271		0,99	184	90		392	222
Ì								
			1					

Lokalizacja czujników / Location of gauges

Naprężenie stali na podporach / Stress of steel on the support

Lokalizacja czujników / Location of gauges

Siła Load	Szerokość rozwarcia rys [mm] Width of cracks [mm]								
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6			
60									

Rysy – 140kN / Cracks pattern – 140kN

Siła Load	Szerokość rozwarcia rys [mm] Width of cracks [mm]							
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6		
60 80 100 120 140	0,04 0,05	0,03 0,06	0,03 0,05	0,03				

Siła	Szerokość rozwarcia rys [mm]							
Load	Width of cracks [mm]							
[LN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6		
[KIN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6		
60								
80								
100								
120	0,04	0,03	0,03					
140	0,05	0,06	0,05	0,03				
160	0,09	0,12	0,11	0,05				
180	0,20	0,18	0,20	0,10				
200	0,24	0,25	0,25	0,10				
220	0,28	0,35	0,30	0,15	0,45			
240	0,30	0,40	0,40	0,15	0,55			
260	0,40	0,50	0,50	0,15	0,80			
270								

Wiek betonu słupka / Column concrete age:

P-20-0,21

Ø168

640 Zbrojenie modelu / Specimen's reinforcement

80

80

1140

4#8 L=1100

940 4#8 L=800

80

80

8#10 L=500

150

350

Odkształcenie betonu płyty / Strain of concrete slab

Lokalizacja czujników / Location of gauges

Ο

Ο

Odkształcenie stali na krawędzi słupa / Strain of steel at the edge of the column

1V. 001 001 012 031 057 079 111 150 196
)01 001 012 031 057 079 079 0111
)01)01)12)31)57)79 11 50
001 012 031 057 079 111 150
)12)31)57)79 11 50
)31)57)79 11 50
)57)79 111 150 196
)79 111 150 196
111 150 196
150 196
196
200
204
249
303
308
110
182
391
760
126
264
179
565
947
)66
299
316
575
341
339
938
)16
161
559
22
349
j45
557

Lokalizacja czujników / Location of gauges

Odkształcenie stali na podporach / Strain of steel on the support

Lokalizacja czujników / Location of gauges

Naprężenie stali na krawędzi słupa / Stress of steel at the edge of column

		\mathbf{V}/\mathbf{V}	Naprężenie / Stress				
		V/V exp	2s	3s	6s	7s	śr./av.
kN		-	MPa	MPa	MPa	MPa	MPa
0		0,00	0	0	0	-1	0
4		0,01	0	0	0	-1	0
20		0,05	2	2	2	4	2
40		0,10	4	3	4	14	6
60		0,15	8	7	7	25	12
80		0,20	11	10	9	33	16
100		0,26	17	15	13	46	23
120		0,31	24	22	16	60	30
140	р	0,36	34	27	20	77	40
140	k	0,36	35	28	21	79	41
140	k	0,36	36	29	21	80	41
160		0,41	46	34	26	97	51
180	р	0,46	62	39	33	113	62
180	k	0,46	63	40	33	115	63
200	р	0,51	87	47	50	150	83
200	k	0,51	101	53	64	174	98
220	р	0,56	147	80	97	238	141
220	k	0,56	158	91	109	260	155
240	р	0,61	224	159	169	364	229
240	k	0,61	240	190	192	406	257
260	р	0,66	272	241	236	454	301
260	k	0,66	278	261	255	479	318
280	р	0,72	322	357	342	564	396
280	k	0,72	341	385	369	565	420
300	р	0,77	376	442	418	565	468
300	k	0,77	380	449	423	565	471
320	р	0,82	428	518	481	565	524
320	k	0,82	443	537	496	565	537
340	p	0,87	477	565	530	565	565
340	K	0,87	489	565	535	565	565
350		0,90	503	565	549	565	565
360		0,92	548	565	554	565	565
370		0,95	565	565	565	565	565
380		0,97	565	565	565	254	554
390		1,00	565	565	565	169	539
391		1,00	565	565	565	167	538
390		1,00	565	565	565	171	541
1							

Lokalizacja czujników / Location of gauges

Naprężenie stali na podporach / Stress of steel on the support

Lokalizacja czujników / Location of gauges

Siła Load	Szerokość rozwarcia rys [mm] Width of cracks [mm]								
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6			
160									

Rysy – 200kN / Cracks pattern – 200kN

Siła	Szerokość rozwarcia rys [mm]							
Load	Width of cracks [mm]							
[LN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6		
[KIN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6		
160								
200	0,04	0,10	0,03	0,05				
240	0,15	0,20	0,10	0,15				
280	0,25	0,30	0,20	0,25				
320	0,60	0,35	0,25	0,45				
390								

Data badania / Test date: 14.10. 2011r.

Data betonowania / Concreting date: 07.07.2011r.

Wiek betonu płyty / Slab concrete age: 99 dni / days

Wiek betonu słupka / Column concrete age: 88 dni / days

Wytrzymałość betonu płyty / Strength of concrete slab: $f_{c,cube} = 31,5MPa$ (3 próbki / 3 specimens) $f_{cm} = 29,0MPa$ (3 próbki / 3 specimens) $f_{sp} = E_c = 22,9GPa$ (3 próbki / 3 specimens)

Wytrzymałość betonu słupka / Strength of concrete column: $f_{c,\text{cube}}=-$

 $\label{eq:characteristics} \begin{array}{l} Characteristics of the reinforcement: \\ \#8 (5 próbek / 5 specimens) \\ A_s = 49,85 mm^2 \\ f_{y,h} = 569,4 MPa \\ f_{y,l} = 560,7 MPa \\ f_{ym} = 565,0 MPa \\ E_s = 203,5 GPa \end{array}$

#10 (5 próbek / 5 specimens) $A_s = 78,40mm^2$ $f_{y,h} = 548,7MPa$ $f_{y,1} = 540,2MPa$ $f_{ym} = 544,9MPa$ $E_s = 203,1GPa$

Nośność eksperymentalna / Experimental capacity: V_{exp} = 480kN

Zbrojenie modelu / Specimen's reinforcement

150

110

Odkształcenie betonu płyty / Strain of concrete slab

Lokalizacja czujników / Location of gauges

Odkształcenie stali na krawędzi słupa / Strain of steel at the edge of the column

V		V/V	Odkształcenie / Strain					
v		v/v exp	2s	3s	6s	7s	śr./av.	
kN		-	‰	‰	‰	‰	‰	
0		0,00	0,001	0,000	0,000	0,000	0,000	
4		0,01	-0,001	0,000	0,000	0,003	0,001	
20		0,04	0,001	0,008	-0,002	0,008	0,004	
40		0,08	0,002	0,017	0,004	0,010	0,008	
80		0,17	0,003	0,037	0,029	0,015	0,021	
120	р	0,25	0,001	0,063	0,069	0,024	0,039	
120	k	0,25	0,003	0,069	0,076	0,025	0,043	
160	р	0,33	0,004	0,105	0,118	0,036	0,066	
160	k	0,33	0,004	0,111	0,124	0,040	0,070	
160	k	0,33	0,004	0,112	0,125	0,039	0,070	
200	р	0,42	0,004	0,146	0,173	0,062	0,096	
200	k	0,42	0,005	0,171	0,189	0,062	0,107	
240	р	0,50	0,005	0,276	0,245	0,081	0,152	
240	k	0,50	0,004	0,329	0,234	0,092	0,165	
280	р	0,58	0,005	0,758	0,189	0,244	0,299	
280	k	0,58	0,005	0,881	0,185	0,303	0,344	
320	р	0,67	0,010	1,542	0,183	0,151	0,472	
320	k	0,67	0,011	1,810	0,302		0,708	
360	р	0,75	0,011	2,234	0,724	ka	0,990	
360	k	0,75	0,009	2,306	0,989	ljnil Jge	1,101	
380		0,79	0,008	2,375	1,295	czt gat	1,226	
400	р	0,83	0,010	2,132	1,705	of	1,282	
400	k	0,83	0,009	2,150	1,753	ize ure	1,304	
440	р	0,92	0,011	1,743	1,910	koc failt	1,221	
440	ĥ	0.92	0.013	0.968	2.039	ZSI	1.007	
460		0.96	0.012	0.787	2.108	_	0.969	
480		1 00	0.012	1 946	3 004		1 654	
		.,	-,	.,	-,		.,	

Lokalizacja czujników / Location of gauges

Odkształcenie stali na podporach / Strain of steel on the support

Lokalizacja czujników / Location of gauges

Naprężenie stali na krawędzi słupa / Stress of steel at the edge of column

		V/V	Naprężenie / Stress					
		v/v exp	2s	3s	6s	7s	śr./av.	
kN		-	MPa	MPa	MPa	MPa	MPa	
0		0,00	0	0	0	0	0	
4		0,01	0	0	0	1	0	
20		0,04	0	2	0	2	1	
40		0,08	0	3	1	2	2	
80		0,17	1	8	6	3	4	
120	р	0,25	0	13	14	5	8	
120	k	0,25	1	14	15	5	9	
160	р	0,33	1	21	24	7	13	
160	k	0,33	1	23	25	8	14	
160	k	0,33	1	23	25	8	14	
200	р	0,42	1	30	35	13	20	
200	k	0,42	1	35	38	13	22	
240	р	0,50	1	56	50	16	31	
240	k	0,50	1	67	48	19	34	
280	p	0,58	1	154	38	50	61	
280	k	0,58	1	179	38	62	70	
320	p	0,67	2	314	37	31	96	
320	k	0,67	2	368	61	~	144	
360	р	0,75	2	455	147	ika .	201	
360	k	0,75	2	469	201	ujni uge	224	
380		0,79	2	483	264	gai	249	
400	р	0,83	2	434	347	inie of	261	
400	k	0,83	2	438	357	dze ure	265	
440	р	0,92	2	355	389	fai	249	
440	k	0,92	3	197	415	zsn	205	
460		0,96	2	160	429		197	
480		1,00	2	396	565		337	

Lokalizacja czujników / Location of gauges

Naprężenie stali na podporach / Stress of steel on the support

Lokalizacja czujników / Location of gauges

Siła	Szerokość rozwarcia rys [mm]								
Load	Width of cracks [mm]								
[LN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6			
[KIN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6			
120									

Rysy-240kN / Cracks pattern-240kN

Rysy – 480kN / Cracks pattern – 480kN

Siła	Szerokość rozwarcia rys [mm]					
Load	Width of cracks [mm]					
[kN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6
120						
160						
200	0,04					
240	0,05					

Siła	Szerokość rozwarcia rys [mm]						
Load	Width of cracks [mm]						
[1-1]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6	
[KIN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	
120							
160							
200	0,04						
240	0,05						
280	0,08	0,05	0,05	0,08			
320	0,10	0,08	0,10	0,25			
360	0,15	0,10	0,20	0,40			
400	0,20	0,18	0,30	0,55			
440	0,45	0,20	0,45	0,80			
480							

P-25-0,17

Data badania / Test date: 21.10. 2011r.

Data betonowania / Concreting date: 07.07.2011r.

Wiek betonu płyty / Slab concrete age: 106 dni / days

Wiek betonu słupka / Column concrete age: 95 dni / days

 $\label{eq:wytrzymałość betonu płyty / Strength of concrete slab: $f_{c,cube} = -$ $f_{cm} = 29,0MPa (3 próbki / 3 specimens)$ $f_{sp} = 3,0MPa (3 próbki / 3 specimens)$ $E_c = 22,3GPa (3 próbki / 3 specimens)$ $$

Wytrzymałość betonu słupka / Strength of concrete column: $f_{c,cube} = -$

Charakterystyka zbrojenia / Characteristics of the reinforcement: #8 (5 próbek / 5 specimens) $A_s = 49,85 \text{mm}^2$ $f_{y,h} = 569,4 \text{MPa}$ $f_{y,1} = 560,7 \text{MPa}$ $f_{ym} = 565,0 \text{MPa}$ $E_s = 203,5 \text{GPa}$

#10 (5 próbek / 5 specimens) $A_s = 78,40mm^2$ $f_{y,h} = 548,7MPa$ $f_{y,1} = 540,2MPa$ $f_{ym} = 544,9MPa$

Nośność eksperymentalna / Experimental capacity: $V_{exp} = 622kN$

 $\vec{E}_{s} = 203,1$ GPa

Zbrojenie modelu / Specimen's reinforcement

Odkształcenie betonu płyty / Strain of concrete slab

Lokalizacja czujników / Location of gauges

Ο

Ο

Odkształcenie stali na krawędzi słupa / Strain of steel at the edge of the column

V		V/V	Odkształcenie / Strain				
		v/v exp	2s	3s	6s	7s	śr./av.
kN		-	‰	‰	‰	‰	‰
0		0,00	-0,002	0,000	0,005	0,002	0,001
20		0,03	0,004	-0,004	0,006	0,006	0,003
40		0,06	0,011	0,000	0,004	0,011	0,007
80		0,13	0,038	0,001	0,005	0,013	0,014
120		0,19	0,061	0,001	0,005	0,016	0,021
160		0,26	0,084	0,001	0,006	0,013	0,026
200		0,32	0,109	0,002	0,007	0,014	0,033
240		0,39	0,145	-0,001	0,005	0,035	0,046
280		0,45	0,199	0,003	0,008	0,080	0,073
320	р	0,51	0,278	0,003	0,009	0,110	0,100
320	k	0,51	0,318	0,004	0,010	0,109	0,110
360	р	0,58	0,422	0,002	0,007	0,136	0,142
360	k	0,58	0,503	0,004	0,009	-0,016	0,125
400	р	0,64	0,902	0,002	0,009	-0,191	0,181
400	k	0,64	1,000	0,004	0,010	-0,480	0,134
440	р	0,71	1,526	0,005	0,010	-0,895	0,162
440	k	0,71	1,480	0,005	0,007	-1,425	0,017
480	р	0,77	1,595	0,004	0,011	-1,679	-0,017
480	k	0,77	1,372	0,005	0,012	-1,947	-0,140
520	р	0,84	1,747	0,004	0,010	-2,211	-0,113
520	k	0,84	1,380	0,005	0,013	-2,414	-0,254
540		0,87	1,456	0,003	0,013	-2,443	-0,243
560	р	0,90	1,530	0,004	0,011	-2,566	-0,255
560	k	0,90	1,846	0,003	0,009	-2,615	-0,189
580		0,93	1,997	0,006	0,016	-2,511	-0,123
600	р	0,96	2,757	0,003	0,015	-2,218	0,139
600	k	0,96	2,475	0,007	0,015	-1,293	0,301
605		0,97	2,460	0,007	0,015	-1,251	0,308
610		0,98	2,526	0,008	0,016	-1,229	0,330
615		0,99	2,733	0,008	0,016	-1,113	0,411
620		1,00	6,606	0,007	0,017	-0,519	1,528
622		1,00		0,008	0,016	-0,324	-0,100
620		1,00		0,022	0,017	-1,188	-0,383
615		0,99		0,021	0,016	-1,271	-0,411
603		0,97		0,021	0,016	-1,269	-0,411

Lokalizacja czujników / Location of gauges

Odkształcenie stali na podporach / Strain of steel on the support

Lokalizacja czujników / Location of gauges

_€ 1s

Q.,

Naprężenie stali na krawędzi słupa / Stress of steel at the edge of column

		V/V	Naprężenie / Stress				
		v/v exp	2s	3s	6s	7s	śr./av.
kN		-	MPa	MPa	MPa	MPa	MPa
0		0,00	0	0	1	0	0
20		0,03	1	-1	1	1	1
40		0,06	2	0	1	2	1
80		0,13	8	0	1	3	3
120		0,19	12	0	1	3	4
160		0,26	17	0	1	3	5
200		0,32	22	0	1	3	7
240		0,39	30	0	1	7	9
280		0,45	40	1	2	16	15
320	р	0,51	57	1	2	22	20
320	k	0,51	65	1	2	22	22
360	р	0,58	86	0	1	28	29
360	k	0,58	102	1	2	-3	25
400	р	0,64	184	0	2	-39	37
400	k	0,64	204	1	2	-98	27
440	р	0,71	311	1	2	-182	33
440	k	0,71	301	1	1	-290	3
480	р	0,77	325	1	2	-342	-4
480	k	0,77	279	1	2	-396	-28
520	р	0,84	356	1	2	-450	-23
520	k	0,84	281	1	3	-491	-52
540		0,87	296	1	3	-497	-49
560	р	0,90	311	1	2	-522	-52
560	k	0,90	376	1	2	-532	-39
580		0,93	406	1	3	-511	-25
600	p	0,96	561	1	3	-451	28
600	k	0,96	504	1	3	-263	61
605		0,97	501	1	3	-255	63
610		0,98	514	2	3	-250	67
615		0,99	556	2	3	-226	84
620		1,00	565	1	3	-106	311
622		1,00		2	3	-66	-20
620		1,00		4	3	-242	-78
615		0,99		4	3	-259	-84
603		0,97		4	3	-258	-84

Lokalizacja czujników / Location of gauges

Naprężenie stali na podporach / Stress of steel on the support

Lokalizacja czujników / Location of gauges
P-30-0,14

nr 5 No. 5

nr 6

No. 6

nr 4

No. 4

Siła Load		Sze	rokość rozw Width of ci	varcia rys [r racks [mm]	nm]	
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6
0 120 160 200 240						
320 360 400	0,05 0,20	0,05 0,10	0,08 0,10	0,08 0,15		

Siła Load		Szerokość rozwarcia rys [mm] Width of cracks [mm]									
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6					
0 120 160 200 240											
320 360 400 440 480 520	0,05 0,20 0,25 0,30 0,40	0,05 0,10 0,15 0,18 0,20	0,08 0,10 0,12 0,12 0,15	0,08 0,15 0,25 0,30 0,35							
560 600 620	0,45 0,90	0,25 0,40	0,15 0,20	0,55 1,40							

P-30-0,14

Data badania / Test date: 26.10. 2011r.

Data betonowania / Concreting date: 07.07.2011r.

Wiek betonu płyty / Slab concrete age: 111 dni / days

Wiek betonu słupka / Column concrete age: 100 dni / days

Wytrzymałość betonu płyty / Strength of concrete slab: $f_{c,cube} = 33,5 (3 \text{ próbki / 3 specimens})$ $f_{cm} = 31,0MPa$ (3 próbki / 3 specimens) $\tilde{E}_{c}^{P} = 22,2$ GPa (3 próbki / 3 specimens)

Wytrzymałość betonu słupka / Strength of concrete column: $f_{c,cube} = 86,0MPa (3 \text{ probki / } 3 \text{ specimens})$

Charakterystyka zbrojenia / Characteristics of the reinforcement: #8 (5 próbek / 5 specimens) $A_s = 49,85 \text{mm}^2$ $f_{y,h} = 569,4MPa$ $f_{y,1} = 560,7MPa$ $f_{ym} = 565,0MPa$ $E_{s} = 203,5$ GPa

#10 (5 próbek / 5 specimens) $A_s = 78,40 \text{mm}^2$ $f_{y,h} = 548,7MPa$ $f_{y,1} = 540,2MPa$ $f_{ym} = 544,9MPa$ $\vec{E}_{s} = 203,1$ GPa

Nośność eksperymentalna / Experimental capacity: $V_{exp} = 740 kN$

Zbrojenie modelu / Specimen's reinforcement

Odkształcenie betonu płyty / Strain of concrete slab

5b

<mark>-</mark> 3b 4b

Ο

Ο

7b

Ο

6b

Ο

Lokalizacja czujników / Location of gauges

Odkształcenie stali na krawędzi słupa / Strain of steel at the edge of the column

V		V/V		Odkszt	ałcenie	/ Strain	
v		v/v exp	2s	3s	6s	7s	śr./av.
kN		-	‰	‰	‰	‰	‰
0		0,00	0,000	0,000	0,000	-0,001	0,000
40		0,05	0,002	0,012	0,006	0,000	0,005
80		0,11	0,009	0,030	0,012	0,003	0,014
120		0,16	0,013	0,039	0,017	0,013	0,021
160		0,22	0,016	0,052	0,021	0,011	0,025
200		0,27	0,024	0,065	0,019	0,017	0,031
240	р	0,32	0,039	0,078	0,017	0,014	0,037
240	k	0,32	0,053	0,086	0,016	0,029	0,046
280	р	0,38	0,071	0,096	0,016	0,036	0,055
280	k	0,38	0,081	0,098	0,017	0,042	0,060
320	р	0,43	0,087	0,102	0,021	0,056	0,067
320	k	0,43	0,089	0,097	0,023	0,068	0,069
360		0,49	0,098	0,104	0,026	0,086	0,079
160		0,22	0,075	0,072	0,012	0,085	0,061
360		0,49	0,100	0,104	0,026	0,111	0,085
400	р	0,54	0,111	0,110	0,031	0,179	0,108
400	k	0,54	0,116	0,106	0,032	0,214	0,117
440	р	0,59	0,130	0,108	0,040	0,263	0,135
440	ĥ	0,59	0,144	0,105	0,043	0,306	0,150
480	р	0,65	0,199	0,104	0,049	0,379	0,183
480	k	0.65	0.257	0.103	0.054	0.424	0.210
520	p	0.70	0.397	0.107	0.064	0.433	0.250
520	k	0.70	0.524	0.111	0.074	-0.550	0.040
560	p	0.76	-0.440	0.363	0.438	-0.146	0.054
560	k	0 76	-0 494	0 499	0.375	-0.524	-0.036
600	p	0.81	-0 448	0,802	-0.050	-0.006	0.075
600	k	0.81	-0.317	0.348	-1.347	0.777	-0.135
640	p	0.86	-0.291	0.321	-1.690	2,499	0.210
640	k	0.86	-0.244	0.403	-1.394	1.878	0.161
680	p	0.92	-0.228	0.666	-0.823	1.375	0.248
680	k	0.92	0 121	0.845	-0.323	1 065	0.427
720	p	0.97	0 166	0,927	-0.090	2 463	0.867
720	k	0.97	0 159	1 007	0 122		0.429
726		0.98	0 171	1 017	0,127	ji d	0.438
730		0,00	0,171	1,017	0,127	szu	0,445
725		0,00	0,100	1,020	0,130	ofg	0,451
733		1.00	0,100	1,029	0,130	zer e o	0,431
740		1,00	0,100	1,052	0,100	in in	0,474
740		1,00	0,186	1,054	0,191	szk fa	0,477
735		0,99	0,274	1,197	0,501	5	0,657
1							

L

Lokalizacja czujników / Location of gauges

Odkształcenie stali na podporach / Strain of steel on the support

Lokalizacja czujników / Location of gauges

Naprężenie stali na krawędzi słupa / Stress of steel at the edge of column

			\mathbf{V}/\mathbf{V}		Napre	ężenie /	Stress	
			V/V exp	2s	3s	6s	7s	śr./av.
I	kN		-	MPa	MPa	MPa	MPa	MPa
	0		0,00	0	0	0	0	0
	40		0,05	0	2	1	0	1
	80		0,11	2	6	2	1	3
	120		0,16	3	8	3	3	4
	160		0,22	3	11	4	2	5
	200		0,27	5	13	4	3	6
	240	р	0,32	8	16	3	3	8
	240	k	0,32	11	18	3	6	9
	280	р	0,38	14	20	3	7	11
	280	k	0,38	16	20	3	9	12
	320	р	0,43	18	21	4	11	14
	320	k	0,43	18	20	5	14	14
	360		0,49	20	21	5	18	16
	160		0,22	15	15	2	17	12
	360		0,49	20	21	5	23	17
	400	p	0,54	23	22	6	36	22
	400	k	0,54	24	22	7	44	24
	440	p	0,59	26	22	8	54	28
	440	ĸ	0,59	29	21	9	62	30
	480	р 1-	0,65	40	21	10	11	37
	480	ĸ	0,65	52	21	11	86	43
	520	p 1	0,70	81	22	13	88	51
	520	ĸ	0,70	107	23	15	-112	0
	560	P k	0,76	-90	100	09 76	-30	
	600	n	0,70	-101	102	10	-107	-7
	600	P V	0,01	-65	71	-10	158	-27
	640	n	0,01	-59	65	-214	509	43
	640	k	0,86	-50	82	-284	382	33
	680	n	0,92	-46	136	-167	280	50
ĺ	680	k	0.92	25	172	-66	217	87
	720	p	0.97	34	189	-18	501	176
	720	k	0.97	32	205	25	ka Ka	87
	726		0.98	35	207	26	ujnil ge	89
	730		0.99	37	208	26	czt	91
	735		0.99	38	209	28	of _C	92
	740		1 00	38	214	38	Izer	96
	740		1 00	38	214	39	ailu	97
	735		0.99	56	244	102	zsr	134
	100		0,00	00	211	102	-	104
Ì								

Lokalizacja czujników / Location of gauges

Naprężenie stali na podporach / Stress of steel on the support

Lokalizacja czujników / Location of gauges

Siła Load		Szerokość rozwarcia rys [mm] Width of cracks [mm]									
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6					
0											

 L M			
			~
			/
	•	{ @	/

Siła	Szerokość rozwarcia rys [mm]									
Load	Width of cracks [mm]									
[1-N]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6				
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6				
0										
120										
160										
240										
280										
320	0,05									
360	0,05	0,05								
	ŕ	,								

Siła	Szerokość rozwarcia rys [mm]											
Load		Width of cracks [mm]										
[1-11]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6						
[KIN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6						
0												
120												
160												
240												
280												
320	0,05											
360	0,05	0,05										
400	0,08	0,07										
440	0,10	0,10										
480	0,15	0,12	0,03									
520	0,15	0,12	0,05									
560	0,15	0,15	0,20	0,25								
600	0,20	0,15	0,20	0,30								
640	0,25	0,15	0,40	0,30								
680	0,30	0,17	0,40	0,35								
720	0,45	0,20	0,53	0,40	1,05							
740						1,50						

Zbrojenie modelu / Specimen's reinforcement

Odkształcenie betonu płyty / Strain of concrete slab

Lokalizacja czujników / Location of gauges

7s

%

0.000 0.000 0.000

0.053 0.014 0.021

0.068 0.029 0.036

0.074

0.091 0.045

0,098 0,047 0,056

0,121 0,06

0,128 0,062

0,154 0,084 0,097

0,159 0,087 0,101

0,187 0,125 0,124

0 194 0 133 0 131

0.222

0,229

0,263 0,236 0,194

0.274 0.249 0.204

0,305

0,321 0,318 0,252

0.361

0.376 0.409

0.414 0.487

0.441

0,496 0,636

0,527 0,682 0,487

0,611 0,798

0,678 0,871 0,624

0,762 0,98

0,830 1,044 0,757

0.948 1.172 0.857

1,023 1,234 0,917

1.170 1.376

1.240 1.428

1,374 1,557

1,434 1,592

1,586 1,718 1,376

1,675 1,781

1,803 1,894

1.881 1.955

2.035

2,112 2,13

2,113 2,133

2,242 2,242

2.286 2.276

2,435 2,406

2,500 2,429 2,143

2 618 2 549

2 672 2 581

2,784

2,812 2,675 2,436

2,851 2,73

2,822 2,742

2,872 2,890 2,617

2,887

2,946 3,186

2.957 3.241 2.791

3.015 3.449 2.881

3.025 3.460 2.894

3,050 3,914 3,019

3,074

3,224 4,345

3,305 3,88

3.360 3.258

3,300 2,97

3,339 2,97

3.276 2.861

3.286 2.853

3,553 2,934

3 463 2 904

3,151 2,853 2,742

3.137 2.81

3,153 2,749 2,624

2.083

2,661 2,393

3,016 2,665

4,087 3,066

8s

0.030

0.17

0,180 0,163

0,297 0,235

0.381 0.297

0.539 0.397

śr./av.

‰

0.038

0.052

0,072

0,077

0.157

0.316

0.364

0,457

0,566

0,702

1.037

1.089

1,205

1,253

1.446

1.549

1.610

1.734

1,801

1,802

1,907

1.952

2,082

2 248

2 2 9 2

2,511

2,535

2,764

3,186

3,16

3,180

3,147

3.227

3.158

3.185

3,452

2 929

2,662

Odkształcenie stali na krawędzi słupa / Strain of steel at the edge of the column

Lokalizacja czujników / Location of gauges

Naprężenie stali na krawędzi słupa / Stress of steel at the edge of column

v		V/V avn		Naprężenie / Stress							
1.5.7	-	• / • exp	1s	2s	3s	4s	5s	6s	7s	8s	śr./av.
KN		-	MPa	MPa	мра	MPa	мра	MPa	мра	MPa	MPa
4 20		0,01	0 3	5	2	0 3	4	0 3	11	3	4
40		0,00	5	10	4	6	- 8	5	14	6	7
40		0.06	5	11	4	6	9	5	15	6	. 8
60	р	0,09	7	16	6	9	12	7	18	9	11
60	ĥ	0,09	8	17	6	9	14	8	20	10	11
80	р	0,12	9	22	8	11	18	11	25	12	15
80	k	0,12	10	24	8	12	20	12	26	13	16
100	р	0,15	12	29	10	15	25	18	31	17	20
100	k	0,15	12	30	10	15	27	19	32	18	20
120	p	0,18	14	36	12	19	33	24	38	25	25
120	ĸ	0,18	15	38	12	20	35	20	39	27	27
140	p k	0,21	10	40 48	14	23	41	33 34	45 47	30	32
160	p	0.24	21	56	18	28	50	42	53	48	39
160	k	0,24	21	58	19	30	53	44	56	51	41
180	р	0,27	24	65	21	35	63	53	62	60	48
180	k	0,27	24	67	22	38	69	59	65	65	51
200	р	0,30	27	76	25	46	87	71	73	77	60
200	k	0,30	27	79	27	50	93	78	76	83	64
220	p	0,33	30	87	30	59	110	92	84	99	74
220	ĸ	0,33	34	92	34	65	121	101	90	109	81
240	ր Ն	0,36	40	104	38	/6	140	115	101	129	93
240 260	n	0,30	44 57	110	40 ⊿7	01	148	121	10/	162	99 115
260	k	0,39	69	139	53	105	187	147	138	177	127
280	р	0,42	80	155	58	119	209	164	155	200	143
280	k	0,42	91	167	64	130	221	177	169	212	154
300	р	0,45	108	188	72	147	246	200	193	238	174
300	k	0,45	117	203	81	159	259	213	208	251	186
320	p	0,48	135	229	95	182	286	240	238	279	211
320	k	0,48	143	241	103	192	297	252	252	290	221
340	p lr	0,51	161	264	119	214	322	281	279	316	245
340	ĸ	0,51	170	2/5	129	224	332	291	291	323	255
360	p k	0,54	203	315	147	240	300	332	340	362	200
380	p	0.57	221	335	178	282	395	354	366	385	315
380	k	0,57	233	346	193	294	406	364	382	397	327
400	р	0,60	255	372	214	317	434	388	413	423	352
400	k	0,60	269	386	231	332	448	397	429	433	366
400	k	0,60	270	387	232	332	449	398	429	433	366
420	p	0,63	290	402	250	354	473	419	455	455	387
420	ĸ	0,63	300	410	262	364	483	425	464	462	396
440	ր Խ	0,00	342	437	200	391	525	440	495	409	423
440	n	0,00	364	471	324	404	545	433	532	518	457
460	k	0.69	376	480	335	434	545	476	543	524	466
480	р	0,72	399	501	355	455	545	490	545	540	486
480	k	0,72	412	511	371	466	545	494	545	543	495
500	р	0,75	431	529	391	484	545	505	545	545	510
500	k	0,75	440	537	407	493	545	507	545	545	515
520	p 1-	0,78	457	545	425	510	545	519	545	545	531
520	ĸ	0,78	466	545	438	521	545	523	545	545	541 545
540	P k	0,01	400 400	545	400	541	545 545	543	545 545	545 545	545 545
560	p	0.84	502	545	485	545	545	545	545	545	545
560	k	0,84	504	545	488	545	545	545	545	545	545
580	р	0,87	518	545	501	545	545	545	545	545	545
580	k	0,87	520	545	505	545	545	545	545	545	545
600	р	0,90	529	545	514	545	545	545	545	545	545
600	k	0,90	530	545	518	545	545	545	545	545	545
620	p 1-	0,93	535	545	528	545	545	545	545	545	545
640	ĸ	0,93	534	545	533	545	545	545	545	545	545 545
640	P k	0,90	536	040 545	045 575	040 545	241 249	040 545	545 545	545 575	545 545
650	Â	0,98	539	545	545	545	230	545	545	545	545
660		0.99	542	545	545	545	221	545	545	545	545
665		1,00	543	545	545	545	193	545	545	545	545
664		1,00	542	545	545	545	174	545	545	545	545
664		1,00	542	545	545	545	147	545	545	545	541
664		1,00	545	545	545	545	137	545	545	545	533

Lokalizacja czujników / Location of gauges

Zbrojenie modelu / Specimen's reinforcement

P-25-0,40

P-25-0,40

Odkształcenie betonu płyty / Strain of concrete slab

V		\mathbf{V}/\mathbf{V}			(Odkszta	ałcenie	/ Strair	1		
v		v / v exp	1b	2b	3b	4b	5b	6b	7b	8b	śr./av.
kN		-	‰	‰	‰	‰	‰	‰	‰	‰	‰
4		0,00	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
40		0,04	-0,002	0,004	0,000	-0,001	-0,005	-0,006	-0,007	0,000	-0,002
80	n	0,04	-0,003	0,003	-0,002	-0,002	-0,000	-0,007	-0,009	-0,002	-0,004
80	k	0,09	-0,004	0,008	0,000	-0,004	-0,009	-0,012	-0,016	-0,005	-0,005
120	р	0,13	0,001	0,009	-0,003	-0,010	-0,013	-0,017	-0,026	-0,014	-0,009
120	k	0,13	0,000	0,008	-0,004	-0,012	-0,014	-0,017	-0,028	-0,016	-0,010
160	р	0,17	-0,004	0,005	-0,007	-0,022	-0,021	-0,023	-0,042	-0,031	-0,018
160	k	0,17	-0,005	0,005	-0,008	-0,022	-0,022	-0,024	-0,043	-0,034	-0,019
200	p lr	0,22	-0,005	-0,005	-0,018	-0,042	-0,034	-0,034	-0,064	-0,060	-0,033
200	K n	0,22	-0,006	-0,006	-0,019	-0,041	-0,035	-0,034	-0,066	-0,061	-0,034
240	P k	0,20	-0,003	-0,024	-0,037	-0,000	-0,055	-0,043	-0,092	-0,030	-0,055
280	p	0.30	-0.006	-0.053	-0.065	-0.105	-0.080	-0.062	-0.125	-0.143	-0.080
280	k	0,30	-0,001	-0,061	-0,072	-0,115	-0,088	-0,068	-0,134	-0,156	-0,087
320	р	0,35	-0,009	-0,089	-0,100	-0,152	-0,116	-0,087	-0,166	-0,200	-0,115
320	k	0,35	-0,010	-0,096	-0,107	-0,162	-0,125	-0,092	-0,176	-0,213	-0,123
360	p	0,39	-0,012	-0,127	-0,140	-0,205	-0,158	-0,118	-0,212	-0,260	-0,154
360	ĸ	0,39	-0,008	-0,134	-0,148	-0,219	-0,172	-0,128	-0,225	-0,279	-0,164
400	p 1	0,43	-0,013	-0,169	-0,183	-0,268	-0,213	-0,158	-0,267	-0,332	-0,200
400	к р	0,43	-0,014	-0,179	-0,192	-0,284	-0,227	-0,168	-0,278	-0,348	-0,211
440	k P	0,48	-0.015	-0.226	-0.238	-0.350	-0.280	-0.213	-0.332	-0.415	-0.259
480	p	0,52	-0,015	-0,263	-0,279	-0,400	-0,318	-0,248	-0,373	-0,468	-0,296
480	k	0,52	-0,016	-0,271	-0,288	-0,412	-0,329	-0,261	-0,384	-0,486	-0,306
520	р	0,57	-0,016	-0,305	-0,323	-0,453	-0,365	-0,294	-0,419	-0,531	-0,338
520	k	0,57	-0,017	-0,314	-0,330	-0,462	-0,373	-0,307	-0,428	-0,545	-0,347
560	p	0,61	-0,017	-0,353	-0,368	-0,504	-0,409	-0,346	-0,465	-0,593	-0,382
560	ĸ	0,61	-0,018	-0,359	-0,372	-0,508	-0,414	-0,356	-0,472	-0,603	-0,388
600	p k	0,65	-0,018	-0,394	-0,407	-0,543	-0,447	-0,391	-0,507	-0,643	-0,419
640	к n	0,65	-0,012	-0,401	-0,411	-0,548	-0,454	-0,401	-0,515	-0,653	-0,424
640	k	0,70	-0.019	-0,4463	-0,467	-0,607	-0,500	-0,459	-0,557	-0 721	-0,480
680	p	0,74	-0,019	-0,510	-0,486	-0,648	-0,570	-0,502	-0,615	-0,767	-0,515
680	k	0,74	-0,019	-0,517	-0,453	-0,626	-0,558	-0,504	-0,624	-0,768	-0,509
720	р	0,78	-0,018	-0,552	-0,463	-0,646	-0,585	-0,540	-0,660	-0,786	-0,531
720	k	0,78	-0,019	-0,449	-0,414	-0,627	-0,570	-0,531	-0,616	-0,702	-0,491
740	p	0,80	-0,014	-0,450	-0,423	-0,640	-0,584	-0,544	-0,621	-0,705	-0,498
740	ĸ	0,80	-0,020	-0,417	-0,405	-0,632	-0,579	-0,536	-0,601	-0,677	-0,483
760	P k	0,03	-0,021	0.385	0 303	0,632	-0,392	-0,550	-0,000	-0,000	-0,490
780	n	0,85	-0.021	-0,382	-0,398	-0,032	-0,507	-0,545	-0,575	-0,648	-0,474
780	k	0.85	-0.017	-0.359	-0.387	-0.633	-0.593	-0.551	-0.555	-0.627	-0.465
800	р	0,87	-0,021	-0,358	-0,393	-0,642	-0,607	-0,562	-0,554	-0,626	-0,470
800	k	0,87	-0,023	-0,332	-0,381	-0,634	-0,601	-0,553	-0,532	-0,599	-0,457
820	р	0,89	-0,024	-0,323	-0,386	-0,640	-0,612	-0,554	-0,521	-0,581	-0,455
820	k	0,89	-0,022	-0,298	-0,374	-0,630	-0,604	-0,540	-0,497	-0,547	-0,439
840	p k	0,91	-0,023	-0,282	-0,374	-0,633	-0,611	-0,538	-0,484	-0,520	-0,433
860	к n	0,91	-0,022	-0,255	-0,338	-0,022	-0,000	-0,521	-0,430	-0,401	-0,414
860	k	0.93	-0.023	-0.198	-0.328	-0.605	-0.590	-0.498	-0.401	-0.392	-0.379
880	p	0,96	-0,024	-0,182	-0,319	-0,602	-0,593	-0,494	-0,378	-0,357	-0,369
880	ĥ	0,96	-0,023	-0,156	-0,293	-0,584	-0,582	-0,476	-0,340	-0,313	-0,346
900	р	0,98	-0,025	-0,137	-0,266	-0,564	-0,580	-0,467	-0,305	-0,273	-0,327
900	k	0,98	-0,023	-0,107	-0,223	-0,525	-0,562	-0,443	-0,263	-0,229	-0,297
910		0,99	-0,025	-0,099	-0,205	-0,510	-0,560	-0,439	-0,247	-0,211	-0,287
915		0,99	-0,025	-0,098	-0,196	-0,504	-0,562	-0,440	-0,244	-0,208	-0,285
920		1,00	-0,024 -0 022	-0,095	-0,190	-0,499	-0,562	-0,441 _0 302	-0,241	-0,202	-0,282
515		1,00	-0,023	-0,002	-0,034	-0,233	-0,447	-0,352	-0,170	-0,130	-0,150

Lokalizacja czujników / Location of gauges

7s

‰ ‰

8s

0.000 0.000

0,017 0,020

0,019 0,022

0,038

0,04 0.048

0,060 0,072

0,063 0,076

0,083 0,105

0,086 0,111

0.109 0.146

0,113

0,146

0.165 0.206

0.216 0.262

0.232

0.283 0.345

0.307 0.369

0.380 0 4 3 8

0.435 0.479

0,566 0,576

0,625 0,617

0,770 0,727

0.823 0.779

0,96

1,021

1,162

1,229 1,136

1,383

1,455 1,331

1,592

1,656

1,821

1.869

2,005

2.055 1.779

2.150

2.095 1.846

2.113

2,103

2,128

2,126

2,153

2.156

2,185

2,191

2,221 2,012

2,226 2,019

2,258 2,050

2,264 2,059

2,297 2,096

2,304

2,336 2,143

2,344 2,155

2,37

2,374

2.388 2.217

2,397 2,228

2.403 2.236

2.399

of gauge

czujnika

uszkodzenie

śr./av.

‰

0,043

0,154

0,194

0.278

0,900

0,963

1,086

1,271

1,446

1,495

1,621

1,658

1,756

1.852

1.872

1,879

1,906

1,914

1.943

1.948

1,975

1,983

2,107

2,190

2,200

2,257

5s 6s

% %

0.000 0.000

0,016 0,023

0,017 0,026

0,034 0,049

0,039 0,056

0,065

0,067 0,092

0,094 0,137

0,099 0,145

0.131

0,139

0,189

0.201 0.309

0.260 0.382

0.279 0.401

0.339 0.478

0.359 0.501

0.434 0.585

0.470 0.617

0,566 0,716

0,601 0,747

0,711

0,759 0,893

0,894 1,009

0,955 1,053

1,091 1,164

1,154 1,202 failure

1,320

1,394 1,376

1,538

1,606 1,540

1,751

1.767 1.719

1,891

1.943

2.055

2.094

2.131

2,140 1,957

2.175 1,989

2,177 1,998

2.210 2.029

2.214 2,034

2,247 2,064

2,253 2,073

2,281

2,284 2,122

2,315 2,161

2,318 2,172

2,356 2,212

2,363

2,400

2,410 2,271

2,445 2,303

2.453 2.309

2.474 2.324

2,487 2,336

2.495 2.343

2,516

0,08

0.21

0,224

0,294

0,851

1,327

1,490

1,678

1,818

1.824

1.906

1.913

1.946

2,11

2,22

2,259

2.340

Odkształcenie stali na krawędzi słupa / Strain of steel at the edge of the column

Lokalizacja czujników / Location of gauges

P-25-0,40

Naprężenie stali na krawędzi słupa / Stress of steel at the edge of column

V		\overline{W}	Naprężenie / Stress								
v		v / v exp	1s	2s	3s	4s	5s	6s	7s	8s	śr./av
kN		-	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa
4		0,00	0	0	0	0	0	0		0	0
40		0,04	4	5	4	5	3	5		4	4
40	n	0,04	4	5 10	4	10	4	5 10		4	5
80	P k	0,09	9	10	7	12	/ 8	10		0 0	9 10
120	n	0,09	17	16	11	19	14	12		13	10
120	k	0.13	19	16	11	19	14	19		13	16
160	р	0.17	26	23	15	25	20	29		18	22
160	k	0,17	29	24	15	26	21	31		18	23
200	р	0,22	39	31	20	31	28	45		23	31
200	k	0,22	41	32	22	32	29	47		24	33
240	р	0,26	46	43	26	38	40	62		31	41
240	k	0,26	48	47	28	40	43	65		35	44
280	р	0,30	60	65	34	47	55	81		46	55
280	k	0,30	62	71	36	50	59	85		49	59
320	p	0,35	84	90	43	60	72	101		60	73
320	ĸ	0,35	89	99	46	66	76	106		65	78
360	p k	0,39	97	120	55	80	92	124		80	93
400	n	0,39	100	161	74	106	120	150		120	101
400	p k	0,43	121	101	80	115	120	151		120	122
440	n	0,43	148	201	97	137	150	180		163	154
440	k	0.48	161	214	106	148	161	189		174	165
480	р	0,52	184	244	127	172	189	213	e	203	190
480	k	0,52	197	259	144	186	202	223	Bne	216	204
520	р	0,57	219	289	165	213	231	246	ofg	246	230
520	k	0,57	219	301	177	226	244	254	Le C	260	240
560	р	0,61	242	332	200	255	279	281	ailu	293	269
560	k	0,61	254	345	208	270	295	291	a/f	308	281
600	р	0,65	277	369	223	294	325	315	nik	337	306
600	k	0,65	289	374	226	308	340	326	czn	350	316
640	p	0,70	314	394	244	338	370	355	je	385	343
640	ĸ	0,70	324	397	250	351	374	364	Izei	395	351
680	р v	0,74	340	412	207	3/1	400	385	koc	424	371
720	n	0,74	356	400	275	300	411	403	zsn	455	302
720	P k	0,70	353	402	287	400	443	405		443	390
740	p	0.80	357	407	292	406	451	412		447	396
740	k	0,80	358	408	294	410	453	414		445	397
760	р	0,83	363	413	299	416	460	421		450	403
760	k	0,83	365	416	301	420	460	423		450	405
780	р	0,85	371	422	306	426	467	429		455	411
780	k	0,85	374	420	308	428	468	430		456	412
800	р	0,87	379	424	312	435	475	437		462	418
800	k	0,87	383	424	314	437	477	438		463	419
820	p	0,89	390	428	319	443	482	446		470	426
820	ĸ	0,89	392	428	321	445	483	449		471	427
840	р ь	0,91	400	433	326	452	490	457		4/8	434
040 860	к р	0,91	403	434	32/	455	490	459		4/9	435
860	P k	0,93	412	442	334	403	490 500	400		400	443
880	n	0,93	424	453	342	407	508	479		407	453
880	k	0.96	427	456	344	478	510	480		496	456
900	р	0.98	435	464	350	486	517	487		501	463
900	k	0,98	439	467	352	489	519	488		502	465
910		0,99	443	471	355	493	523	492		505	469
915		0,99	445	474	357	496	526	494		507	471
920		1,00	447	475	358	498	528	496		508	473
919		1,00	455	481	366	505	532	495		507	477

Lokalizacja czujników / Location of gauges

P-25-0,40

Siła			Sze	rokość rozw	arcia rys [n	ımJ		
Load				Width of c	racks [mm]			
[LN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6	nr 7	nr 8
[KIV]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8
0								

Siła	Szerokość rozwarcta rys [mm] Width of cracks [mm]											
Load				Width of c	racks [mm]							
[kN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6	nr 7	nr 8				
[]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8				
0												
80												
120												
200												
240												
280												
320	0,05											
360	0,07	0,10										
400	0,10	0,15	0,10									
440	0,10	0,17	0,12									
480	0,10	0,20	0,12									
	-	-	-									

Siła			Sze	rokość rozw Width of a	varcia rys [n	nm]		
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6	nr 7 No. 7	nr 8 No. 8
0 80 120 200 240								
280 320 360 400 440	0,05 0,07 0,10 0,10	0,10 0,15 0,17	0,10 0,12					
480 520 560 600 640	0,10 0,15 0,15 0,10 0,12	0,20 0,22 0,20 0,25 0,32	0,12 0,17 0,22 0,25 0,25	0,10 0,10 0,15 0,15	0,15 0,18 0,20 0,20	0,20 0,25		
680 720 760 780 920	0,07 0,10 0,10 0,10	0,32 0,37 0,40 0,40	0,30 0,30 0,22 0,25	0,15 0,20 0,20 0,25	0,30 0,35 0,30 0,30	0,30 0,30 0,30 0,27	0,12 0,25 0,30 0,25	

Zbrojenie modelu / Specimen's reinforcement

P-30-0,40

Odkształcenie betonu płyty / Strain of concrete slab

Lokalizacja czujników / Location of gauges

v		V/V ava			(Odkszta	ałcenie	/ Strain	1		
•		• · · exp	1b	2b	3b	4b	5b	6b	7b	8b	śr./av.
kN		-	‰	‰	‰	‰	‰	‰	‰	‰	‰
4		0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
40		0,03	0,007	0,002	0,000	0,007	0,010	0,012	0,008	0,010	0,007
80		0,06	0,015	0,005	0,001	0,016	0,022	0,024	0,015	0,021	0,015
120		0,09	0,022	0,007	0,000	0,023	0,035	0,034	0,018	0,029	0,021
160		0,13	0,030	0,010	-0,006	0,029	0,047	0,043	0,020	0,037	0,026
200		0,16	0,036	0,012	-0,013	0,034	0,056	0,049	0,021	0,044	0,030
240		0,19	0,037	0,010	-0,025	0,034	0,064	0,053	0,020	0,049	0,030
280		0,22	0,035	0,005	-0,038	0,029	0,069	0,051	0,015	0,051	0,027
320		0,25	0,028	-0,004	-0,057	0,016	0,068	0,043	0,005	0,047	0,018
360		0,28	0,017	-0,019	-0,080	-0,002	0,064	0,029	-0,010	0,037	0,005
400	р	0,31	0,008	-0,037	-0,106	-0,026	0,056	0,013	-0,029	0,022	-0,012
400	k	0,31	0,002	-0,045	-0,112	-0,034	0,053	0,009	-0,035	0,017	-0,018
440	р	0,34	-0,015	-0,064	-0,136	-0,056	0,046	-0,007	-0,054	0,001	-0,036
440	k	0,34	-0,026	-0,075	-0,144	-0,067	0,041	-0,012	-0,063	-0,005	-0,044
480	р	0,38	-0,048	-0,100	-0,168	-0,093	0,030	-0,029	-0,084	-0,022	-0,064
480	k	0,38	-0,059	-0,111	-0,177	-0,104	0,023	-0,035	-0,094	-0,029	-0,073
520	р	0,41	-0,086	-0,142	-0,208	-0,134	0,008	-0,057	-0,120	-0,052	-0,099
520	k	0,41	-0,097	-0,155	-0,219	-0,145	0,001	-0,064	-0,130	-0,062	-0,109
560	р	0,44	-0,122	-0,185	-0,248	-0,171	-0,015	-0,085	-0,153	-0,087	-0,133
560	k	0,44	-0,137	-0,203	-0,262	-0,185	-0,024	-0,095	-0,164	-0,100	-0,146
600	р	0,47	-0,161	-0,230	-0,288	-0,209	-0,040	-0,117	-0,184	-0,122	-0,169
600	ĥ	0,47	-0,175	-0,247	-0,301	-0,219	-0,052	-0,130	-0,197	-0,138	-0,182
640	р	0,50	-0,199	-0,274	-0,328	-0,242	-0,071	-0,155	-0,219	-0,163	-0,206
640	ĥ	0,50	-0,214	-0,291	-0,343	-0,254	-0,080	-0,165	-0,228	-0,176	-0,219
680	р	0.53	-0,241	-0,321	-0,374	-0,280	-0,103	-0,191	-0,251	-0,204	-0,246
680	k	0,53	-0,250	-0,329	-0,384	-0,285	-0,107	-0,198	-0,255	-0,212	-0,253
720	р	0,56	-0,277	-0,353	-0,413	-0,309	-0,127	-0,225	-0,278	-0,241	-0,278
720	k	0,56	-0,291	-0,358	-0,422	-0,311	-0,131	-0,236	-0,282	-0,252	-0,285
760	р	0,59	-0,319	-0,381	-0,455	-0,332	-0,149	-0,266	-0,305	-0,285	-0,312
760	k	0,59	-0,330	-0,384	-0,464	-0,334	-0,150	-0,278	-0,312	-0,299	-0,319
800	р	0,63	-0,356	-0,402	-0,491	-0,353	-0,166	-0,305	-0,331	-0,325	-0,341
800	k	0,63	-0,366	-0,400	-0,497	-0,349	-0,164	-0,313	-0,332	-0,331	-0,344
840	р	0,66	-0,392	-0,416	-0,522	-0,365	-0,177	-0,340	-0,351	-0,355	-0,365
840	k	0,66	-0,405	-0,417	-0,524	-0,365	-0,175	-0,339	-0,354	-0,364	-0,368
880	р	0,69	-0,440	-0,441	-0,550	-0,370	-0,185	-0,361	-0,372	-0,401	-0,390
880	k	0,69	-0,449	-0,433	-0,542	-0,344	-0,167	-0,352	-0,356	-0,402	-0,381
920	р	0,72	-0,479	-0,452	-0,565	-0,354	-0,181	-0,375	-0,364	-0,425	-0,399
920	k	0,72	-0,470	-0,444	-0,566	-0,329	-0,164	-0,375	-0,333	-0,402	-0,385
960	p	0,75	-0,477	-0,459	-0,594	-0,336	-0,176	-0,401	-0,336	-0,410	-0,399
960	K	0,75	-0,446	-0,438	-0,589	-0,305	-0,157	-0,398	-0,303	-0,372	-0,376
1000	p	0,78	-0,455	-0,451	-0,615	-0,313	-0,169	-0,426	-0,309	-0,382	-0,390
1000	K	0,78	-0,429	-0,425	-0,605	-0,286	-0,151	-0,424	-0,282	-0,349	-0,369
1040	p	0,81	-0,442	-0,438	-0,625	-0,295	-0,163	-0,451	-0,289	-0,360	-0,383
1040	ĸ	0,81	-0,420	-0,418	-0,612	-0,268	-0,146	-0,449	-0,263	-0,335	-0,364
1060	n	0,83	-0,426	-0,425	-0,623	-0,273	-0,153	-0,462	-0,269	-0,342	-0,372
1080	Р レ	0,04	-0,429	-0,429	-0,030	-0,274	-0,150	-0,473	-0,270	-0,343	-0,370
1000	ĸ	0,04	-0,398	-0,404	-0,007	-0,234	-0,120	-0,402	-0,236	-0,313	-0,340
1100		0,05	-0 412	-0 408	-0 612	-0 234	-0 129	-0 471	-0.230	-0.315	-0.352
1111		0,00	-0 402	-0 402	-0 607	-0 224	-0 126	-0 476	-0 233	-0 300	-0 348
1120		0,07	-0 408	-0 404	-0 612	-0 226	-0 128	-0 482	-0 233	-0 311	-0 351
1130		0.88	-0.399	-0.397	-0.605	-0.212	-0.119	-0.485	-0.218	-0.300	-0.342
1140		0.89	-0.386	-0.384	-0.596	-0.196	-0.110	-0.488	-0.202	-0.285	-0.331
1150		0,90	-0.388	-0.386	-0.599	-0.198	-0.113	-0.493	-0.204	-0.288	-0.334
1160		0,91	-0.372	-0.366	-0.580	-0.179	-0.103	-0.496	-0.185	-0.271	-0.319
1171		0.92	-0.374	-0.370	-0.585	-0.184	-0.108	-0.502	-0.189	-0.275	-0.323
1180		0.92	-0.355	-0.343	-0.552	-0.158	-0.093	-0,497	-0,168	-0,254	-0.303
1190		0.93	-0.355	-0.344	-0.553	-0.159	-0.095	-0,504	-0,170	-0,256	-0,305
1200		0,94	-0,355	-0,342	-0,551	-0,156	-0,095	-0,507	-0,167	-0,254	-0,303
1210	L	0,95	-0,339	-0,322	-0,531	-0,138	-0,086	-0,507	-0,149	-0,236	-0,289
1220		0,95	-0,293	-0,289	-0,496	-0,106	-0,067	-0,502	-0,115	-0,200	-0,259
1230		0,96	-0,293	-0,289	-0,498	-0,106	-0,069	-0,506	-0,116	-0,202	-0,260
1240		0,97	-0,291	-0,288	-0,497	-0,104	-0,070	-0,509	-0,114	-0,199	-0,259
1250		0,98	-0,245	-0,248	-0,461	-0,073	-0,053	-0,502	-0,079	-0,157	-0,227
1260		0,98	-0,185	-0,184	-0,397	-0,033	-0,036	-0,491	-0,022	-0,095	-0,180
1260		0,98	-0,171	-0,166	-0,376	-0,026	-0,034	-0,485	-0,011	-0,083	-0,169
1270		0,99	-0,158	-0,149	-0,354	-0,022	-0,038	-0,487	-0,003	-0,072	-0,160
1280		1,00	-0,047	-0,043	-0,257	0,079	-0,025	-0,437	0,076	0,027	-0,078
1270		0,99	0,091	0,101	-0,070	0,168	0,086	-0,283	0,130	0,124	0,043
L											

1400 V, kN 1200 1000 800 ⊸— 1s ⊸— 2s 600 ____3s ___4s ε_{ym}=2,68%₀ -**--** 5s 400 -**→**- 8s 200 odkształcenie, MPa strain, MPa 0 0,0 1,0 2,0 3,0 4,0 1400 V, kN 1200 1000 800 εym=2,68%0 600 400 200 ∽ średnia/average odkształcenie, MPa strain, MPa 0 1,0 2,0 0,0 3,0 4,0 Ø 0 Ò Ø 4s I. 2s **8**s 7s # 6s 📏 5s 3s 0 1s Ø 0 Ø

Odkształcenie stali na krawędzi słupa / Strain of steel at the edge of the column

Lokalizacja czujników / Location of gauges

v		V/V _{exp}			(Odkszta	ałcenie	/ Strain			
1.3.7		exp	1s	2s	3s	4s	5s	6s	7s	8s	śr./av.
kN		-	‰	‰	‰	‰	‰	‰	‰	‰	‰
4		0,00	0,000	0,002	0,002	0,000	0,000	0,000	0,000	-0,002	0,000
40		0,03	0,019	0,014	0,012	0,007	0,007	0,009	0,011	0,008	0,011
120		0,06	0,033	0,020	0,022	0,014	0,014	0,023	0,023	0,030	0,022
120		0,09	0,041	0,020	0,032	0,017	0,019	0,036	0,030	0,004	0,037
200		0,15	0,052	0,041	0,043	0,022	0,023	0,005	0,030	0,144	0,030
200		0,10	0,002	0,040	0,004	0,020	0,023	0,030	0,074	0,130	0,073
280		0,10	0,004	0.055	0.083	0,000	0.034	0,100	0,000	0,299	0,000
320		0.25	0.167	0.058	0,000	0.052	0.038	0.249	0.130	0.332	0.141
360		0.28	0.221	0.057	0.121	0.064	0.043	0.353	0.147	0.360	0.171
400	p	0.31	0.278	0.061	0.150	0.078	0.050	0.454	0.172	0.393	0.205
400	k	0,31	0,296	0,061	0,159	0,093	0,053	0,481	0,184	0,397	0,216
440	р	0,34	0,347	0,072	0,180	0,141	0,063	0,558	0,213	0,471	0,256
440	k	0,34	0,380	0,079	0,198	0,199	0,072	0,592	0,236	0,518	0,284
480	р	0,38	0,440	0,093	0,223	0,283	0,088	0,679	0,282	0,606	0,337
480	k	0,38	0,466	0,134	0,240	0,322	0,101	0,711	0,317	0,651	0,368
520	р	0,41	0,557	0,171	0,281	0,428	0,132	0,818	0,401	0,770	0,445
520	k	0,41	0,595	0,200	0,314	0,484	0,152	0,861	0,451	0,830	0,486
560	р	0,44	0,678	0,251	0,363	0,595	0,186	0,961	0,542	0,935	0,564
560	k	0,44	0,737	0,310	0,417	0,668	0,245	1,019	0,619	1,034	0,631
600	р	0,47	0,811	0,359	0,466	0,767	0,296	1,105	0,695	1,136	0,704
600	k	0,47	0,866	0,428	0,535	0,838	0,354	1,173	0,774	1,265	0,779
640	p	0,50	0,943	0,499	0,618	0,931	0,411	1,271	0,864	1,431	0,871
640	K	0,50	1,008	0,583	0,705	0,991	0,480	1,309	0,953	1,548	0,947
680	p Ir	0,53	1,123	0,684	0,825	1,093	0,560	1,400	1,072	1,703	1,058
680	ĸ	0,53	1,100	0,753	0,884	1,137	0,614	1,425	1,143	1,789	1,114
720	р v	0,50	1,203	0,040	1.045	1,222	0,001	1,512	1,239	1,924	1,200
720	к n	0,50	1,307	0,939	1,045	1,201	0,759	1,540	1,311	2,013	1,274
760	P k	0,59	1,413	1,055	1,134	1,305	0,073	1,055	1,427	2,102	1,391
800	n	0,55	1,403	1 2/3	1 340	1,77	1.065	1 7/3	1,505	2,211	1,400
800	k k	0,03	1,501	1,243	1,340	1,557	1 142	1,743	1,550	2,419	1,505
840	n	0,66	1,010	1 427	1,410	1,000	1 222	1,700	1 739	2,664	1,000
840	k	0.66	1,700	1.472	1.566	1,729	1,294	1,852	1,778	2,738	1,720
880	p	0.69	1.832	1.564	1.676	1.791	1.370	1,936	1.852	2.884	1.863
880	k	0,69	1,887	1,630	1,723	1,824	1,426	1,971	1,897	2,957	1,914
920	p	0,72	1,960	1,722	1,795	1,891	1,477	2,031	1,954	3,070	1,988
920	k	0,72	1,991	1,796	1,823	1,920	1,518	2,076	1,977	3,118	2,027
960	р	0,75	2,041	1,867	1,880	1,977	1,573	2,156	2,039	3,205	2,092
960	k	0,75	2,055	1,897	1,902	2,002	1,605	2,189	2,058	3,236	2,118
1000	р	0,78	2,109	1,951	1,964	2,050	1,650	2,254	2,105	3,318	2,175
1000	k	0,78	2,140	1,980	1,998	2,066	1,675	2,262	2,121	3,346	2,199
1040	р	0,81	2,207	2,039	2,064	2,120	1,721	2,322	2,174	3,434	2,260
1040	k	0,81	2,242	2,069	2,094	2,137	1,750	2,342	2,196	3,471	2,288
1060		0,83	2,271	2,095	2,123	2,163	1,770	2,369	2,220	3,510	2,315
1080	р	0,84	2,306	2,126	2,155	2,189	1,795	2,400	2,246	3,552	2,346
1080	k	0,84	2,330	2,146	2,174	2,193	1,815	2,411	2,258	3,568	2,362
1090		0,85	2,346	2,159	2,188	2,204	1,825	2,425	2,270	3,585	2,375
1100		0,86	2,360	2,171	2,202	2,216	1,835	2,438	2,282	3,601	2,388
1111		0,87	2,392	2,196	2,227	2,232	1,855	2,455	2,300	3,621	2,410
1120		0,88	2,406	2,209	2,242	2,246	1,867	2,467	2,313	3,638	2,424
1130		0,00	∠,430 2 /7F	2,231	2,209	2,202	1,009	∠,403 2.506	2,330	3,007	∠,440 2⊿75
1150		0,09	2 488	2 281	2,302	2,200	1,91/	2,500	2,300	3 690	2 486
1160		0 91	2 525	2 314	2 348	2 323	1.958	2 546	2,305	3 730	2 517
1171		0.92	2.534	2.324	2.359	2.334	1.964	2.556	2.404	3.744	2.527
1180		0.92	2.573	2.359	2.394	2.360	1.995	2.581	2.428	3.772	2.558
1190		0,93	2,585	2,372	2,408	2,373	2,005	2,594	2,441	3,788	2,571
1200		0,94	2,606	2,389	2,425	2,389	2,019	2,610	2,455	3,808	2,588
1210		0,95	2,635	2,415	2,453	2,409	2,044	2,633	<u>2,</u> 476	3,832	2,612
1220		0,95	2,673	2,450	2,491	2,436	2,077	2,665	2,504	3,860	2,645
1230		0,96	2,686	2,461	2,504	2,447	2,086	2,678	2,516	3,876	2,657
1240		0,97	2,705	2,475	2,521	2,463	2,099	2,693	2,529	3,894	2,672
1250		0,98	2,734	2,487	2,548	2,472	2,123	2,718	2,550	3,911	2,693
1260		0,98	2,772	2,513	2,583	2,493	2,151	2,746	2,574	3,934	2,721
1260		0,98	2,775	2,516	2,586	2,492	2,153	2,749	2,575	3,935	2,723
1270		0,99	2,802	2,540	2,613	2,518	2,173	2,776	2,598	3,969	2,749
1280		1,00	2,826	2,560	2,633	2,530	2,187	2,809	2,613	3,990	2,769
1270		0,99	2,844	2,572	2,644	2,538	2,198	2,832	2,628	4,000	2,782

P-30-0,40

Naprężenie stali na krawędzi słupa / Stress of steel at the edge of column

v		V/V				Naprę	żenie /	Stress			
v		v / v exp	1s	2s	3s	4s	5s	6s	7s	8s	śr./av.
kN		-	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa
4		0,00	0	0	0	0	0	0	0	0	0
40		0,03	4	3	2	1	1	2	2	2	2
120		0,00	/	4	4	ა 2	ں ۱	с о	с 0	17	р С
120		0,09	0 11	0	0	3 4	4	0 13	0 11	20	0 11
200		0,13	13	10	11	4	6	19	15	29 40	15
240		0,10	17	10	13	7	7	27	19	50	19
280		0.22	25	11	17	9	7	37	23	61	24
320		0,25	34	12	21	11	8	51	26	67	29
360		0,28	45	12	25	13	9	72	30	73	35
400	р	0,31	56	12	30	16	10	92	35	80	42
400	k	0,31	60	12	32	19	11	98	37	81	44
440	р	0,34	70	15	37	29	13	113	43	96	52
440	k	0,34	77	16	40	40	15	120	48	105	58
480	p	0,38	89	19	45	57	18	138	57	123	68
480	ĸ	0,38	95	21	49	05	21	144	04	132	75
520	ր Խ	0,41	113	35	57	07	21	175	01	160	90
560	n	0,41	138	51	74	121	38	195	110	190	115
560	k	0,44	150	63	85	136	50	207	126	210	128
600	p	0.47	165	73	95	156	60	224	141	231	143
600	k	0,47	176	87	109	170	72	238	157	257	158
640	р	0,50	192	101	126	189	83	258	175	291	177
640	k	0,50	205	118	143	201	97	266	194	314	192
680	р	0,53	228	139	168	222	114	284	218	346	215
680	k	0,53	237	153	180	231	125	289	232	363	226
720	p	0,56	254	172	197	248	138	307	252	391	245
720	k	0,56	265	191	212	260	154	313	266	409	259
760	p	0,59	287	214	234	281	178	332	290	443	282
760	ĸ	0,59	298	232	252	293	199	338	306	462	298
800	p k	0,63	317	252	272	312	210	354	324	491	317
840	n	0,03	347	209	300	344	232	375	353	541	351
840	k	0,66	351	299	318	351	263	376	361	545	359
880	p	0.69	372	318	340	364	278	393	376	545	378
880	ĥ	0,69	383	331	350	370	290	400	385	545	389
920	р	0,72	398	350	365	384	300	412	397	545	404
920	k	0,72	404	365	370	390	308	422	402	545	412
960	р	0,75	415	379	382	402	319	438	414	545	425
960	k	0,75	417	385	386	407	326	445	418	545	430
1000	p	0,78	428	396	399	416	335	458	428	545	442
1000	k	0,78	435	402	406	420	340	459	431	545	447
1040	p	0,81	448	414	419	431	350	472	442	545	459
1040	к	0,81	455	420	425	434	355	476	440	545	465
1080	n	0,63	401	420	431	439	365	401	451	545	470
1080	k	0,04	473	436	442	445	369	490	459	545	480
1090		0.85	476	438	444	448	371	493	461	545	482
1100		0,86	479	441	447	450	373	495	463	545	485
1111		0,87	486	446	452	453	377	499	467	545	489
1120		0,88	489	449	455	456	379	501	470	545	492
1130		0,88	495	454	461	459	384	504	473	545	497
1140		0,89	503	461	468	464	389	509	478	545	503
1150		0,90	505	463	470	467	391	512	481	545	505
1160		0,91	513	470	477	472	398	517	486	545	511
11/1		0,92	515	4/2	479	4/4	399	519	488	545	513
1100		0,92	525 525	4/9	480	4/9	405 407	524 527	493	545 545	519
1200		0.94	529	485	493	485	410	530	499	545	526
1210		0.95	535	490	498	489	415	535	503	545	531
1220		0,95	543	498	506	495	422	541	509	545	537
1230		0,96	545	500	509	497	424	544	511	545	540
1240		0,97	545	503	512	500	426	545	514	545	543
1250		0,98	545	505	517	502	431	545	518	545	545
1260		0,98	545	510	525	506	437	545	523	545	545
1260		0,98	545	511	525	506	437	545	523	545	545
1270		0,99	545	516	531	511	441	545	528	545	545
1280		1,00	545	520	535	514	444	545	531	545	545
1270		0,99	545	522	537	515	446	545	534	545	545
										1	

Lokalizacja czujników / Location of gauges

P-30-0,40

Siła			Sze	rokość rozw	arcia rys [n	nm]		
Load		2	2	Width of ci	racks [mm]	(7	0
[kN]	nr I	nr 2	nr 3	nr 4	nr 5	nr 6	nr /	nr 8
	INO. I	NO. 2	NO. 3	NO. 4	NO. 5	NO. 0	INO. /	NO. 8
0								

Siła			Sze	erokość rozv	varcia rys [n	nm]		
Load				Width of c	racks [mm]			
[LN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6	nr 7	nr 8
[KIN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8
0								
240								
320								
360								
400								
440								
480	0.05	0.05	0.05					
520	0,05	0,05	0,05					
560	0.10	0.10	0.05					
600	0,12	0,10	0,10					
640	0.15	0.10	0.10					
	-,	.,	.,					
	1							

Sila	1		\$76	rokość rozu	arcia rve In	ml		
Load			524	Width of c	racks [mm]			
Loud	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6	nr 7	nr 8
[kN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8
0								
240								
320								
360								
400								
440								
480	0,05	0,05	0,05					
520	0,05	0,05	0,05					
560	0,10	0,10	0,05					
600	0,12	0,10	0,10					
640	0,15	0,10	0,10	0,15				
680	0,15	0,15	0,12	0,20				
720	0,20	0,15	0,15	0,20				
760	0,20	0,20	0,20	0,20				
800	0,25	0,20	0,20	0,25	0,25			
840	0,25	0,20	0,20	0,30	0,25			
880	0,25	0,20	0,20	0,30	0,20			
920	0,25	0,20	0,20	0,30	0,25			
960	0,30	0,20	0,20	0,35	0,25			
1000	0,25	0,30	0,20	0,30	0,20	0,30		
1040	0,25	0,25	0,20	0,35	0,25	0,30		
1080	0,25	0,25	0,20	0,35	0,30	0,25		
1120				0,40				
1280								

Zbrojenie modelu / Specimen's reinforcement

Odkształcenie betonu płyty / Strain of concrete slab

Lokalizacja czujników / Location of gauges

17		x 7 / X 7			(Odkszta	ałcenie	/ Strair	1		
V		V/V_{exp}	1b	2b	3b	4b	5b	6b	7b	8b	śr./av.
kN		-	‰	‰	‰	‰	‰	‰	‰	‰	‰
8		0,01	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
80		0.05	0.026	0.030	0.030	0.024	0.015	0.017	0.015	0.014	0.021
160		0,10	0,052	0,061	0,059	0,047	0,028	0,034	0,026	0,029	0,042
240		0,15	0,069	0,081	0,080	0,061	0,037	0,048	0,030	0,038	0,056
320	р	0,20	0,082	0,096	0,098	0,072	0,045	0,063	0,033	0,044	0,067
320	k	0,20	0,082	0,097	0,098	0,072	0,046	0,066	0,034	0,045	0,068
400	р	0,25	0,088	0,103	0,108	0,075	0,044	0,069	0,030	0,043	0,070
400	k	0,25	0,095	0,107	0,111	0,078	0,047	0,073	0,032	0,046	0,074
480	р	0,30	0,095	0,106	0,111	0,074	0,038	0,066	0,021	0,037	0,069
480	k	0,30	0,089	0,102	0,108	0,071	0,036	0,064	0,020	0,037	0,066
560	р	0,35	0,077	0,086	0,094	0,058	0,015	0,041	-0,002	0,020	0,049
560	k	0,35	0,069	0,080	0,088	0,053	0,010	0,032	-0,007	0,017	0,043
640	р	0,40	0,051	0,055	0,067	0,034	-0,017	0,000	-0,036	-0,004	0,019
640	k	0,40	0,043	0,045	0,058	0,028	-0,024	-0,008	-0,042	-0,009	0,011
720	р	0,45	0,017	0,013	0,027	0,005	-0,057	-0,047	-0,078	-0,036	-0,020
720	k	0,45	0,010	0,006	0,020	-0,001	-0,063	-0,056	-0,084	-0,039	-0,026
800	р	0,50	-0,026	-0,034	-0,022	-0,029	-0,105	-0,099	-0,126	-0,071	-0,064
800	k	0,50	-0,033	-0,040	-0,030	-0,035	-0,110	-0,105	-0,131	-0,075	-0,070
880	р	0,55	-0,070	-0,076	-0,069	-0,067	-0,155	-0,142	-0,174	-0,109	-0,108
880	k	<u>0,</u> 55	-0,075	-0,078	-0,075	-0,071	-0,160	-0,147	-0,177	-0 <u>,1</u> 12	-0 <u>,1</u> 12
960	р	0,60	-0,104	-0,104	-0,105	-0,096	-0,200	-0,178	-0,213	-0,142	-0,143
960	k	0,60	-0,107	-0,102	-0,107	-0,098	-0,203	-0,178	-0,210	-0,144	-0,144
1040	р	0,65	-0,138	-0,128	-0,137	-0,125	-0,246	-0,211	-0,250	-0,175	-0,176
1040	ĥ	0,65	-0,132	-0,122	-0,132	-0,121	-0,245	-0,208	-0,242	-0,170	-0,172
1120	р	0,70	-0,159	-0,155	-0,160	-0,157	-0,303	-0,242	-0,273	-0,197	-0,206
1120	ĥ	0,70	-0,144	-0,147	-0,158	-0,149	-0,280	-0,218	-0,240	-0,181	-0,190
1200	р	0,75	-0,120	-0,113	-0,131	-0,141	-0,309	-0,233	-0,255	-0,189	-0,186
1200	ĥ	0,75	-0,065	-0,063	-0,093	-0,098	-0,271	-0,201	-0,204	-0,150	-0,143
1280	р	0,80	-0,067	-0,065	-0,105	-0,110	-0,298	-0,221	-0,223	-0,168	-0,157
1280	k	0,80	-0,014	-0,024	-0,079	-0,067	-0,256	-0,184	-0,161	-0,131	-0,115
1320	р	0,83	-0,015	-0,025	-0,084	-0,069	-0,263	-0,190	-0,162	-0,135	-0,118
1320	ĥ	0,83	0,003	-0,003	-0,070	-0,046	-0,241	-0,175	-0,138	-0,114	-0,098
1360	р	0.85	-0,004	-0,006	-0,075	-0,048	-0,249	-0,181	-0,141	-0,119	-0,103
1360	ĥ	0,85	0,016	0,022	-0,055	-0,018	-0,224	-0,164	-0,113	-0,094	-0,079
1400		0,88	0,006	0,020	-0,060	-0,020	-0,233	-0,173	-0,118	-0,099	-0,085
1440		0,90	-0,001	0,083	-0,018	0,050	-0,182	-0,139	-0,070	-0,047	-0,041
1480		0,93	-0,033	0,118	0,004	0,090	-0,155	-0,120	-0,050	-0,019	-0,021
1520		0,95	-0,076	0,144	0,016	0,118	-0,137	-0,109	-0,040	-0,002	-0,011
1560		0,98	-0,095	0,200	0,048	0,174	-0,093	-0,074	-0,014	0,041	0,023
1600		1,00	-0,107	0,201	0,046	0,172	-0,100	-0,080	-0,022	0,036	0,018
1584		0,99	0,066	0,480	0,169	0,409	0,080	0,047	0,240	0,275	0,221
		-	-								-
										1	1
L	L										
										1	1
	L										
										1	1
	L										
										1	1
										1	1
	L										
										1	1
										1	1
										1	1
										1	1
	L										
										1	1
										1	1
											1
										1	1
	L										
1	1	1									

Odkształcenie stali na krawędzi słupa / Strain of steel at the edge of the column

Lokalizacja czujników / Location of gauges

v		V/V err	1	~	(Odkszta	ałcenie	/ Strain	1	C	, ,
1.55		exp	ls	2s	3s	4s	5s	6s	7s	8s	śr./av.
KN C		-	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	% 0.000	<u>%</u>	<u>%</u>	% 0.000	%
8		0,01	0,000	0,000	0,006	0,001	0,000	0,003	0,000	0,000	0,001
160		0,05	0,007	0,011	0,020	0,010	0,008	0,017	0,004	0,000	0,011
240		0,10	0,010	0,022	0.055	0,010	0.027	0.023	0,017	0,010	0,021
320	р	0,20	0,040	0,059	0,077	0,051	0,045	0,049	0,025	0,041	0,048
320	k	0,20	0,043	0,063	0,082	0,054	0,048	0,052	0,026	0,046	0,052
400	р	0,25	0,057	0,084	0,103	0,075	0,071	0,066	0,033	0,067	0,070
400	k	0,25	0,058	0,090	0,106	0,079	0,076	0,068	0,032	0,072	0,073
480	р	0,30	0,071	0,122	0,138	0,093	0,099	0,083	0,039	0,115	0,095
480	k	0,30	0,073	0,130	0,149	0,095	0,104	0,087	0,042	0,129	0,101
560	p	0,35	0,107	0,185	0,199	0,116	0,140	0,119	0,055	0,199	0,140
560	K n	0,35	0,122	0,202	0,217	0,125	0,101	0,139	0,001	0,224	0,150
640	p k	0,40	0,170	0,200	0,273	0,101	0,217	0,192	0,001	0,308	0,209
720	p	0,40	0.304	0.394	0.400	0.369	0.339	0.310	0.137	0.442	0.337
720	k	0,45	0,360	0,444	0,439	0,447	0,388	0,363	0,180	0,482	0,388
800	р	0,50	0,515	0,573	0,554	0,641	0,518	0,515	0,291	0,620	0,528
800	k	0,50	0,572	0,609	0,589	0,707	0,561	0,563	0,336	0,660	0,575
880	р	0,55	0,727	0,715	0,713	0,882	0,696	0,704	0,467	0,789	0,712
880	k	0,55	0,819	0,766	0,773	0,954	0,764	0,764	0,539	0,851	0,779
960	p	0,60	0,968	0,882	0,894	1,082	0,891	0,897	0,657	0,973	0,906
960	ĸ	0,60	1,043	0,939	0,946	1,147	0,962	0,950	0,753	1,029	0,971
1040	թ ւ	0,65	1,213	1,092	1,075	1,284	1,121	1,125	0,940	1,163	1,127
1120	к р	0,05	1,200	1,141	1,120	1,329	1,100	1,10/	1,000	1,210	1,104
1120	k	0.70	1,333	1,201	1.295	1,459	1,459	1,456	1,236	1,464	1,396
1200	p	0,75	1,489	1,385	1,400	1,581	1,566	1,643	1,481	1,503	1,506
1200	k	0,75	1,524	1,414	1,447	1,617	1,583	1,700	1,528	1,515	1,541
1280	р	0,80	1,591	1,493	1,529	1,691	1,651	1,805	1,613	1,589	1,620
1280	k	0,80	1,621	1,559	1,592	1,711	1,628	1,824	1,654	1,586	1,647
1320	р	0,83	1,654	1,596	1,629	1,742	1,653	1,864	1,690	1,614	1,680
1320	k	0,83	1,670	1,613	1,646	1,758	1,660	1,878	1,710	1,630	1,696
1360	p	0,85	1,705	1,650	1,678	1,792	1,688	1,915	1,745	1,664	1,730
1360	к	0,85	1,728	1,672	1,699	1,814	1,699	1,930	1,771	1,683	1,750
1400		0,88	1,707	1,714	1,737	1,002	1,730	2 004	1,011	1,720	1,700
1480		0.93	1.896	1,834	1,845	1,976	1.814	2,004	1,943	1,809	1,895
1520		0.95	1.941	1.879	1.892	2.022	1.852	2.070	1.991	1.843	1.936
1560		0,98	1,999	1,936	1,941	2,083	1,901	2,107	2,056	1,878	1,988
1600		1,00	2,031	1,968	1,970	2,113	1,930	2,140	2,086	1,910	2,019
1584		0,99	2,009	1,952	1,923	2,092	1,921	2,052	2,117	1,915	1,998

Naprężenie stali na krawędzi słupa / Stress of steel at the edge of column

ſ	V		V/V				Naprę	żenie /	Stress				1000	V, kN			
ļ	v		V/V exp	1s	2s	3s	4s	5s	6s	7s	8s	śr./av.]	,			
ŀ	kN		-	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	1400				_
	0 80		0,01	1	2	1	2	2	3	1	1	2					
	160		0,10	3	4	9	4	3	6	2	3	4	1200				
	240		0,15	5	8	11	6	6	8	3	4	6	1200				
	320	р	0,20	8	12	16	10	9	10	5	8	10					-
	320	k	0,20	9	13	17	11	10	11	5	9	11	1000	-			ļ
	400	p k	0,25	12	17	21	15	15	13	7	14	14				\mathbb{Z}	7
	480	p	0,30	15	25	28	19	20	17	8	23	19	800				
	480	k	0,30	15	27	30	19	21	18	9	26	21	000				
	560	р	0,35	22	38	41	24	29	24	11	41	29]		
	560	k	0,35	25	41	44	26	33	28	12	46	32	600				-
	640 640	k k	0,40	35 43	54 61	50 63	33 42	44 52	39 46	17	03 71	43 50					
	720	p	0,45	62	80	82	75	69	63	28	90	69	400				
	720	k	0,45	74	91	90	91	79	74	37	98	79		<u> </u>			
	800	p	0,50	105	117	113	131	106	105	59	127	108					
	800	K n	0,50	117	124	120	144 180	115 142	115 144	69 95	135	117 145	200				
	880	k p	0,55	149	140	140	195	142	156	110	174	145		V			
Ī	960	р	0,60	198	180	183	221	182	183	134	199	185	0	4			
	960	k	0,60	213	192	193	234	197	194	154	210	198		0 1	00	20	0
	1040	p	0,65	248	223	220	262	229	230	192	238	230					
	1040	ĸ	0,65	263	233	230	272	242	236	211	248	242	1600	7			
	1120	k k	0,70	200	200	265	293	298	278	255	201	285		V, kN			
	1200	р	0,75	304	283	286	323	320	336	303	307	308					
	1200	k	0,75	311	289	296	330	323	347	312	310	315	1400				
	1280	p	0,80	325	305	312	345	337	369	330	325	331					
-	1280	ĸ	0,80	331	319	325	350	333	3/3	338	324	336	1200	_			
	1320	k	0.83	341	330	336	359	339	384	349	333	345					
	1360	р	0,85	348	337	343	366	345	391	357	340	353					
	1360	k	0,85	353	342	347	371	347	394	362	344	357	1000	-		20	/
	1400		0,88	361	350	355	378	353	402	370	351	365			م_ر		
	1440		0,90	387	305	300	394 404	303	409	397	303	387	800		~		
	1520		0,95	397	384	387	413	378	423	407	377	396		20	1		
	1560		0,98	408	396	397	426	388	430	420	384	406		90			
	1600		1,00	415	402	402	432	394	437	426	390	412	600	pp			-
	1584		0,99	410	399	393	427	392	419	433	391	408		ę			
													400	- \$			
														4			
													200	4			
													200	9			
														P			
													0	4			
														0 1	00	20	0
															//	-	-
														,	∕,∕∔	\rightarrow	_
																Ø	
															┿	\rightarrow	_
															K		
ļ		L											ł		χ	T	1-
														 	4 +	- 4	rS
																8 s	Ú
																	[
															++	65	1
														┥╋╋╋╋╋	++	00	
															2	- 13)S
																\rightarrow	-
]		Т.		
ſ																Θ	
															++	-	>
																	_
					L		L	L	L								
-													-				-

4.01

8

×,

Siła			Sze	rokość rozw	/arcia rys [n	nm]		
Load				Width of c	racks [mm]			
[kN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6	nr 7	nr 8
[,]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8
0								
240								

Siła	Szerokość rozwarcia rys [mm]										
Load	Width of cracks [mm]										
[kN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6	nr 7	nr 8			
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8			
0											
240											
400											
480											
560											
640	0,05										
720	0,08	0,11									
800	0,11	0,13									

Siła	Szerokość rozwarcia rys [mm]									
Load	Width of cracks [mm]									
[kN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6	nr 7	nr 8		
[KI 1]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8		
0										
240										
400										
480										
360	0.05									
720	0,03	0.11								
800	0,08	0,11								
880	0.11	0.13	0.10	0.13						
960	0.11	0.15	0.05	0.18	0.15					
1040	0.12	0.23	0.05	0.20	0.15					
1120	0.12	0.25	0.05	0.20	0.15					
1200	0,15	0,25	0,07	0,20	0,20	0,22				
1280	0,15	0,30	0,07	0,25	0,17	0,25	0,35			
1360	0,20	0,30	0,10	0,25	0,20	0,30	0,35	0,40		
1400	0,15	0,30	0,10	0,25	0,25	0,30	0,40	0,45		
1520	0,15	0,35	0,10	0,25	0,25	0,30	0,45	0,45		
1560	0,20	0,40	0,10	0,25	0,20	0,25	0,45	0,45		

Zbrojenie modelu / Specimen's reinforcement

Odkształcenie betonu płyty / Strain of concrete slab

Lokalizacja czujników / Location of gauges
Odkształcenie stali na krawędzi słupa / Strain of steel at the edge of the column

Lokalizacja czujników / Location of gauges

v	W/W			(Odkszta	ałcenie	/ Strain	1		
v	V/V exp	1s	2s	3s	4s	5s	6s	7s	8s	śr./av.
kN	-	‰	‰	‰	‰	‰	‰	‰	‰	‰
8	0,00	0,017	0,022	-0,010	0,005	0,025	-0,007	0,007	0,008	0,008
80	0,04	0,039	0,047	0,025	0,023	0,046	0,028	0,022	0,027	0,032
160	0,08	0,072	0,083	0,058	0,055	0,079	0,072	0,060	0,058	0,067
240	0,12	0,120	0,133	0,108	0,100	0,131	0,136	0,117	0,100	0,118
320	0,16	0,180	0,194	0,168	0,164	0,194	0,213	0,188	0,149	0,181
400	0,20	0,248	0,265	0,239	0,225	0,265	0,298	0,266	0,207	0,252
480	0,24	0,323	0,341	0,315	0,312	0,342	0,385	0,351	0,282	0,331
560	0,28	0,409	0,425	0,401	0,399	0,429	0,481	0,443	0,371	0,420
640	0,32	0,488	0,503	0,482	0,474	0,508	0,568	0,528	0,455	0,501
720	0,36	0,571	0,585	0,563	0,576	0,591	0,657	0,619	0,542	0,588
800	0,40	0,653	0,668	0,645	0,667	0,674	0,744	0,709	0,628	0,674
880	0,44	0,736	0,750	0,727	0,755	0,759	0,835	0,800	0,716	0,760
960	0,48	0,818	0,831	0,808	0,841	0,842	0,925	0,890	0,802	0,845
1040	0,52	0,899	0,912	0,888	0,926	0,925	1,016	0,981	0,890	0,930
1120	0,56	0,983	0,996	0,969	1,012	1,011	1,108	1,071	0,981	1,016
1200	0,60	1,063	1,076	1,048	1,094	1,092	1,196	1,160	1,069	1,100
1280	0,64	1,143	1,155	1,124	1,174	1,173	1,283	1,246	1,156	1,182
1360	0,68	1,224	1,238	1,200	1,257	1,254	1,372	1,334	1,245	1,266
1440	0,72	1,307	1,320	1,279	1,342	1,338	1,463	1,424	1,337	1,351
1520	 0,76	1,390	1,401	1,358	1,424	1,420	1,554	1,515	1,429	1,436
1600	0,80	1,483	1,494	1,449	1,520	1,510	1,657	1,622	1,535	1,534
1620	0,81	1,498	1,511	1,471	1,538	1,523	1,643	1,646	1,556	1,548
1640	0,82	1,548	1,560	1,516	1,584	1,568	1,707	1,696	1,610	1,599
1680	0,84	1,603	1,618	1,570	1,639	1,618	1,774	1,757	1,669	1,656
1720	0,86	1,708	1,720	1,676	1,739	1,713	1,887	1,887	1,780	1,764
1800	0,90	1,846	1,863	1,841	1,895	1,844	2,008	2,077	1,909	1,910
1800	0,90	1,911	1,933	1,927	1,981	1,915	2,049	2,1/1	1,983	1,984
1840	0,92	1,959	1,981	1,978	2,034	1,955	2,133	2,221	2,036	2,037
1001	0,94	2,039	2,001	2,070	2,130	2,012	2,212	2,305	2,115	2,118
1880	0,94	2,064	2,079	2,094	2,157	2,034	2,229	2,327	2,133	2,140
1880	0,94	2,072	2,127	2,108	2,173	2,045	2,228	2,333	2,135	2,153
1920	0,96	2,248	2,353	2,297	2,416	2,546	2,617	2,918	2,589	2,498
1960	0,98	2,335	2,523	2,364	2,501	2,661	2,790	3,033	2,714	2,015
1970	0,96	2,470	2,923	2,470	2,013	2,690	2,925	2,973	2,774	2,750
2000	1,00	2,500	3,053	2,712	3,332	3,011	2,940	2,990	2,022	2,929
2004	1,00	2,020	3,200	3,449	3,303	3,079	2,973	2,990	2,005	3,100
1990	1,00	2,970	3,917	3,097	3,755	3,123	3,002	3,001	2,907	3,297
									-	-
									1	1
									1	1
									1	1
									1	1
									1	1
									1	1
									1	1
									1	1
									1	1
									1	1
									1	1
									1	1
									1	1
									1	1
									[[

P-35-0,40

Naprężenie stali na krawędzi słupa / Stress of steel at the edge of column

v	V/V	Naprężenie / Stress								
,	• / • exp	1s	2s	3s	4s	5s	6s	7s	8s	śr./av.
kN	-	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa
8	0,00	3	4	-2	1	5	-1	1	2	2
160	0,04	0 15	10	12	11	9 16	15	4 12	12	14
240	0.12	25	27	22	20	27	28	24	20	24
320	0,16	37	40	34	34	40	44	38	30	37
400	0,20	51	54	49	46	54	61	54	42	51
480	0,24	66	70	64	64	70	79	72	58	68
560	0,28	84	87	82	82	88	98	91	76	86
640	0,32	100	103	98	97	104	116	108	93	102
720	0,36	117	120	115	118	121	134	126	111	120
800	0,40	133	130	132	130	138	152	145	128	138
960	0,44	167	170	165	172	172	189	182	164	173
1040	0,52	184	186	181	189	189	208	200	182	190
1120	0,56	201	203	198	207	207	226	219	200	208
1200	0,60	217	220	214	224	223	244	237	218	225
1280	0,64	234	236	230	240	240	262	255	236	241
1360	0,68	250	253	245	257	256	280	273	254	259
1440	0,72	207	270	201 277	2/4	2/3	299	291	2/3	2/0
1600	 0,70	303	200	206	311	308	330	331	314	313
1620	0.81	306	309	301	314	311	336	336	318	316
1640	0,82	316	319	310	324	320	349	346	329	327
1680	0,84	327	331	321	335	331	362	359	341	338
1720	0,86	349	351	342	355	350	386	386	364	360
1800	0,90	377	381	376	387	377	410	424	390	390
1800	0,90	390	395	394	405	391	419	444	405	405
1881	0,92	400	405	404	410	399 411	430	454 471	410	410
1880	0.94	422	425	428	441	416	455	475	436	437
1880	0,94	423	435	431	444	418	455	477	436	440
1920	0,96	459	481	469	494	520	535	580	529	510
1960	0,98	477	515	483	511	544	570	580	554	534
1970	0,98	505	580	506	534	580	580	580	567	563
2000	1,00	523	580	554	580	580	580	580	577	580
2004	1,00	530 580	580	580	580	580	580	580	580	580
1330	1,00	500	500	500	500	500	500	500	500	500
<u> </u>	 									

Lokalizacja czujników / Location of gauges

P-35-0,40

Siła Load	Szerokość rozwarcia rys [mm] Width of cracks [mm]											
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6	nr 7 No. 7	nr 8 No. 8				
0												

Siła			Sze	rokość rozw	arcia rys [n	nm]		
Load				Width of c	acks [mm]			
	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6	nr 7	nr 8
[kN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8
0								
2000								
2000								

P-35-0,40

Data badania / Test date: 04.02.2013r.

Data betonowania / Concreting date: 16.10.2012.r

Wiek betonu płyty / Slab concrete age: 111 dni / days

Wiek betonu słupka / Column concrete age:

Wytrzymałość betonu płyty / Strength of concrete slab: $f_{c,cube} =$ $f_{cm} = 33,7MPa (3 próbki / 3 specimens)$ $f_{sp} = 3,40MPa (3 próbki / 3 specimens)$ $E_c = 25,3GPa (2 próbki / 2 specimens)$

 $\label{eq:Wytrzymałość betonu słupka / Strength of concrete column: $f_{c,cube} = -$ $f_{cm} = -$$

Charakterystyka zbrojenia / Characteristics of the reinforcement: #8

 $\begin{array}{l} A_{s}=51,26mm^{2}\\ f_{y,h}=543,8MPa\\ f_{y,l}=521,9MPa\\ f_{ym}=532,9MPa\\ E_{s}=219,3GPa \end{array}$

Nośność eksperymentalna / Experimental capacity: $V_{exp} = 351 \text{kN}$

Zbrojenie modelu / Specimen's reinforcement

Odkształcenie betonu płyty bezpośrednio przy słupie – kierunek radialny Strain of concrete slab near to the column – radial direction

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty na drugim obwodzie - kierunek radialny Strain of concrete slab on the second perimeter - radial direction

v		V/V		Odkszt	ałcenie /	Strain	
v		v/v exp	3	6	9	12	śr./av.
kN		-	‰	‰	‰	‰	‰
0		0,00	0,000	0,000	0,000	0,000	0,000
20		0,06	-0,009	-0,002	-0,006	-0,004	-0,005
40		0,11	-0,017	-0,006	-0,012	-0,008	-0,011
60		0,17	-0,022	-0,006	-0,016	-0,009	-0,013
80		0,23	-0,028	-0,010	-0,020	-0,013	-0,018
100		0,28	-0,037	-0,013	-0,028	-0,019	-0,024
120		0,34	-0,051	-0,024	-0,041	-0,024	-0,035
140		0,40	-0,066	-0,036	-0,053	-0,033	-0,047
160		0,46	-0,077	-0,045	-0,070	-0,048	-0,060
180		0,51	-0,093	-0,063	-0,087	-0,067	-0,078
200		0,57	-0,116	-0,078	-0,098	-0,077	-0,092
220	р	0,63	-0,136	-0,101	-0,108	-0,089	-0,109
220	k	0,63	-0,131	-0,097	-0,106	-0,088	-0,106
240	р	0,68	-0,139	-0,107	-0,118	-0,098	-0,116
240	k	0,68	-0,137	-0,106	-0,118	-0,097	-0,115
260	р	0,74	-0,144	-0,115	-0,125	-0,106	-0,123
260	k	0,74	-0,143	-0,116	-0,124	-0,107	-0,123
260	k	0,74	-0,146	-0,118	-0,126	-0,110	-0,125
280	р	0,80	-0,148	-0,123	-0,126	-0,117	-0,129
280	k	0,80	-0,145	-0,121	-0,121	-0,118	-0,126
280	k	0,80	-0,143	-0,121	-0,119	-0,117	-0,125
300	р	0,85	-0,135	-0,125	-0,113	-0,129	-0,126
300	k	0,85	-0,120	-0,117	-0,100	-0,127	-0,116
300	k	0,85	-0,119	-0,117	-0,099	-0,128	-0,116
320	р	0,91	-0,093	-0,106	-0,083	-0,135	-0,104
320	k	0,91	-0,085	-0,100	-0,076	-0,134	-0,099
330		0,94	-0,086	-0,103	-0,078	-0,139	-0,102
335		0,95	-0,080	-0,104	-0,077	-0,139	-0,100
340		0,97	-0,072	-0,102	-0,074	-0,139	-0,097
345		0,98	-0,060	-0,088	-0,059	-0,129	-0,084
350		1,00	-0,055	-0,080	-0,050	-0,121	-0,077
351		1,00	-0,053	-0,078	-0,049	-0,121	-0,075
350		1,00	-0,052	-0,074	-0,049	-0,118	-0,073
349		0,99	-0,058	-0,072	-0,046	-0,114	-0,073
1							
1							
1						[

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty bezpośrednio przy słupie – kierunek obwodowy Strain of concrete slab near to the column – circumferential direction

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty na drugim obwodzie - kierunek obwodowy Strain of concrete slab on the second perimeter - circumferential direction

v		V/V		Odkszt	ałcenie	Strain	
v		v / v exp	14	16	18	20	śr./av.
kN		-	‰	‰	‰	‰	‰
0		0,00	0,000	0,000	0,000	0,000	0,000
20		0,06	-0,024	-0,028	-0,024	-0,025	-0,025
40		0,11	-0,040	-0,048	-0,040	-0,044	-0,043
60		0,17	-0,063	-0,078	-0,058	-0,074	-0,068
80		0,23	-0,079	-0,101	-0,072	-0,097	-0,087
100		0,28	-0,109	-0,140	-0,095	-0,139	-0,121
120		0,34	-0,155	-0,226	-0,129	-0,246	-0,189
140		0,40	-0,194	-0,297	-0,160	-0,353	-0,251
160		0,46	-0,262	-0,397	-0,202	-0,500	-0,340
180		0,51	-0,354	-0,469	-0,242	-0,588	-0,413
200		0,57	-0,484	-0,553	-0,290	-0,669	-0,499
220	р	0,63	-0,596	-0,606	-0,414	-0,749	-0,591
220	k	0,63	-0,601	-0,606	-0,421	-0,751	-0,595
240	р	0,68	-0,668	-0,651	-0,488	-0,806	-0,653
240	k	0,68	-0,681	-0,656	-0,505	-0,813	-0,664
260	р	0,74	-0,760	-0,708	-0,585	-0,867	-0,730
260	k	0,74	-0,786	-0,723	-0,612	-0,881	-0,751
260	k	0,74	-0,799	-0,730	-0,626	-0,890	-0,761
280	р	0,80	-0,881	-0,777	-0,706	-0,936	-0,825
280	k	0,80	-0,913	-0,793	-0,738	-0,948	-0,848
280	k	0,80	-0,917	-0,795	-0,741	-0,948	-0,850
300	р	0,85	-1,024	-0,858	-0,851	-1,012	-0,936
300	k	0,85	-1,051	-0,872	-0,880	-1,024	-0,957
300	k	0,85	-1,056	-0,876	-0,886	-1,027	-0,961
320	р	0,91	-1,184	-0,988	-1,044	-1,099	-1,079
320	k	0,91	-1,210	-1,023	-1,087	-1,116	-1,109
330		0,94	-1,238	-1,048	-1,116	-1,138	-1,135
335		0,95	-1,269	-1,078	-1,152	-1,155	-1,164
340		0,97	-1,304	-1,129	-1,197	-1,172	-1,201
345		0,98	-1,373	-1,291	-1,318	-1,223	-1,301
350		1,00	-1,411	-1,395	-1,390	-1,271	-1,367
351		1,00	-1,414	-1,411	-1,397	-1,278	-1,375
350		1,00	-1,403	-1,432	-1,399	-1,286	-1,380
349		0,99	-1,395	-1,457	-1,402	-1,302	-1,389

Lokalizacja czujników / Location of gauges

Odkształcenie zbrojenia głównego Strain of main reinforcement

Lokalizacja czujników / Location of gauges

Naprężenie zbrojenia głównego Stress of main reinforcement

V		V/V.	Napręzenie / Stress						
		• / • exp	22	23	24	25	śr./av.		
kN		-	MPa	MPa	MPa	MPa	MPa		
0		0,00	0	0	0	0	0		
20		0,06	4	4	5	5	5		
40		0,11	8	8	8	7	8		
60		0,17	23	29	13	13	19		
80		0,23	39	43	18	23	31		
100		0,28	68	70	30	41	52		
120		0,34	115	107	72	87	95		
140		0,40	162	139	125	130	139		
160		0,46	251	206	212	218	222		
180		0,51	336	276	262	261	284		
200		0,57	416	367	191	366	335		
220	р	0,63	514	484		500	499		
220	k	0,63	516	488		503	502		
240	р	0,68	533	533		533	533		
240	k	0,68	533	533		533	533		
260	р	0,74	533	533		533	533		
260	k	0,74	533	533	e	533	533		
260	k	0,74	533	533	ang	533	533		
280	р	0,80	533	533	f g:	533	533		
280	k	0,80	533	533	e.	533	533		
280	k	0,80	533	533	ilur	533	533		
300	p	0.85	533	533	/fa	533	533		
300	k	0.85	533	533	ika	533	533		
300	k	0.85	533	533	'n	533	533		
320	p	0.91	533	451	S	533	533		
320	k	0.91	533	348	snie	533	533		
330		0.94	533	355	dzb	533	533		
335		0,04	533	349	2x	533	533		
340		0.97	533	341	.sn	533	533		
345		0,07	156	341		533	352		
350		1.00	153	345		533	381		
351		1,00	154	347		533	386		
350		1,00	154	347		532	380		
340		0.00	100	347		533	300		
349		0,99	159	340		555	391		

Lokalizacja czujników / Location of gauges

Odkształcenie stali na obwodzie / Strain of steel on the perimeter

v		V/V.	Odkształcenie / Strain								
,		v/v exp	26	27	28	29	30	31	32	33	śr./av.
kN		-	‰	‰	‰	‰	‰	‰	‰	%	‰
0		0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
20		0,06	0,012	0,011	0,003	0,005	0,008	0,006	0,003	0,004	0,007
40		0,11	0,017	0,020	0,006	0,006	0,010	0,009	0,005	0,006	0,010
60		0,17	0,028	0,040	0,015	0,010	0,017	0,018	0,011	0,012	0,019
80		0,23	0,036	0,060	0,022	0,013	0,021	0,023	0,015	0,016	0,026
100		0,28	0,053	0,108	0,045	0,019	0,030	0,035	0,025	0,024	0,042
140		0,34	0,077	0,364	0,001	0,020	0,041	0,069	0,030	0,035	0,091
140		0,40	0,104	0,653	0,117	0,035	0,052	0,107	0,052	0,046	0,146
100		0,40	0,135	1,079	0,300	0,045	0,060	0,601	0,073	0,003	0,295
100		0,51	0,151	1,311	0,614	0,053	0,000	0,694	0,094	0,101	0,421
200		0,57	0,169	1,512	0,900	0,071	0,087	1,091	0,129	0,563	0,565
220	P k	0,03	0,172	1,710	1,070	0,205	0,147	1,310	0,330	0,007	0,737
220	к n	0,03	0,172	1,004	1,000	0,307	0,102	1,320	0,359	1,005	0,744
240	P k	0,00	0,191	1,000	1,100	0,471	0,233	1,403	0,490	1,005	0,004
240	к n	0,00	0,193	1,795	1,170	0,512	0,207	1,491	0,551	1,034	1,000
200	Р レ	0,74	0,232	1,955	1,200	0,005	0,414	1,043	0,041	1,100	1,000
200	k k	0,74	0,249	1,973	1,203	0,710	0,473	1,003	0,073	1,220	1,034
200	n	0,74	0,201	2 125	1,202	0,723	0,497	1,034	0,001	1 350	1,043
280	P k	0,80	0,320	2,125	1,370	0,001	0,040	1,034	0,704	1,339	1,100
280	k	0,00	0,369	2,130	1 304	0,001	0,710	1,000	0,730	1,406	1 203
300	n	0,80	0,509	2,143	1,534	1 071	0,724	2 052	0,797	1,400	1,203
300	k	0,85	0,520	2,004	1,510	1,071	0,004	2,002	0,000	1,505	1 394
300	k	0.85	0,588	2,400	1,520	1,118	0,001	2,000	0,000	1,000	1 400
320	n	0,00	0,000	2 733	1 710	1,394	1 162	2,394	1 156	1 886	1 776
320	k	0,01	-	2 827	1 739	1 463	1 234	2 461	1 204	1 951	1 840
330		0.94	ka "	2,908	1 781	1,100	1 257	2 510	1 223	1 980	1,810
335		0.95	ujni uge	2,000	1,701	1,000	1 324	2,010	1 288	2 055	1,000
340		0,00	czi gai	2,000	1,073	1,505	1,024	2,012	1,200	2,000	2 032
345		0,97	enie e of	2 925	2 202	1,040	1,402	2,070	1,530	2,140	2,032
350		1.00	dze lure	2,923	2,292	1,007	1,724	2,001	1,540	2,337	2,202
351		1,00	fail	2,34/	2,402	2 005	1,044	2,100	1,000	2,442	2,290
250		1,00	zsn	2,909	2,524	2,005	1,000	2,710	1,002	2,400	2,313
300		1,00		3,005	2,00/	2,010	1,000	2,714	1,000	2,452	2,320
349		0,99		3,025	2,553	2,020	1,876	2,716	1,664	2,449	2,329

Lokalizacja czujników / Location of gauges

600

600

						Nerre	· · · · · /	C4				400 -		
V		V/V _{exp}	26	27	20	Naprę	zenie /	Stress 21	22	22	án lou		V, kN	
μN		-	20 MDo	Z/ MDo	Z0 MDo	29 MDo	30 MDo	31 MPo	32 MDo	33 MDo	MDo			
0		0.00	IVII a	NII a	NII a	IVII a	0	1vii a	NII a	IVII a	0	350 -		_
20		0,00	3	2	1	1	2	1	1	1	1			
40		0.11	4	4	1	1	2	2	1	1	2	200		
60		0.17	6	. 9	3	2	4	4	2	3	4	300 -		
80		0,23	8	13	5	3	4	5	3	3	5			
100		0,28	11	23	10	4	6	7	5	5	9	250 -		
120		0,34	16	78	17	6	9	15	8	7	19	200	A may be be a first and a first a firs	
140		0,40	22	139	25	7	11	23	11	10	31			
160		0,46	29	230	65	10	13	128	16	13	63	200 -		
180		0,51	32	279	131	11	14	191	20	39	90			
200		0,57	36	322	192	15	19	232	27	120	120			
220	p lr	0,63	37	364	228	61	31	280	72	183	157	150 -		-
220	K n	0,63	3/	359	228	100	35	282	106	186	158			
240	P k	0,00	41	383	240	100	57	312	113	214	186	400	Ĩ → 29 l l	
260	p	0.74	49	416	270	142	88	350	137	251	213	100 -		
260	k	0,74	53	421	273	151	101	359	143	261	220		× → 31 U	
260	k	0,74	56	420	273	154	106	361	145	263	222	50		
280	р	0,80	69	453	293	181	138	391	163	290	247			
280	k	0,80	77	459	298	192	153	401	170	299	256		stress MP	a
280	k	0,80	79	457	297	193	154	401	170	300	256	0 1		<u> </u>
300	р	0,85	112	504	322	228	182	437	193	331	289	(0 100 200 300 400 500	6
300	k	0,85	124	511	326	237	192	447	200	341	297			
300	ĸ	0,85	125	512	326	238	193	448	201	342	298	400 -		
320	p k	0,91		533	364	297	248	510	246	402	379	400	V, kN	
320	к	0,91	ka /	533	200	312	203	524	207	410	392			
335		0,94	linil Jge	533	400	320	200	533	201	422	401	350 -		
340		0,95	czı gaı	533	400	351	202	533	2/4	430	417		p.o.o.	
345		0,97	enie e of	533	424	402	367	533	330	502	455			
350		1 00	dze lure	533	529	424	393	533	349	520	489	300 -		
351		1 00	zko fai	533	533	427	396	533	352	522	493		00	
350		1.00	ns	533	533	428	398	533	353	523	494	050	po	
349		0.99		533	533	430	400	533	355	522	496	250 -	20	
		.,								-				
												200 -		
												200		
													D	
												150 -	Średnia/average Srednia/average Srednia/average	
													331	
												100 -		
												50		
												50 -		
												4	naprężenie, MP	'a
												0 <		d
												(0 100 200 300 400 500	6

Naprężenie stali na obwodzie / Stress of steel on the perimeter

Lokalizacja czujników / Location of gauges

Siła Load	Szerokość rozwarcia rys [mm] Width of cracks [mm]											
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6						
0												

Rysy – 180kN / Cracks pattern – 180kN

Siła Load	Szerokość rozwarcia rys [mm] Width of cracks [mm]											
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6						
0 140 180												

Rysy – 346kN / Cracks pattern – 346kN

Siła	Szerokość rozwarcia rys [mm] Width of cracks [mm]											
Load	1	2	width of c		~	6						
[kN]	nr I	nr 2	nr 3	nr 4	nr 5	nr 6						
[No. 1	No. 2	No. 3	No. 4	No. 5	No. 6						
0												
140												
180												
200	0,25	0,20										
220	0,40	0,25	0,50									
240	0,50	0,30	0,55									
300			0,75									
346												

P'-15-0,31

Data badania / Test date: 07.03.2013r.

Data betonowania / Concreting date: 16.10.2012r.

Wiek betonu płyty / Slab concrete age: 114 dni / days

Wiek betonu słupka / Column concrete age: -

Wytrzymałość betonu płyty / Strength of concrete slab: $f_{c,cube} =$ $f_{cm} = 37,3MPa (3 próbki / 3 specimens)$ $f_{sp} = 3,40MPa (3 próbki / 3 specimens)$ $E_c = 26,5GPa (3 próbki / 3 specimens)$

 $\label{eq:Wytrzymałość betonu słupka / Strength of concrete column: $f_{c,cube} = -$f_{cm} = -$$

Charakterystyka zbrojenia / Characteristics of the reinforcement: #8

 $\begin{array}{l} A_{s}=51,26mm^{2}\\ f_{y,h}=543,8MPa\\ f_{y,l}=521,9MPa\\ f_{ym}=532,9MPa\\ E_{s}=219,3GPa \end{array}$

Nośność eksperymentalna / Experimental capacity: $V_{exp} = 503 \text{kN}$

Zbrojenie modelu / Specimen's reinforcement

Odkształcenie betonu płyty bezpośrednio przy słupie – kierunek radialny Strain of concrete slab near to the column – radial direction

Ο

Ο

Odkształcenie betonu płyty na drugim obwodzie – kierunek radialny Strain of concrete slab on the second perimeter – radial direction

v		V/V		Odkszt	ałcenie	Strain	
v		v/v exp	3	6	9	12	śr./av.
kN		-	‰	‰	‰	‰	‰
0		0,00	0,000	0,000	0,000	0,000	0,000
20		0,04	-0,002	-0,005	-0,002	-0,005	-0,004
40		0,08	-0,005	-0,009	-0,003	-0,008	-0,006
60		0,12	-0,009	-0,014	-0,006	-0,013	-0,011
80		0,16	-0,011	-0,017	-0,008	-0,015	-0,013
100		0,20	-0,014	-0,019	-0,010	-0,018	-0,015
120		0,24	-0,019	-0,023	-0,013	-0,021	-0,019
140		0,28	-0,026	-0,028	-0,017	-0,025	-0,024
160		0,32	-0,035	-0,034	-0,023	-0,030	-0,031
180	р	0,36	-0,044	-0,041	-0,027	-0,034	-0,037
180	k	0,36	-0,043	-0,039	-0,027	-0,033	-0,036
200		0,40	-0,054	-0,049	-0,034	-0,041	-0,045
220		0,44	-0,071	-0,061	-0,045	-0,051	-0,057
240	р	0,48	-0,087	-0,072	-0,058	-0,059	-0,069
240	k	0,48	-0,089	-0,075	-0,058	-0,060	-0,071
260	р	0,52	-0,102	-0,088	-0,069	-0,067	-0,082
260	k	0,52	-0,101	-0,089	-0,070	-0,068	-0,082
280		0,56	-0,111	-0,100	-0,078	-0,073	-0,091
300	р	0.60	-0.122	-0.114	-0.084	-0.077	-0.099
300	k	0.60	-0.125	-0.116	-0.086	-0.077	-0.101
320		0.64	-0.136	-0.126	-0.092	-0.078	-0.108
340	p	0,68	-0 148	-0 135	-0.099	-0.085	-0 117
340	k	0.68	-0.148	-0.132	-0.100	-0.087	-0.117
360		0.72	-0.157	-0.134	-0.109	-0.098	-0.125
380	p	0.76	-0.163	-0.130	-0.116	-0.104	-0.128
380	k	0.76	-0.161	-0.124	-0.114	-0.103	-0.126
400		0.80	-0.166	-0.126	-0.122	-0.111	-0.131
420	p	0.83	-0 161	-0 119	-0 120	-0 107	-0 127
420	k	0.83	-0.157	-0.117	-0.119	-0.104	-0.124
460	p	0.91	-0.148	-0.116	-0.114	-0.090	-0.117
460	k	0.91	-0.141	-0.117	-0.110	-0.083	-0.113
467		0.93	-0 142	-0 117	-0 111	-0.083	-0 113
471		0.94	-0.142	-0.118	-0.111	-0.084	-0.114
474		0.94	-0 143	-0 119	-0 112	-0.084	-0 115
480		0.95	-0,135	-0,113	-0,107	-0,080	-0,109
485		0.96	-0.124	-0.106	-0.101	-0.069	-0.100
491		0.98	-0.124	-0.107	-0.103	-0.069	-0.101
495		0.98	-0,123	-0,108	-0,102	-0,070	-0,101
500		0,99	-0.119	-0.104	-0.095	-0.065	-0.096
503		1.00	-0.119	-0.102	-0.092	-0.062	-0.094
500		0,99	-0 115	-0 100	-0.084	-0.055	-0.089
497		0,99	-0 110	-0 094	-0.067	-0.045	-0 079
437		0,35	-0,110	-0,034	-0,007	-0,040	-0,073

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty bezpośrednio przy słupie – kierunek obwodowy Strain of concrete slab near to the column – circumferential direction

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty na drugim obwodzie – kierunek obwodowy Strain of concrete slab on the second perimeter – circumferential direction

v		X 7/ X 7	Odkształcenie			/ Strain	
v		v/v exp	14	16	18	20	śr./av.
kN		-	‰	‰	‰	‰	‰
0		0,00	0,000	0,000	0,000	0,000	0,000
20		0,04	-0,015	-0,009	-0,016	-0,011	-0,013
40		0,08	-0,033	-0,019	-0,034	-0,025	-0,028
60		0,12	-0,055	-0,032	-0,057	-0,044	-0,047
80		0,16	-0,071	-0,041	-0,075	-0,058	-0,061
100		0,20	-0,095	-0,054	-0,103	-0,077	-0,082
120		0,24	-0,118	-0,065	-0,128	-0,097	-0,102
140		0,28	-0,146	-0,080	-0,160	-0,119	-0,126
160		0,32	-0,181	-0,097	-0,201	-0,147	-0,157
180	р	0,36	-0,215	-0,113	-0,241	-0,173	-0,186
180	k	0.36	-0.220	-0.114	-0.248	-0.178	-0.190
200		0.40	-0.258	-0.130	-0.290	-0.209	-0.222
220		0.44	-0.315	-0.151	-0.349	-0.250	-0.266
240	p	0.48	-0.380	-0 174	-0 420	-0.301	-0.319
240	k	0.48	-0.392	-0 178	-0 431	-0.310	-0.328
260	p	0.52	-0.461	-0.204	-0.495	-0.366	-0.382
260	k	0.52	-0 472	-0 208	-0.506	-0.377	-0.391
280		0.56	-0.532	-0 238	-0.558	-0 431	-0 440
300	p	0,60	-0.609	-0 287	-0.645	-0.526	-0.517
300	k	0,60	-0.632	-0.312	-0 674	-0.564	-0.546
320		0.64	-0.676	-0.358	-0 730	-0.637	-0.600
340	n	0,69	-0 757	-0.469	-0 796	-0 736	-0.690
340	k	0,00	-0,757	-0,403	-0,730	-0,750	-0,030
360		0,00	-0.831	-0 552	-0.854	-0.817	-0 764
380	n	0,72	-0,001	-0,552	-0,004	-0.875	-0,704
380	k	0,70	-0,007	-0,013	-0,030	-0,896	-0,013
400	ĸ	0,10	-0.957	-0.692	-0.955	-0.947	-0.888
420	n	0,00	-1.008	-0 749	-0.995	-1 001	-0.938
420	k	0,00	-1,000	-0,745	-1 022	-1.036	-0,330
460	n	0,00	-1 163	-0.931	-1 119	-1 160	-1 093
460	k	0,01	-1 222	-1 008	-1 167	-1 225	-1 156
467	ĸ	0,31	-1,222	-1,000	-1,107	-1,220	-1,100
407		0,93	-1,237	-1,022	-1,179	-1 245	-1,109
471		0,94	1 251	1 032	1 1 20	1 252	1 1 9 1
474		0,94	1 312	1 060	1 210	1 206	1 222
400		0,95	1 4 2 4	-1,000	1 270	1 255	1 202
403		0,90	1 / 25	-1,119	1 278	1 366	1 302
491		0,90	1 466	1 1/0	1 205	1 303	1 3 26
490 500		0,90	1 530	1 197	1 334	1 451	1 379
503		1 00	-1,535	-1,107	-1 352	-1,431	-1,370
500		0.00	1,077	1 222	1 270	1 5 2 7	1 420
407		0,99	-1,020	1 207	-1,370	-1,527	-1,439
497		0,99	-1,720	-1,207	-1,435	-1,595	-1,509

Lokalizacja czujników / Location of gauges

Odkształcenie zbrojenia głównego Strain of main reinforcement

Lokalizacja czujników / Location of gauges

Ø

Θ

Naprężenie zbrojenia głównego Stress of main reinforcement

Г

v		\mathbf{V} / \mathbf{V}		Napro	ężenie / :	Stress	
v		v/v exp	22	23	24	25	śr./av.
kN		-	MPa	MPa	MPa	MPa	MPa
0		0,00	0	0	0	0	0
20		0,04	3	3	4	3	3
40		0,08	5	8	8	6	7
60		0,12	8	20	17	10	14
80		0,16	10	29	25	14	20
100		0,20	14	46	41	20	30
120		0,24	17	61	60	32	43
140		0,28	22	79	77	46	56
160		0,32	32	95	100	69	74
180	р	0,36	50	109	123	92	93
180	k	0,36	57	112	128	99	99
200		0,40	79	133	155	122	122
220		0,44	110	157	193	149	152
240	p	0,48	151	190	249	185	194
240	ĸ	0,48	161	191	264	191	201
260	p	0,52	199	201	318	232	238
260	K	0,52	208	194	329	245	244
280		0,56	243	227	372	295	284
300	p	0,60	296	310	416	375	349
300	K	0,60	320	313	448	406	372
320		0,64	366	362	492	466	421
340	p	0,68	429	412	533	533	480
340	ĸ	0,68	443	407	533	533	490
360		0,72	483	451	533	533	532
380	p 1	0,76	523	404	533	533	533
360	ĸ	0,70	531	392	533	533	533
400	n	0,00	533	372	533	533	533
420	P V	0,03	533	359	533	533	533
420	n	0,03	533	142	533	000	438
460	k	0,01	533	-59	533	nge	361
467	ĸ	0,31	533	68	533	ga	350
407		0,93	500	-00	500	e of	355
471		0,94	500	-07	533	Inre	300
4/4		0,94	533	-07	533	fai	257
400		0,95	500	-40	533	(a /	337
405		0,96	533	-57	533	lini	337
491		0,98	533	-51	533	czl	340
495		0,98	533	-31	533	je	346
500		0,99	533	12	533	zer	356
503		1,00	533	5	533	poy	354
500		0,99	533	-6	533	Izsi	353
497		0,99	533	-35	533		343

Lokalizacja czujników / Location of gauges

Odkształcenie stali na obwodzie / Strain of steel on the perimeter

V		V/V		Odkształcenie / Strain							
v		v / v exp	26	27	28	29	30	31	32	33	śr./av.
kN		-	‰	‰	‰	‰	‰	‰	‰	‰	‰
0		0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
20		0,04	0,003	0,002	0,005	0,003	0,003	0,002	0,003	0,007	0,004
40		0,08	0,006	0,006	0,008	0,007	0,006	0,005	0,006	0,015	0,007
60		0,12	0,009	0,010	0,013	0,010	0,009	0,009	0,009	0,026	0,012
80		0,16	0,012	0,012	0,017	0,013	0,011	0,012	0,013	0,035	0,016
100		0,20	0,016	0,017	0,025	0,016	0,015	0,017	0,018	0,052	0,022
120		0,24	0,019	0,023	0,032	0,020	0,019	0,023	0,022	0,070	0,029
140		0,28	0,022	0,028	0,044	0,024	0,022	0,029	0,030	0,095	0,037
160		0,32	0,026	0,037	0,063	0,029	0,027	0,039	0,040	0,137	0,050
180	р	0,36	0,030	0,042	0,081	0,033	0,033	0,050	0,053	0,166	0,061
180	k	0.36	0.029	0.044	0.088	0.034	0.037	0.055	0.059	0.189	0.067
200		0.40	0.033	0.055	0.109	0.042	0.040	0.065	0.078	0.273	0.087
220		0.44	0.036	0.071	0.145	0.051	0.046	0.082	0.114	0.412	0.120
240	p	0.48	0.042	0.093	0.181	0.072	0.056	0.109	0.175	0.633	0.170
240	k	0.48	0.043	0.100	0.193	0.078	0.059	0.118	0.196	0.672	0.182
260	p	0.52	0.048	0 129	0 222	0 107	0.067	0 139	0 261	0.850	0 228
260	k	0.52	0.046	0.140	0.231	0.117	0.070	0.148	0.276	0.853	0.235
280		0.56	0.052	0 185	0 256	0 160	0.077	0 171	0.341	0,963	0 276
300	p	0,60	0.059	0,298	0 288	0 415	0.087	0 223	0 455	1 181	0.376
300	k	0,60	0.062	0,364	0.312	0.518	0 101	0 277	0,503	1 240	0 422
320		0.64	0.070	0.468	0 344	0.664	0 121	0,266	0.551	1 334	0,490
340	n	0,04	0,070	0,400	0,044	0,004	0,121	0,500	0,551	1,004	0,430
340	P V	0,00	0,002	0,007	0,402	0,000	0,172	0,005	0,001	1,000	0,000
360	ĸ	0,00	0,000	0,724	0,440	1 003	0,214	0,000	0,005	1,050	0,070
380	n	0,72	0,123	0,007	0,393	1,003	0,270	1 000	0,723	2 040	1 026
380	P V	0,70	0,207	0,909	0,730	1,117	0,301	1,000	0,795	2,040	1,020
400	ĸ	0,70	0,200	1,016	0,703	1,100	0,422	1,127	0,013	2,003	1,002
400	n	0,00	0,307	1,010	0,039	1,223	0,400	1,272	0,070	2,207	1,175
420	P V	0,03	0,400	1,117	1 0/0	1,342	0,550	1,439	0,950	2,350	1,300
420	n	0,03	0,471	1,139	1,045	1,500	0,500	1,000	1 1 0 0	2,440	1,575
400	P Ir	0,91	0,704	1,309	1,314	1,300	0,070	1,932	1,100	2,002	1,004
460	к	0,91	0,639	1,470	1,437	1,700	0,696	2,104	1,294	3,022	1,795
407		0,93	0,652	1,400	1,449	1,714	0,699	2,125	1,307	3,053	1,012
471		0,94	0,854	1,497	1,454	1,720	0,703	2,138	1,312	3,066	1,821
474		0,94	0,007	1,512	1,407	1,720	0,707	2,157	1,321	3,064	1,000
480		0,95	1,001	1,623	1,555	1,831	0,761	2,276	1,380	3,117	1,935
400		0,90	1,170	1,701	1,090	1,990	0,775	2,403	1,444	3,004	2,040
491		0,96	1,100	1,717	1,715	2,012	0,764	2,431	1,455	3,117	2,059
495		0,98	1,206	1,740	1,785	2,052	0,802	2,485	1,473	3,114	2,094
500		0,99	1,296	1,771	1,913	2,038	0,842	2,567	1,513	3,115	2,151
503		1,00	1,340	1,790	1,979	2,037	0,866	2,603	1,551	3,128	2,185
500		0,99	1,423	1,804	2,063	2,034	0,912	2,630	1,708	3,125	2,243
497		0,99	1,566	1,830	2,162	2,039	0,961	2,671	1,822	3,139	2,313

Lokalizacja czujników / Location of gauges

						Napre	żenie /	Stress				500 -	VkN			° ° č			
V		V/V_{exp}	26	27	28	29	30	31	32	33	śr./av.		V, KI				-	1	
kN		-	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa			$\boldsymbol{\Lambda}$					
0		0,00	0	0	0	0	0	0	0	0	0		ہم	المع ا	, 1 0 pt 00			\rightarrow	
20		0,04	1	0	1	1	1	0	1	1	1	400 -	1 1	/	A PA				
40		0,08	1	1	2	1	1	1	1	3	2		p-0 p-0						
60		0,12	2	2	3	2	2	2	2	6	3		Ĵ./		1 ^{or}		ſ		
80		0,16	3	3	4	3	2	3	3	7	3		II L			••			
100		0,20	3	4	5	3	3	4	4	11	5	300 -	Ŭ.Z.						
120		0,24	4	5	/	4	4	5	5	15	0	000							
140		0,20	5	8	9 13	6	5	8	9	20	0 11		╡╡┥╡	×	1	-0-	- 26		
180	p	0.36	6	9	17	7	7	11	11	35	13		₩ <i>#</i> #	**			20		
180	k	0.36	6	9	19	7	8	12	13	40	14		×	ſ			- 20		_
200		0,40	7	12	23	9	9	14	17	58	19	200 -	*				- 30		<u>е</u> —
220		0,44	8	15	31	11	10	17	24	88	25		17 /				- 31		38
240	р	0,48	9	20	39	15	12	23	37	135	36		T/				- 32		53
240	k	0,48	9	21	41	17	13	25	42	143	39		I/			-	- 33		E E
260	р	0,52	10	27	47	23	14	30	56	181	49	100 -	¥/						б
260	k	0,52	10	30	49	25	15	32	59	182	50		¥						
280		0,56	11	39	55	34	16	36	73	205	59		¥						
300	p k	0,60	13	64	61	88	19	48	97	252	80		ŧ				na	prężen	ie, MPa
300	K	0,60	13	78	55	110	22	59	107	264	90							stres	s, MPa
320	n	0,64	15	142	13	141	20	130	134	204 340	104	0 +	•		-				
340	Р k	0,00	19	154	94	196	46	142	134	360	144	(0 10	00 2	00 3	00 4	00	500	600
360	ĸ	0,00	26	172	126	214	59	172	154	396	165								
380	р	0.76	44	194	157	238	81	213	169	435	219	500 -		1	1		00000		
380	ĥ	0,76	57	201	167	247	90	240	174	440	231		V, KN			g g	00		
400		0,80	65	217	183	261	99	271	185	470	250								
420	р	0,83	87	238	208	286	117	307	202	502	278								
420	k	0,83	100	247	224	295	125	326	212	521	293	400 -							
460	p	0,91	150	296	280	338	143	412	253	533	355				00				
460	ĸ	0,91	179	315	306	362	148	448	276	533	383			0	ſ				
467		0,93	182	317	309	305	149	453	279	533	380			مم					
471		0,94	102	322	310	368	150	400	200	533	300 301		,	Ø					
480		0,95	213	346	331	390	162	485	202	533	412	300 -	200					-	
485		0,96	251	362	362	426	165	512	308	533	435								
491		0,98	252	366	365	429	167	518	310	533	439								
495		0,98	257	371	380	437	171	530	314	533	446								
500		0,99	276	377	408	434	179	533	322	533	458	200 -	4		średr	nia/average –			a
503		1,00	286	381	422	434	185	533	331	533	466		¢						ž.
500		0,99	303	384	440	433	194	533	364	533	478		9						133
497		0,99	334	390	461	435	205	533	388	533	493		9						ii
												400	Î						b
												100 -	l .						
													Į						
													,				na	nreżen	ie. MPa
													ł				iia	stres	s, MPa
												0 4	\$						
												(D 10	00 2	00 3	00 4	00	500	600

Naprężenie stali na obwodzie / Stress of steel on the perimeter

Lokalizacja czujników / Location of gauges

Siła Load		Szerokość rozwarcia rys [mm] Width of cracks [mm]											
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6							
0													

Rysy – 260kN / Cracks pattern – 260kN

Siła Load		Szerokość rozwarcia rys [mm]										
[kN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6						
0 100 160 180 200	INO. 1	INO. 2	NO. 3	INO. 4	INO. 3	<u>NO. 0</u>						
220 240 260	0,10 0,10 0,10	0,15 0,20										

Siła		Szerokość rozwarcia rys [mm]										
Load		Width of cracks [mm] nr 1 nr 2 nr 3 nr 4 nr 5 nr 6										
[LN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6						
[KIN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6						
0												
100												
160												
180												
200												
220	0,10											
240	0,10	0,15										
260	0,10	0,20										
300	0,20	0,30	0,15									
340	0,20	0,40	0,20									
380	0,20	0,45	0,35									
420	0,25	0,50	0,40	0,50								
500												

Data badania / Test date: 12.02.2013r.

Data betonowania / Concreting date: 16.10.2012r.

Wiek betonu płyty / Slab concrete age: 119 dni / days

Wiek betonu słupka / Column concrete age:

Wytrzymałość betonu płyty / Strength of concrete slab: $f_{c,cube} =$ $f_{cm} = 37,0MPa (3 \text{ próbli / 3 specimens})$ $f_{sp} = 3,10MPa (3 \text{ próbli / 3 specimens})$ $E_c = 27,3GPa (3 \text{ próbli / 3 specimens})$

Wytrzymałość betonu słupka / Strength of concrete column: $f_{c,cube} = f_{cm} = -$

Charakterystyka zbrojenia / Characteristics of the reinforcement: #10

 $\begin{array}{l} A_{s} = 80,73 mm^{2} \\ f_{y,h} = 538,8 MPa \\ f_{y,l} = 528,9 MPa \\ f_{ym} = 533,9 MPa \\ E_{s} = 206,2 GPa \end{array}$

Nośność eksperymentalna / Experimental capacity: $V_{exp} = 824 kN$

Zbrojenie modelu / Specimen's reinforcement

Odkształcenie betonu płyty bezpośrednio przy słupie – kierunek radialny Strain of concrete slab near to the column – radial direction

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty na drugim obwodzie – kierunek radialny Strain of concrete slab on the second perimeter – radial direction

v		V/V	Odkształcenie / Strain					
v		v/v exp	3	6	9	12	śr./av.	
kN		-	‰	‰	‰	‰	‰	
4		0,00	0,000	0,000	0,000	0,000	0,000	
40		0,05	-0,006	-0,005	-0,002	-0,001	-0,004	
80		0,10	-0,010	-0,008	-0,003	-0,002	-0,006	
120		0,15	-0,017	-0,014	-0,004	-0,002	-0,009	
160		0,19	-0,026	-0,021	-0,006	-0,004	-0,014	
200		0,24	-0,037	-0,029	-0,006	-0,004	-0,019	
240		0,29	-0,050	-0,038	-0,007	-0,004	-0,025	
280	р	0,34	-0,072	-0,053	-0,005	-0,004	-0,034	
280	k	0,34	-0,075	-0,055	-0,005	-0,004	-0,035	
320		0,39	-0,090	-0,066	-0,006	-0,005	-0,042	
360	р	0,44	-0,112	-0,085	-0,007	-0,002	-0,052	
360	k	0,44	-0,117	-0,090	-0,008	-0,003	-0,055	
400	р	0,49	-0,135	-0,107	-0,009	0,000	-0,063	
400	k	0,49	-0,136	-0,107	-0,009	0,000	-0,063	
440	р	0,53	-0,151	-0,120	-0,015	0,010	-0,069	
440	k	0,53	-0,151	-0,120	-0,014	0,012	-0,068	
480	р	0,58	-0,160	-0,130	-0,015	0,011	-0,074	
480	k	0,58	-0,162	-0,133	-0,013	0,012	-0,074	
520	р	0,63	-0,169	-0,143	-0,011	0,010	-0,078	
520	k	0,63	-0,168	-0,145	-0,008	0,012	-0,077	
560	р	0,68	-0,171	-0,150	-0,003	0,014	-0,078	
560	k	0,68	-0,170	-0,148	-0,002	0,014	-0,077	
600	р	0,73	-0,173	-0,150	-0,003	0,014	-0,078	
600	k	0,73	-0,173	-0,150	-0,004	0,014	-0,078	
640	р	0,78	-0,174	-0,150	-0,003	0,016	-0,078	
640	k	0,78	-0,173	-0,147	-0,002	0,018	-0,076	
680	р	0,83	-0,173	-0,147	0,001	0,021	-0,075	
680	k	0,83	-0,172	-0,146	0,004	0,024	-0,073	
720	p	0,87	-0,170	-0,140	0,011	0,030	-0,067	
720	k	0,87	-0,169	-0,136	0,017	0,035	-0,063	
740		0,90	-0,169	-0,136	0,017	0,036	-0,063	
751		0,91	-0,167	-0,131	0,023	0,050	-0,056	
760		0,92	-0,167	-0,132	0,023	0,053	-0,056	
764		0,93	-0,168	-0,132	0,024	0,054	-0,056	
771		0,94	-0,167	-0,126	0,034	0,067	-0,048	
782		0,95	-0,167	-0,126	0,035	0,069	-0,047	
791		0,96	-0,163	-0,118	0,048	0,084	-0,037	
800		0,97	-0,164	-0,117	0,049	0,086	-0,037	
802		0,97	-0,164	-0,115	0,052	0,089	-0,035	
010		0,96	-0,105	-0,113	0,050	0,097	-0,031	
820		1,00	-0,165	-0,111	0,057	0,099	-0,030	
823		1,00	-0,166	-0,111	0,060	0,105	-0,028	
024		1,00	-0,108	-0,112	0,002	0,108	-0,028	
024 820		1,00	-0,170	-0,112	0,004	0,108	-0,028	
020		1,00	-0,171	-0,112	0,000	0,108	-0,027	
702		0,90	-0,169	-0,130	0,078	0,135	-0,027	
102		0,00	-0,395	-0,240	-0,005	-0,060	-0,193	

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty bezpośrednio przy słupie – kierunek obwodowy Strain of concrete slab near to the column – circumferential direction

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty na drugim obwodzie – kierunek obwodowy Strain of concrete slab on the second perimeter – circumferential direction

v		\mathbf{V}/\mathbf{V}	Odkształcenie / Strain					
v		v / v exp	14	16	18	20	śr./av.	
kN		-	‰	‰	‰	‰	‰	
4		0,00	0,000	0,000	0,000	0,000	0,000	
40		0,05	-0,020	-0,026	-0,018	-0,017	-0,020	
80		0,10	-0,035	-0,045	-0,030	-0,032	-0,036	
120		0,15	-0,059	-0,074	-0,049	-0,051	-0,058	
160		0,19	-0,081	-0,099	-0,067	-0,069	-0,079	
200		0,24	-0,112	-0,134	-0,087	-0,091	-0,106	
240		0,29	-0,150	-0,171	-0,110	-0,116	-0,137	
280	р	0,34	-0,207	-0,231	-0,142	-0,146	-0,182	
280	k	0,34	-0,213	-0,237	-0,145	-0,149	-0,186	
320		0,39	-0,253	-0,279	-0,173	-0,173	-0,220	
360	р	0,44	-0,315	-0,357	-0,211	-0,209	-0,273	
360	k	0,44	-0,324	-0,378	-0,220	-0,216	-0,285	
400	р	0,49	-0,371	-0,476	-0,254	-0,251	-0,338	
400	k	0,49	-0,373	-0,483	-0,256	-0,254	-0,342	
440	р	0,53	-0,423	-0,574	-0,292	-0,335	-0,406	
440	k	0,53	-0,434	-0,600	-0,304	-0,370	-0,427	
480	р	0,58	-0,474	-0,665	-0,343	-0,455	-0,484	
480	k	0,58	-0,488	-0,689	-0,358	-0,487	-0,506	
520	р	0,63	-0,552	-0,774	-0,420	-0,567	-0,578	
520	k	0,63	-0,575	-0,798	-0,454	-0,593	-0,605	
560	р	0,68	-0,653	-0,868	-0,563	-0,663	-0,687	
560	k	0,68	-0,660	-0,875	-0,575	-0,673	-0,696	
600	р	0,73	-0,731	-0,942	-0,661	-0,736	-0,768	
600	k	0,73	-0,756	-0,963	-0,693	-0,757	-0,792	
640	р	0,78	-0,796	-1,000	-0,739	-0,792	-0,832	
640	k	0,78	-0,819	-1,022	-0,766	-0,815	-0,856	
680	р	0,83	-0,885	-1,084	-0,841	-0,881	-0,923	
680	k	0,83	-0,909	-1,108	-0,868	-0,907	-0,948	
720	р	0,87	-0,964	-1,162	-0,923	-0,960	-1,002	
720	k	0,87	-0,999	-1,197	-0,956	-0,996	-1,037	
740		0,90	-1,017	-1,215	-0,974	-1,014	-1,055	
751		0,91	-1,056	-1,246	-1,006	-1,054	-1,091	
760		0,92	-1,071	-1,257	-1,018	-1,068	-1,104	
764		0,93	-1,077	-1,262	-1,023	-1,073	-1,109	
771		0,94	-1,113	-1,291	-1,051	-1,110	-1,141	
782		0,95	-1,127	-1,303	-1,063	-1,124	-1,154	
791		0,96	-1,167	-1,341	-1,098	-1,168	-1,194	
800		0,97	-1,179	-1,352	-1,110	-1,179	-1,205	
802		0,97	-1,188	-1,360	-1,117	-1,189	-1,214	
010		0,96	-1,210	-1,307	-1,130	-1,213	-1,237	
820		1,00	-1,224	-1,399	-1,150	-1,225	-1,250	
823 824		1,00	-1,233	-1,409	-1,158	-1,236	-1,259	
024		1,00	-1,241	-1,421	-1,104	-1,243	-1,207	
024 820		1,00	-1,249	-1,430	-1,109	-1,244	-1,273	
02U 010		1,00	-1,250	-1,400	-1,170	-1,244 1.005	1 247	
702		0,90	-1,204	-1,427	-1,070	-1,235	-1,247	
102		0,05	-1,043	-0,990	-0,500	-1,030	-0,534	

Lokalizacja czujników / Location of gauges

Odkształcenie zbrojenia głównego Strain of main reinforcement

Lokalizacja czujników / Location of gauges

Naprężenie zbrojenia głównego Stress of main reinforcement

V		V/V _{exp}	Naprężenie / Stress				
		cap	22	23	24	25	śr./av.
kN		-	MPa	MPa	MPa	MPa	MPa
4		0,00	0	-1	0	0	0
40		0,05	3	3	3	4	3
80		0,10	1	15	6	8	8
120		0.15	6	46	12	18	20
160		0.19	15	75	19	34	36
200		0.24	30	100	37	66	58
240		0.20	53	136	57	100	86
280	n	0,23	00 00	103	87	138	127
200	P V	0,34	05	108	07	160	127
200	ĸ	0,34	117	224	112	100	164
320	-	0,39	117	234	113	190	104
360	p 1-	0,44	162	316	146	241	216
360	к	0,44	172	341	160	246	230
400	p	0,49	214	403	203	316	284
400	k	0,49	217	402	206	348	293
440	р	0,53	267	483	246	405	350
440	k	0,53	282	512	257	414	366
480	р	0,58	324	534	289	450	407
480	k	0,58	337	534	297	458	420
520	р	0,63	389	534	334	511	470
520	k	0,63	409	534	345	522	485
560	р	0,68	468	534	384	534	534
560	ĥ	0.68	470	534	387	534	534
600	p	0.73	518	534	429	534	534
600	k	0.73	529	534	439	534	534
640	n	0.78	534	534	460	534	534
640	k	0.78	534	534	400	534	534
680	n	0,70	534	534	405	534	534
600	P V	0,00	524	524	500	524	524
720	n	0,03	534	534	500	534	534
720	P k	0,07	534	534	409	534	534
720	ĸ	0,07	504	534	490	534	534
740		0,90	534	534	505	534	534
751		0,91	534	534	498	534	534
760		0,92	534	534	499	534	534
764		0,93	534	534	499	534	534
771		0,94	262	534	500	534	534
782		0,95	345	534	501	534	534
791		0,96	240	534	504	508	527
800		0,97	248	534	503	527	534
802		0,97	229	534	500	509	527
810		0,98	197	534	500	497	534
820		1,00	187	534	501	512	534
823		1,00	179	534	499	511	534
824		1,00	171	534	497	504	534
824		1,00	167	534	495	496	534
820		1,00	165	534	494	492	534
810		0.98	161	534	462	457	534
702		0.85	166	534	383	469	534
		-,			2.50		

Lokalizacja czujników / Location of gauges

Odkształcenie stali na obwodzie / Strain of steel on the perimeter

V		V/V			(Odkszta	ałcenie	/ Strain	l		
v		v / v exp	26	27	28	29	30	31	32	33	śr./av.
kN		-	‰	‰	‰	‰	‰	‰	‰	‰	‰
4		0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
40		0,05	0,001	0,004	0,003	0,003	0,004	0,004	0,002	0,002	0,003
80		0,10	0,006	0,007	0,006	0,007	0,007	0,008	0,004	0,005	0,006
120		0,15	0,007	0,012	0,009	0,010	0,010	0,011	0,007	0,008	0,009
160		0,19	0,012	0,015	0,013	0,015	0,013	0,016	0,009	0,010	0,013
200		0,24	0,019	0,021	0,019	0,022	0,018	0,022	0,015	0,015	0,019
240		0,29	0,027	0,028	0,027	0,029	0,025	0,029	0,022	0,021	0,026
280	p	0,34	0,041	0,039	0,051	0,036	0,039	0,040	0,038	0,031	0,039
280	k	0,34	0,045	0,039	0,056	0,036	0,041	0,041	0,042	0,031	0,041
320		0,39	0,059	0,049	0,078	0,045	0,053	0,051	0,053	0,040	0,054
360	p	0,44	0,093	0,058	0,161	0,055	0,078	0,073	0,076	0,055	0,081
360	ĸ	0,44	0,109	0,060	0,187	0,059	0,089	0,086	0,084	0,058	0,092
400	p	0,49	0,167	0,077	0,298	0,074	0,126	0,207	0,103	0,078	0,141
400	ĸ	0,49	0,173	0,081	0,307	0,076	0,131	0,226	0,108	0,081	0,148
440	p	0,53	0,202	0,133	0,348	0,096	0,164	0,478	0,124	0,114	0,207
440	K	0,53	0,223	0,166	0,369	0,110	0,189	0,551	0,139	0,133	0,235
480	p lr	0,58	0,253	0,241	0,417	0,147	0,245	0,688	0,167	0,175	0,292
480	ĸ	0,58	0,274	0,289	0,438	0,177	0,278	0,743	0,190	0,204	0,324
520	p k	0,63	0,317	0,403	0,491	0,374	0,331	0,867	0,224	0,318	0,416
520	ĸ	0,63	0,336	0,450	0,507	0,519	0,364	0,915	0,251	0,369	0,467
560	p k	0,68	0,385	0,592	0,546	1,015	0,442	1,036	0,302	0,622	0,618
500	K n	0,00	0,407	0,014	0,555	1,051	0,462	1,055	0,317	0,043	0,030
600	р v	0,73	0,502	0,727	0,025	1,202	0,542	1,109	0,370	0,701	0,744
640	n	0,73	0,536	0,777	0,055	1,320	0,577	1,212	0,390	0,000	0,760
640	P V	0,70	0,570	0,044	0,091	1,427	0,010	1,272	0,425	0,005	0,040
680	n	0,70	0,003	1 103	0,720	1,490	0,031	1,314	0,432	1 013	0,001
680	P k	0,00	0,073	1,103	0,700	1,052	0,744	1 481	0,510	1,015	1 045
720	n	0.87	0,766	1,104	0.872	1,707	0.865	1,581	0,599	1 158	1 148
720	k	0.87	0,805	1,569	0,910	2 040	0,000	1,601	0,636	1 229	1 2 1 9
740		0.90	0,819	1,603	0.921	2 073	0.937	1,666	0.648	1 250	1 240
751		0,00	0,859	1,000	0.962	2 198	1 005	1,000	0,648	1,200	1,240
760		0.92	0,871	1,870	0.976	2 234	1 019	1 765	0,699	1,368	1,350
764		0.93	0,876	1,896	0,981	2 250	1,010	1,700	0,000	1,000	1,000
771		0,94	0,927	2,074	1,031	2,367	1,106	1,847	0,758	1,464	1,447
782		0,95	0,939	2,126	1,048	2,411	1,128	1,874	0,771	1,493	1,474
791		0,96	1,012	2,299	1,118	2,549	1,242	1,976	0,846	1,601	1,580
800		0,97	1,027	2,346	1,135	2,593	1,263	2,001	0,859	1,629	1,607
802		0,97	1,049	2,398	1,157	2,637	1,293	2,032	0,878	1,662	1,638
810		0,98	1,095	2,479	1,199	2,716	1,353	2,090	0,927	1,726	1,698
820		1,00	1,109	2,531	1,215	2,760	1,375	2,116	0,943	1,755	1,726
823		1,00	1,128	2,631	1,236	2,800	1,402	2,143	0,965	1,787	1,762
824		1,00	1,145	2,703	1,256	2,835	1,437	2,173	0,996	1,817	1,795
824		1,00	1,163	2,764	1,274	2,867	1,464	2,199	1,019	1,843	1,824
820		1,00	1,166	2,768	1,280	2,882	1,473	2,209	1,028	1,852	1,832
810		0,98	1,207	2,871	1,305	2,928	1,543	2,261	1,073	1,942	1,891
702		0,85	1,350	3,551	1,798	3,153	2,572	2,287	1,509	2,373	2,324

Lokalizacja czujników / Location of gauges
P-25-0,27

						Napre	żenie /	Stress				900	V. kN
V		V/V_{exp}	26	27	28	29	30	31	32	33	śr./av.		
kN		-	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	800	
4		0,00	0	0	0	0	0	0	0	0	0		a solution of the solution of
40		0,05	0	1	1	1	1	1	0	0	1	700	
80		0,10	1	1	1	1	1	2	1	1	1	100	
120		0,15	1	2	2	2	2	2	1	2	2		
160		0,19	2	3	3	3	3	3	2	2	3	600	
200		0,24	4	4	4	5	4	5	3	3	4		
240	n	0,29	0	9	11	7		0	5 9	4	2	500	
280	k	0,34	9	8	12	7	8	8	9	6	9		
320		0.39	12	10	16	. 9	11	11	11	8	11		
360	р	0,44	19	12	33	11	16	15	16	11	17	400	
360	k	0,44	22	12	39	12	18	18	17	12	19		
400	р	0,49	34	16	61	15	26	43	21	16	29	300	
400	k	0,49	36	17	63	16	27	47	22	17	30		
440	р	0,53	42	27	72	20	34	99	26	24	43		→-29
440	k	0,53	46	34	76	23	39	114	29	27	48	200	30 b
480	p	0,58	52	50	86	30	51	142	34	36	60		
480	ĸ	0,58	56	60	90	36	57	153	39	42	67	100	
520	р Ъ	0,63	00 70	03	101	107	00 75	1/9	40	00 80	00		
560	n	0,03	70	122	103	200	01	214	62	128	127		stress, MPa
560	k	0.68	84	127	114	203	95	217	65	133	132	0	
600	p	0,73	104	150	129	258	112	241	76	157	153		0 100 200 300 400 500 600
600	k	0,73	111	160	135	273	119	250	82	166	162		
640	р	0,78	119	174	142	294	127	262	88	178	173	900	
640	k	0,78	124	186	148	309	134	271	93	187	182		V, KN
680	р	0,83	139	227	162	349	153	295	107	209	205	800	
680	k	0,83	146	246	168	364	163	305	113	218	215		
720	p	0,87	158	291	180	399	178	326	124	239	237		
720	K	0,87	100	324	188	421	190	339	131	253	251	700	
740		0,90	109	331	190	427	193	344	134	258	250 273		80
760		0,91	180	386	201	400	207	364	142	282	273	600	
764		0,93	181	391	202	464	211	366	145	284	281		
771		0,94	191	428	213	488	228	381	156	302	298	500	
782		0,95	194	438	216	497	233	386	159	308	304	500	
791		0,96	209	474	231	526	256	407	174	330	326		po po
800		0,97	212	484	234	534	260	413	177	336	331	400	
802		0,97	216	494	239	534	267	419	181	343	338		¢
810		0,98	226	511	247	534	279	431	191	356	350	300	Średnja/average
820		1,00	229	522	251	534	284	436	194	362	356	500	
823 824		1,00	233	534	255	534	289	442	199	308	303		
824		1,00	230	534	209	534	290	440 453	205	380	376	200	∦ <u> </u>
820		1.00	240	534	264	534	304	455	212	382	378		
810		0,98	249	534	269	534	318	466	221	400	390	100	
702		0,85	278	534	371	534	530	472	311	489	479	100	napreżenie. MPa
												-	stress, MPa
												0	
	1												U 100 200 300 400 500 600

Naprężenie stali na obwodzie / Stress of steel on the perimeter

Lokalizacja czujników / Location of gauges

P-25-0,27

Siła Load		Szerokość rozwarcia rys [mm] Width of cracks [mm]									
[kN]	nr 1 No 1	nr 2 No 2	nr 3 No 3	nr 4 No 4	nr 5 No 5	nr 6 No 6					
0	11011	110.2	1101.5	1101.1	1101.0	1101.0					

Rysy – 400kN / Cracks pattern – 400kN

Siła		Sze	rokość rozw	arcia rys [r	nm]	
Load			Width of cr	racks [mm]	-	
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6
0 80 160 240 280						
320 400	0,25					

Rysy – 820kN / Cracks pattern – 820kN

Siła		Szerokość rozwarcia rys [mm]									
Load			Width of c	racks [mm]							
[LN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6					
[KIN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6					
0											
80											
160											
240											
280											
320											
400	0,25										
440	0,35	0,20									
480	0,50	0,25	0,15								
520	0,55	0,30	0,20	0,45							
560	0,60	0,30	0,20	0,45							
600	0,70	0,40	0,20	0,50							
660	0,85	0,45	0,20	0,45							
820											

P-25-0,27

Data badania / Test date: 14.02.2013r.

Data betonowania / Concreting date: 16.10.2012r.

Wiek betonu płyty / Slab concrete age: 121 dni / days

Wiek betonu słupka / Column concrete age:

Wytrzymałość betonu płyty / Strength of concrete slab: $f_{c,cube} =$ $f_{cm} = 36,0MPa (3 próbki / 3 specimens)$ $f_{sp} = 3,10MPa (3 próbki / 3 specimens)$ $E_c = 27,1GPa (3 próbki / 3 specimens)$

Wytrzymałość betonu słupka / Strength of concrete column: $f_{c,cube} = f_{cm} = -$

Charakterystyka zbrojenia / Characteristics of the reinforcement: #10

 $\begin{array}{l} A_{s}=80,73\,mm^{2}\\ f_{y,h}=538,8MPa\\ f_{y,1}=528,9MPa\\ f_{ym}=533,9MPa\\ E_{s}=206,2GPa \end{array}$

Nośność eksperymentalna / Experimental capacity: $V_{exp} = 950$ kN

Zbrojenie modelu / Specimen's reinforcement

Odkształcenie betonu płyty bezpośrednio przy słupie – kierunek radialny Strain of concrete slab near to the column – radial direction

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty na drugim obwodzie – kierunek radialny Strain of concrete slab on the second perimeter – radial direction

v		W/W		Odkszt	ałcenie /	/ Strain	
v		v / v exp	3	6	9	12	śr./av.
kN		-	‰	‰	‰	‰	‰
4	р	0,00	0,000	0,000	0,000	0,000	0,000
4	k	0,00	0,000	0,000	0,000	0,000	0,000
40	р	0,04	0,002	0,001	0,002	-0,002	0,001
40	k	0,04	0,002	0,000	0,002	-0,003	0,000
80		0,08	0,002	0,002	0,004	-0,004	0,001
120		0,13	0,004	0,004	0,006	-0,005	0,002
200		0,21	0,005	0,008	0,006	-0,009	0,003
280		0,29	0,006	0,012	0,002	-0,022	0,000
320		0,34	0,008	0,014	-0,003	-0,032	-0,003
400	р	0,42	0,013	0,019	-0,027	-0,063	-0,015
400	k	0.42	0.012	0.017	-0.032	-0.069	-0.018
480	p	0.51	0.020	0.021	-0.062	-0.105	-0.032
480	k	0.51	0.022	0.021	-0.061	-0.114	-0.033
560	p	0.59	0.028	0.028	-0.068	-0 154	-0.042
560	k	0,59	0.034	0.034	-0.065	-0 155	-0.038
640	n	0.67	0.033	0.036	-0.085	-0 188	-0.051
640	k	0.67	0.031	0.037	-0.089	-0 195	-0.054
720	n	0,07	0.023	0,007	-0 108	-0 220	-0.068
720	k	0,76	0.024	0,000	_0 100	-0 220	-0.068
800	n	0,70	0,024	0,032	-0,103	-0,220	-0,000
800	P V	0,04	0,020	0,001	0,106	0,220	0,072
840	n	0,04	0,020	0,033	-0,100	-0,220	-0,008
040	P k	0,00	0,027	0,032	-0,105	-0,231	-0,069
040	n	0,00	0,029	0,034	-0,103	-0,230	-0,008
000	P k	0,93	0,033	0,035	-0,096	-0,230	-0,065
000	ĸ	0,93	0,037	0,040	-0,069	-0,215	-0,057
920	p 1	0,97	0,030	0,040	-0,087	-0,210	-0,055
920	к	0,97	0,040	0,046	-0,077	-0,196	-0,047
919		0,97	0,039	0,048	-0,077	-0,196	-0,047
931		0,98	0,038	0,048	-0,076	-0,196	-0,047
940		0,99	0,039	0,049	-0,072	-0,190	-0,044
950		1,00	0,041	0,055	-0,078	-0,196	-0,045
950		1,00	-0,070	-0,077	-0,278	-0,446	-0,218
950		1,00	-0,065	-0,079	-0,277	-0,442	-0,216
949		1,00	-0,055	-0,085	-0,276	-0,434	-0,213
909		0,96	-0,060	-0,207	-0,201	-0,441	-0,227

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty bezpośrednio przy słupie – kierunek obwodowy Strain of concrete slab near to the column – circumferential direction

Lokalizacja czujników / Location of gauges

Odkształcenie / Strain v V/V_{exp} 14 16 18 20 śr./av. kN ‰ ‰ ‰ ‰ ‰ 0.00 0.000 0.000 0.000 0.000 4 p 0.001 4 k 0.000 0.000 0.000 0.000 0.00 0.000 40 -0,014 0,04 -0,009 -0,010 -0,022 -0,014 p k 40 0,04 -0,008 -0,009 -0,022 -0,014 -0,013 80 0,08 -0,015 -0,017 -0,036 -0,025 -0,023 120 0,13 -0,022 -0,027 -0,057 -0,041 -0,037 200 0,21 -0,033 -0,043 -0,096 -0,070 -0,061 -0.066 -0 155 -0,095 280 0.29 -0.049 -0.111 -0,057 320 -0.077 0.34 -0.190 -0.133 -0.114 400 0,42 -0,098 -0,112 -0,307 -0,200 -0,179 400 0.42 -0.104 -0.117 -0.321 -0.188 k -0.208 480 0.51 -0,165 -0.164 -0.439 -0,276 -0.261 p 480 ĥ 0,51 -0,179 -0,174 -0,478 -0,289 -0,280 560 0,59 -0,259 -0,246 -0,693 -0,370 -0,392 p 560 k 0,59 -0,264 -0,253 -0,713 -0,380 -0,403 640 0,67 -0,338 -0,321 -0,865 -0,468 -0,498 р 640 k 0,67 -0,351 -0,332 -0,900 -0,494 -0,519 720 p k 0.76 -0.425 -0.408 -1.048 -0.616 -0.624 720 -0.442 -0,423 -1.089 -0.654 0.76 -0.652 800 0,84 -0,501 -0,486 -1,189 -0,750 -0,732 p 800 -0,515 -0,504 -1,220 -0,782 -0,755 k 0,84 -0,539 -0,528 840 0,88 -1,252 -0,811 -0,783 р 840 k 0,88 -0,543 -0,532 -1,259 -0,820 -0,789 880 0,93 -0,586 -0,578 -1,320 -0,883 -0,842 p 880 k 0,93 -0,608 -0,605 -1,352 -0,917 -0,871 920 p k 0,97 -0,637 -0.638 -1,389 -0.946 -0,903 920 -0.652 -0.657 -1.410 -0.957 -0.919 0.97 -0,659 -0,664 -1,419 919 0,97 -0,962 -0,926 -0,665 -0,671 -1,428 931 0,98 -0,969 -0,933 -0,975 940 0,99 -0,673 -0,680 -1,440 -0,942 950 1,00 -0,706 -0,719 -1,374 -0,941 -0,935 950 1,00 -0,531 -0,594 -0,897 0,581 -0,360 950 1,00 -0,512 -0,584 -0,896 0,777 -0,304 949 1,00 -0,463 -0,564 -0,886 0,492 -0,355 0.96 909 -0.274 -0.115 0.079 -0,103

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty na drugim obwodzie – kierunek obwodowy Strain of concrete slab on the second perimeter – circumferential direction

Odkształcenie zbrojenia głównego Strain of main reinforcement

Lokalizacja czujników / Location of gauges

Naprężenie zbrojenia głównego Stress of main reinforcement

V		V/V _{exn}	22	Napre	zenie / s	Suess	
		exp	22	23	24	25	śr./av.
kN		-	MPa	MPa	MPa	MPa	MPa
4	р	0,00	0	0	0	0	0
4	k	0,00	0	0	0	0	0
40	р	0,04	2	2	2	2	2
40	k	0,04	2	3	2	2	2
80		0.08	4	5	4	4	4
120		0.13	10	10	8	6	9
200		0.21	35	20	19	12	21
280		0.29	76	33	45	17	43
320		0.34	95	40	66	22	56
400	n	0,04	130	86	133	57	104
400	v	0,42	144	03	140	67	111
400	n.	0,42	144	100	140	150	100
460	P Ir	0,51	190	100	207	100	100
480	ĸ	0,51	203	175	226	187	198
560	p	0,59	2//	260	349	335	305
560	ĸ	0,59	285	2/4	365	357	320
640	p	0,67	349	364	462	469	411
640	ĸ	0,67	357	383	479	485	426
720	p	0,76	423	474	534	534	517
720	k	0,76	433	494	534	534	531
800	р	0,84	480	534	534	534	534
800	k	0,84	487	534	534	534	534
840	р	0,88	504	534	534	534	534
840	k	0,88	505	534	534	534	534
880	р	0,93	534	534	534	534	534
880	k	0,93	534	534	534	534	534
920	р	0,97	534	534	534	534	534
920	k	0,97	534	534	534	534	534
919		0,97	534	534	534	534	534
931		0,98	534	534	534	534	534
940		0,99	534	534	534	534	534
950		1.00	534		534	534	534
950		1.00	494		534	534	534
950		1.00	490		534	534	534
949		1 00	479		534	534	534
909		0.96	400		534	534	534
000		0,00					
1				[1	

Lokalizacja czujników / Location of gauges

Odkształcenie stali na obwodzie / Strain of steel on the perimeter

Lokalizacja czujników / Location of gauges

						Nanre	żenie /	Stress				1000 -	M 1-N					;	
V		V/V _{exp}	26	27	28	29	30	31	32	33	śr./av.		V, KN	1.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0-0		
kN		-	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa			,					6
4	р	0,00	0	0	0	0	0	0	0	0	0		1 #	# #	per par per y		1		
4	k	0,00	0	0	0	0	0	0	0	0	0	800 -	, 74	744 A	the set of				
40	р	0,04	1	0	1	1	1	1	1	1	1								
40	k	0,04	1	0	1	1	0	1	0	0	0		** **		4 0-0		,000		
80		0,08	1	1	1	1	1	1	1	0	1								
120		0,13	1	2	2	2	1	2	1	1	1	600							
200		0,21	2	3	3	3	2	3	2	2	3	000		-	~				
280		0,29	4	5	6	5	4	4	5	4	4								
320	n	0,34	5	10	12	о 0	о 0	с о	0	10	10		₩_+<						
400	P V	0,42	0	11	15	0	0	0	9	19	10								
400	n	0,42	0	17	24	20	12	0 15	9	2 I 56	21	400 -	*						Б —
480	k P	0,51	10	20	27	97	13	18	14	64	33		V		_	<u>→ 26</u>			Σ
560	n	0.59	21	42	42	240	20	42	22	118	68		f		_	<u>∽</u> 27			33
560	k	0.59	26	49	48	251	25	50	26	123	75		† I		-	<u>— 28</u>			ĩ,
640	р	0,67	47	85	85	326	42	91	36	160	109	000			-	→ 29			Ď
640	k	0,67	68	97	93	333	51	102	41	166	119	200 -	Ī		-	- 30			
720	р	0,76	214	140	115	389	78	157	58	200	169		L I		-	- 31			
720	k	0,76	226	153	122	394	94	171	67	208	179		I		-	- 32		nanrożon	io MDa
800	р	0,84	264	189	141	439	118	215	82	236	210	1	•			- 33		stres	s MPa
800	k	0,84	274	202	137	446	127	228	92	245	219	0 -	∳				_		, ini u
840	p	0,88	287	213	144	463	133	239	96	255	229	(D 10	0 20	00	300	400	500	600
840	k	0,88	290	218	146	465	137	244	99	259	232								
880	p	0,93	324	246	160	498	149	273	112	285	256	1000 -							
880	ĸ	0,93	339	263	1/1	508	161	295	124	299	270	1000	V, kN						
920	р v	0,97	320	2/0	102	529	107	314	130	314	204				٩				
920	ĸ	0,97	373	207	103	534	174	332	141	328	294				مر				
931		0.98	377	292	195	534	176	335	142	331	299				ø				
940		0,99	386	297	199	534	178	342	145	338	305	800 -			<i>pd</i>	+			
950		1,00	425	325	217	534	188	379	162	371	332								
950		1,00	534	534	289	534	319	530	300	525	469			00					
950		1,00	534	534	291	534	320	530	299	525	470			~					
949		1,00	534	534	293	534	325	532	299	525	476	600 -	X	/-					
909		0,96	534	534	271	534	372	534	297	499	532		ø						
													90						
												400					1		B
												400 -	Î			inia/average			é –
													1						34N
													Į						-23
																			Ĕ,
												200 -	•						ь —
													ŕ					;	
													Ľ					naprężen	ie, MPa
												0	ļ					stres	ss, мра
												Ű	0 10	0 20	00	300	400	500	600
	L																		

Naprężenie stali na obwodzie / Stress of steel on the perimeter

Lokalizacja czujników / Location of gauges

Siła		Sze	rokość rozw	/arcia rys [r	nm]	
Load			Width of cr	racks [mm]		
[]]]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6
[KN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6
0						

Rysy – 480kN / Cracks pattern – 480kN

Siła Load		Szerokość rozwarcia rys [mm] Width of cracks [mm]										
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6						
0 80 280 400 480	0,10 0,15	0,10										

Siła		Szerokość rozwarcia rys [mm]										
Load			Width of cr	racks [mm]								
[LN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6						
[KIN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6						
0												
80												
280												
400	0,10											
480	0,15	0,10										
560	0,25	0,15	0,40									
640	0,35	0,20	0,55									
720	0,35	0,25	0,70									
800	0,50	0,20	0,80									
880	0,40	0,20	1,00									
920	0,40	0,25	1,00									
960												

Zbrojenie modelu / Specimen's reinforcement

Odkształcenie betonu płyty bezpośrednio przy słupie – kierunek radialny Strain of concrete slab near to the column – radial direction

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty na drugim obwodzie – kierunek radialny Strain of concrete slab on the second perimeter – radial direction

v		V/V		Odkszt	ałcenie	Strain	
v		v/v exp	3	6	9	12	śr./av.
kN		-	‰	‰	‰	‰	‰
4		0,00	0,000	-0,002	-0,001	0,000	-0,001
40		0,04	0,002	0,000	0,003	0,002	0,002
80		0,08	0,004	0,001	0,005	0,002	0,003
120		0,12	0,003	0,000	0,007	0,003	0,003
160		0,16	0,004	0,002	0,010	0,005	0,005
200		0,20	0,004	0,003	0,017	0,006	0,008
240		0,24	0,003	0,001	0,023	0,008	0,009
280		0,28	0,000	0,000	0,024	0,009	0,008
320	р	0,32	0,000	-0,004	0,025	0,009	0,008
320	k	0,32	-0,003	-0,007	0,026	0,009	0,006
360	р	0,36	-0,007	-0,015	0,027	0,008	0,003
360	k	0,36	-0,010	-0,018	0,025	0,005	0,001
400	р	0,40	-0,017	-0,030	0,024	0,003	-0,005
400	k	0,40	-0,020	-0,033	0,023	0,001	-0,007
440	р	0,44	-0,041	-0,063	0,012	-0,007	-0,025
440	k	0,44	-0,051	-0,074	0,009	-0,011	-0,032
480	р	0,48	-0,077	-0,099	-0,010	-0,012	-0,050
480	k	0,48	-0,084	-0,107	-0,013	-0,014	-0,055
520	р	0,52	-0,099	-0,116	-0,016	-0,018	-0,062
520	k	0,52	-0,111	-0,120	-0,017	-0,029	-0,069
560	р	0,56	-0,125	-0,131	-0,024	-0,034	-0,079
560	k	0,56	-0,131	-0,132	-0,022	-0,038	-0,081
600	p	0,60	-0,182	-0,137	-0,058	-0,044	-0,105
600	k	0,60	-0,180	-0,135	-0,060	-0,043	-0,105
640	p	0,65	-0,187	-0,140	-0,080	-0,044	-0,113
640	ĸ	0,65	-0,186	-0,141	-0,081	-0,041	-0,112
680	p	0,69	-0,191	-0,148	-0,093	-0,043	-0,119
680	K	0,69	-0,189	-0,154	-0,095	-0,043	-0,120
720	p 1-	0,73	-0,193	-0,161	-0,104	-0,042	-0,125
720	K	0,73	-0,191	-0,160	-0,098	-0,040	-0,122
760	p 1-	0,77	-0,195	-0,161	-0,102	-0,041	-0,125
760	ĸ	0,77	-0,194	-0,161	-0,098	-0,040	-0,123
800	p 1	0,81	-0,197	-0,161	-0,101	-0,041	-0,125
800	ĸ	0,81	-0,196	-0,160	-0,092	-0,040	-0,122
040 040	р v	0,05	-0,200	-0,100	-0,092	-0,039	-0,123
880	ĸ	0,00	-0,190	-0,100	-0,080	-0,030	-0,121
000	n	0,03	-0,202	-0,101	-0,009	-0,037	-0,122
920	P k	0,93	-0,201	-0,154	-0,078	-0,037	-0,110
960	n	0,33	-0,201	-0,155	-0,074	-0,040	-0,117
960	k	0,07	-0.567	-0 180	-0.480	-0 182	-0 352
970	ĸ	0,37	-0,507	-0,100	-0,480	-0,102	-0,332
981		0,50	-0,012	-0,133	-0,403	-0,100	-0,371
990		1 00	-0 702	-0 284	-0 515	-0 193	-0 424
992		1,00	-0.706	-0.295	-0.513	-0.195	-0.427
990		1.00	-0.700	-0.321	-0.507	-0.207	-0.434
971		0.98	-0.727	-0.368	-0.530	-0.115	-0.435
955		0,96	-0.628	-0.415	-0.512	-0.104	-0.415
		.,,,		.,		-,	
[

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty bezpośrednio przy słupie – kierunek obwodowy Strain of concrete slab near to the column – circumferential direction

Lokalizacja czujników / Location of gauges

Odkształcenie betonu płyty na drugim obwodzie – kierunek obwodowy Strain of concrete slab on the second perimeter – circumferential direction

v		V/V		Odkszt	ałcenie /	Strain	
v		v/v exp	14	16	18	20	śr./av.
kN		-	‰	‰	‰	‰	‰
4		0,00	0,000	0,000	0,000	0,000	0,000
40		0,04	-0,009	-0,012	-0,016	-0,007	-0,011
80		0,08	-0,016	-0,022	-0,029	-0,013	-0,020
120		0,12	-0,025	-0,034	-0,043	-0,018	-0,030
160		0,16	-0,032	-0,045	-0,057	-0,023	-0,039
200		0,20	-0,038	-0,056	-0,069	-0,025	-0,047
240		0,24	-0,046	-0,069	-0,086	-0,029	-0,058
280		0,28	-0,054	-0,083	-0,103	-0,044	-0,071
320	р	0,32	-0,062	-0,095	-0,121	-0,044	-0,081
320	k	0,32	-0,064	-0,100	-0,128	-0,042	-0,084
360	р	0,36	-0,077	-0,121	-0,155	-0,049	-0,101
360	k	0,36	-0,080	-0,132	-0,168	-0,053	-0,108
400	р	0,40	-0,095	-0,154	-0,201	-0,061	-0,128
400	k	0,40	-0,098	-0,162	-0,211	-0,062	-0,133
440	р	0,44	-0,143	-0,231	-0,296	-0,088	-0,190
440	k	0,44	-0,155	-0,252	-0,318	-0,096	-0,205
480	р	0,48	-0,198	-0,324	-0,388	-0,122	-0,258
480	k	0,48	-0,212	-0,341	-0,406	-0,139	-0,275
520	р	0,52	-0,241	-0,376	-0,450	-0,154	-0,305
520	k	0,52	-0,257	-0,396	-0,476	-0,158	-0,322
560	р	0,56	-0,300	-0,454	-0,531	-0,172	-0,364
560	k	0,56	-0,320	-0,475	-0,547	-0,163	-0,376
600	р	0,60	-0,373	-0,557	-0,627	-0,133	-0,423
600	k	0,60	-0,377	-0,577	-0,632	-0,123	-0,427
640	р	0,65	-0,407	-0,644	-0,669	-0,111	-0,458
640	k	0,65	-0,415	-0,675	-0,694	-0,094	-0,470
680	р	0,69	-0,443	-0,725	-0,732	-0,067	-0,492
680	k	0,69	-0,452	-0,749	-0,739	-0,035	-0,494
720	р	0,73	-0,481	-0,799	-0,764	0,005	-0,510
720	k	0,73	-0,496	-0,821	-0,766	0,053	-0,508
760	р	0,77	-0,516	-0,848	-0,787	0,076	-0,519
760	k	0,77	-0,523	-0,858	-0,794	0,104	-0,518
800	р	0,81	-0,559	-0,903	-0,828	0,230	-0,515
800	k	0,81	-0,576	-0,923	-0,845	0,358	-0,497
840	р	0,85	-0,597	-0,966	-0,870	0,462	-0,493
840	k	0,85	-0,609	-0,991	-0,882	0,545	-0,484
880		0,89	-0,640	-1,071	-0,922	0,671	-0,491
920	р	0,93	-0,690	-1,207	-0,997	0,761	-0,533
920	k	0,93	-0,710	-1,245	-1,029	0,763	-0,555
960	р	0,97	-0,760	-1,378	-1,239	0,468	-0,727
960	k	0,97	-0,774	-1,400	-1,415	0,162	-0,857
970		0,98	-0,779	-1,387	-1,419	0,146	-0,860
981		0,99	-0,795	-1,354	-1,423	0,121	-0,863
990		1,00	-0,791	-1,320	-1,405	0,105	-0,853
992		1,00	-0,787	-1,310	-1,401	0,102	-0,849
990		1,00	-0,771	-1,293	-1,407	0,100	-0,843
971		0,98	-0,667	-1,098	-1,583	0,378	-0,743
955		0,96	-0,712	-0,963	-1,657	0,397	-0,734

Lokalizacja czujników / Location of gauges

Odkształcenie stali na obwodzie - poziom pierwszy / Strain of steel on the perimeter - first level

Odkształcenie / Strain						Odkszta	ałcenie	/ Strain			
v		V/V_{exp}	22	25	28	31	34	37	40	44	śr./av.
κN		-	‰	‰	‰	‰	‰	‰	‰	‰	‰
4		0,00	0,000	-0,001	0,001	0,000	-0,001	0,000	0,000	0,000	0,000
40		0,04	0,004	0,002	0,004	0,002	0,003	0,005	0,004	0,004	0,004
80		0,08	0,006	0,005	0,007	0,002	0,006	0,009	0,005	0,004	0,006
120		0,12	0,008	0,010	0,009	0,004	0,011	0,014	0,007	0,006	0,009
160		0,16	0,011	0,014	0,009	0,005	0,016	0,018	0,010	0,008	0,011
200		0,20	0,013	0,019	0,015	0,006	0,022	0,025	0,015	0,010	0,016
240		0,24	0,019	0,025	0,018	0,009	0,030	0,034	0,020	0,012	0,021
280		0,28	0,021	0,032	0,024	0,010	0,042	0,045	0,024	0,015	0,027
320	р	0,32	0,026	0,041	0,029	0,012	0,052	0,057	0,029	0,018	0,033
320	k	0,32	0,027	0,045	0,031	0,013	0,061	0,067	0,031	0,018	0,037
360	р	0,36	0,034	0,061	0,039	0,019	0,079	0,091	0,039	0,023	0,048
360	k	0,36	0,037	0,072	0,044	0,021	0,093	0,115	0,042	0,021	0,056
400	р	0,40	0,048	0,095	0,053	0,028	0,117	0,148	0,053	0,027	0,071
400	k	0,40	0,053	0,108	0,057	0,030	0,127	0,167	0,058	0,028	0,079
440	р	0,44	0,067	0,168	0,074	0,053	0,210	0,260	0,091	0,039	0,120
440	k	0,44	0,075	0,203	0,089	0,073	0,258	0,302	0,099	0,044	0,143
480	р	0,48	0,251	0,275	0,199	0,198	0,498	0,508	0,133	0,064	0,266
480	k	0,48	0,390	0,312	0,262	0,259	0,594	0,622	0,182	0,081	0,338
520	р	0,52	0,563	0,391	0,396	0,390	0,733	0,853	0,271	0,113	0,464
520	k	0,52	0,632	0,472	0,446	0,470	0,820	0,985	0,342	0,139	0,538
560	р	0,56	0,750	0,667	0,528	0,650	0,974	1,250	0,489	0,196	0,688
560	k	0,56	0,799	0,732	0,590	0,717	1,016	1,285	0,556	0,234	0,741
600	р	0,60	0,942	0,860	0,792	0,924	1,148	1,453	0,921	0,484	0,941
600	k	0,60	0,977	0,888	0,824	0,943	1,158	1,474	0,951	0,517	0,967
640	р	0,65	1,126	0,984	0,947	1,031	1,239	1,632	1,061	0,636	1,082
640	k	0,65	1,208	1,034	1,015	1,075	1,275	1,684	1,116	0,714	1,140
680	р	0,69	1,354	1,129	1,147	1,178	1,377	1,821	1,226	0,825	1,257
680	k	0,69	1,436	1,185	1,221	1,235	1,428	1,866	1,284	0,893	1,319
720	р	0,73	1,633	1,305	1,359	1,357	1,566	2,012	1,415	1,014	1,458
720	k	0,73	1,731	1,383	1,453	1,439	1,641	2,073	1,496	1,107	1,540
760	р	0,77	1,813	1,454	1,530	1,509	1,710	2,158	1,565	1,167	1,613
760	k	0,77	1,858	1,492	1,575	1,556	1,740	2,186	1,595	1,221	1,653
800	р	0,81	2,037	1,636	1,704	1,725	1,888	2,357	1,741	1,377	1,808
800	k	0,81	2,110	1,707	1,759	1,861	1,951	2,416	1,821	1,461	1,886
840	р	0,85	2,213	1,800	1,869	2,032	2,048	2,609	1,917	1,546	2,004
840	k	0,85	2,265	1,848	1,930	2,137	2,091	2,704	1,967	1,601	2,068
880		0,89	2,435	2,004	2,125	2,369	2,281	2,929	2,112	1,717	2,247
920	р	0,93	2,633	2,198	2,394	2,639	2,581	3,005	2,319	1,891	2,458
920	k	0,93	2,685	2,245	2,464	2,657	2,656	3,018	2,374	1,944	2,505
960	р	0,97	2,834	2,371	2,647	2,674	2,811	3,096	2,514	2,087	2,629
960	k	0,97	2,951	2,518	2,754	2,691	2,818	3,395	2,576	2,251	2,744
970		0,98	3,000	2,574	2,766	2,703	2,835	3,448	2,576	2,295	2,775
981		0,99	2,975	2,637	2,753	2,709	2,843	4,003	2,574	2,339	2,854
990		1,00	2,934	2,667	2,761	2,717	2,852	4,822	2,567	2,391	2,964
992		1,00	2,927	2,684	2,761	2,718	2,852	5,225	2,568	2,414	3,019
990		1,00	2,842	2,632	2,743	2,732	2,859	7,907	2,581	2,469	3,346
971		0,98	2,791	2,594	2,694	2,781	3,077		2,195	2,270	2,629
955		0,96	2,853	2,448	2,619	2,865	3,077		2,217	2,389	2,638

Lokalizacja czujników / Location of gauges

31

E

34

Odkształcenie stali na obwodzie – poziom drugi / Strain of steel on the perimeter – second level

 \bigcirc

38

- 2

35

Ø

32

Ð

Odkształcenie stali na obwodzie - poziom trzeci / Strain of steel on the perimeter - third level

v		W/W	Odkształcenie / Strain								
v		v / v exp	24	27	30	33	36	39	43	46	śr./av.
κN		-	‰	‰	‰	‰	‰	‰	‰	‰	‰
4		0,00	0,000	0,000	0,000	0,000	0,000	-0,001	-0,001	0,000	0,000
40		0,04	-0,006	-0,004	-0,005	-0,004	-0,004	-0,004	-0,007	-0,003	-0,005
80		0,08	-0,009	-0,007	-0,008	-0,008	-0,008	-0,008	-0,011	-0,003	-0,008
120		0,12	-0,012	-0,011	-0,013	-0,010	-0,011	-0,012	-0,014	-0,005	-0,011
160		0,16	-0,016	-0,014	-0,018	-0,013	-0,014	-0,016	-0,020	-0,007	-0,015
200		0,20	-0,021	-0,017	-0,022	-0,016	-0,018	-0,017	-0,024	-0,008	-0,018
240		0,24	-0,026	-0,022	-0,027	-0,021	-0,023	-0,021	-0,031	-0,011	-0,023
280		0,28	-0,031	-0,026	-0,032	-0,024	-0,027	-0,024	-0,037	-0,013	-0,027
320	р	0,32	-0,038	-0,031	-0,035	-0,028	-0,033	-0,028	-0,044	-0,016	-0,032
320	k	0,32	-0,041	-0,034	-0,038	-0,029	-0,036	-0,029	-0,048	-0,018	-0,034
360	р	0,36	-0,048	-0,042	-0,044	-0,033	-0,044	-0,036	-0,057	-0,022	-0,041
360	k	0,36	-0,053	-0,046	-0,048	-0,035	-0,048	-0,036	-0,060	-0,023	-0,044
400	р	0,40	-0,065	-0,056	-0,054	-0,040	-0,057	-0,042	-0,072	-0,028	-0,052
400	k	0,40	-0,068	-0,059	-0,057	-0,040	-0,060	-0,044	-0,074	-0,029	-0,054
440	р	0,44	-0,093	-0,083	-0,070	-0,046	-0,082	-0,056	-0,094	-0,035	-0,070
440	k	0,44	-0,099	-0,090	-0,076	-0,048	-0,088	-0,059	-0,101	-0,036	-0,075
480	р	0,48	-0,110	-0,108	-0,095	-0,049	-0,109	-0,075	-0,137	-0,042	-0,091
480	k	0,48	-0,118	-0,120	-0,100	-0,047	-0,118	-0,081	-0,145	-0,044	-0,097
520	р	0,52	-0,123	-0,130	-0,114	-0,051	-0,129	-0,095	-0,155	-0,049	-0,106
520	k	0,52	-0,112	-0,132	-0,114	-0,055	-0,143	-0,108	-0,162	-0,051	-0,110
560	р	0,56	-0,102	-0,140	-0,120	-0,059	-0,159	-0,133	-0,173	-0,055	-0,118
560	k	0,56	-0,102	-0,143	-0,125	-0,059	-0,163	-0,141	-0,176	-0,057	-0,121
600	р	0,60	-0,091	-0,149	-0,145	-0,071	-0,175	-0,160	-0,191	-0,068	-0,131
600	k	0,60	-0,091	-0,148	-0,148	-0,073	-0,176	-0,165	-0,192	-0,069	-0,133
640	р	0,65	-0,088	-0,151	-0,151	-0,079	-0,180	-0,185	-0,196	-0,073	-0,138
640	k	0,65	-0,087	-0,151	-0,154	-0,082	-0,181	-0,191	-0,197	-0,074	-0,140
680	р	0,69	-0,084	-0,152	-0,156	-0,088	-0,187	-0,203	-0,201	-0,078	-0,144
680	k	0,69	-0,082	-0,152	-0,158	-0,093	-0,187	-0,206	-0,203	-0,080	-0,145
720	р	0,73	-0,079	-0,151	-0,157	-0,100	-0,192	-0,214	-0,209	-0,084	-0,148
720	k	0,73	-0,076	-0,148	-0,158	-0,105	-0,192	-0,213	-0,211	-0,085	-0,149
760	р	0,77	-0,075	-0,146	-0,159	-0,110	-0,196	-0,217	-0,214	-0,088	-0,151
760	k	0,77	-0,074	-0,146	-0,161	-0,113	-0,196	-0,217	-0,215	-0,088	-0,151
800	р	0,81	-0,072	-0,143	-0,162	-0,121	-0,201	-0,221	-0,227	-0,091	-0,155
800	k	0,81	-0,072	-0,141	-0,163	-0,127	-0,204	-0,223	-0,233	-0,092	-0,157
840	р	0,85	-0,069	-0,140	-0,165	-0,131	-0,208	-0,227	-0,238	-0,096	-0,159
840	k	0,85	-0,069	-0,139	-0,165	-0,136	-0,210	-0,231	-0,240	-0,096	-0,161
880		0,89	-0,069	-0,138	-0,168	-0,145	-0,215	-0,239	-0,247	-0,102	-0,165
920	р	0,93	-0,078	-0,138	-0,180	-0,161	-0,227	-0,235	-0,263	-0,107	-0,174
920	k	0,93	-0,081	-0,139	-0,185	-0,166	-0,231	-0,235	-0,269	-0,107	-0,177
960	р	0,97	-0,084	-0,139	-0,214	-0,201	-0,237	-0,219	-0,277	-0,120	-0,186
960	k	0,97	-0,079	-0,129	-0,239	-0,235	-0,238	-0,184	-0,277	-0,128	-0,189
970		0,98	-0,081	-0,126	-0,239	-0,232	-0,244	-0,184	-0,274	-0,125	-0,188
981		0,99	-0,077	-0,132	-0,236	-0,221	-0,253	-0,176	-0,270	-0,128	-0,187
990		1,00	-0,068	-0,138	-0,232	-0,212	-0,266	-0,168	-0,262	-0,131	-0,185
992		1,00	-0,067	-0,140	-0,232	-0,210	-0,269	-0,167	-0,264	-0,130	-0,185
990		1,00	-0,060	-0,128	-0,237	-0,199	-0,283	-0,165	-0,276	-0,136	-0,186
971		0,98	-0,011	0,185	-0,246	-0,072	0,002	0,089	0,126	-0,002	0,009
955		0,96	0,022	0,822	-0,138	0,047	0,287	0,102	0,374	0,198	0,214

Lokalizacja czujników / Location of gauges

σ_{ym}=533MPa

naprężenie, MPa

500

400

stress, MPa

σ_{ym}=533MPa

naprężenie, MPa

500

400

 \bigtriangledown

stress, MPa

600

600

Naprężenie stali na obwodzie - poziom pierwszy / Stress of steel on the perimeter - first level

Lokalizacja czujników / Location of gauges

P

Naprężenie stali na obwodzie - poziom drugi / Stress of steel on the perimeter - second level

V		V/V	Naprężenie / Stress								
v		v / v exp	23	26	29	32	35	38	41	45	śr./av.
kN		-	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa
4		0,00	0	0	0	0	0	0	0	0	0
40		0,04	0	0	0	0	0	0	0	0	0
80		0,08	0	0	0	0	0	0	0	0	0
120		0,12	0	0	0	0	0	0	0	0	0
160		0,16	0	0	0	0	0	0	0	0	0
200		0,20	0	0	0	0	0	0	0	0	0
240		0,24	1	0	0	0	0	1	0	0	0
280		0,28	1	0	0	0	0	2	0	0	0
320	p	0,32	1	1	1	0	0	3	1	0	1
320	K	0,32	1	1	1	0	0	3	1	1	1
360	p k	0,36	1	2	2	1	1	5	2	1	2
300	K n	0,30	1	2	2	1	1	10	3 5	1	2
400	р Ъ	0,40	3	3	4	2	3	10	5	2	4
400	n	0,40	5	5	4	2	3	24	14	2 4	5 Q
440	k P	0,44	6	8	8	6	11	29	18	4	11
480	n	0.48	21	13	18	10	25	54	23	7	21
480	k	0.48	34	16	24	12	31	66	31	. 8	28
520	p	0.52	51	22	34	17	42	89	49	10	39
520	ĥ	0,52	60	28	38	21	49	101	59	10	46
560	р	0,56	71	43	45	30	70	128	83	12	60
560	ĥ	0,56	75	49	50	34	75	131	89	14	65
600	р	0,60	86	63	69	47	91	150	127	24	82
600	k	0,60	88	67	72	50	92	150	129	26	84
640	р	0,65	101	76	84	57	100	167	142	30	95
640	k	0,65	108	82	89	62	103	171	146	34	99
680	p	0,69	121	91	101	70	111	186	159	38	110
680	ĸ	0,69	128	97	108	76	115	188	164	43	115
720	p	0,73	145	110	120	86	126	204	178	50	127
720	K	0,73	154	120	128	96	133	208	184	58	135
760	p k	0,77	162	128	134	102	139	218	190	62	142
760	K n	0,77	107	133	159	100	142	220	193	07	140
800	P V	0,01	100	149	100	120	164	239	209	00	102
840	n	0,01	208	168	171	150	174	263	230	103	183
840	k	0,85	215	176	178	161	179	200	235	112	191
880		0.89	236	195	197	181	197	309	256	128	213
920	p	0.93	269	228	226	220	229	386	288	162	251
920	k	0,93	280	238	235	237	239	404	298	173	263
960	р	0,97	314	279	280	292	300	484	353	218	315
960	k	0,97	350	331	334	342	379	533	421	276	373
970		0,98	361	345	352	356	396	533	449	287	388
981		0,99	395	365	371	375	420	533	481	302	411
990		1,00	440	408	406	401	465	533	530	328	447
992		1,00	450	417	415	409	476	533	533	334	456
990		1,00	465	435	432	427	502	533	533	349	478
971		0,98	508	528	497	502	533	533	533	456	533
955		0,96	533	524	500	533	533	533	533	477	533

Lokalizacja czujników / Location of gauges

Naprężenie stali na obwodzie - poziom trzeci / Stress of steel on the perimeter - third level

Lokalizacja czujników / Location of gauges

Rysy - 0kN / Cracks pattern - 0kN

Siła Load	Szerokość rozwarcia rys [mm] Width of cracks [mm]								
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6			
0									

Rysy – 520kN / Cracks pattern – 520kN

Siła Load	Szerokość rozwarcia rys [mm] Width of cracks [mm]									
[kN]	nr 1 No. 1	nr 2 No. 2	nr 3 No. 3	nr 4 No. 4	nr 5 No. 5	nr 6 No. 6				
$ \begin{array}{r} 0 \\ 320 \\ 360 \\ 400 \\ 440 \\ 480 \\ \end{array} $	0,05 0,10 0,20	0,10 0,20	0.50							
480 520	0,45 0,60	0,25 0,30	0,50 0,90							

Rysy – 990kN / Cracks pattern – 990kN

Siła		Szerokość rozwarcia rys [mm]								
Load	Width of cracks [mm]									
[kN]	nr 1	nr 2	nr 3	nr 4	nr 5	nr 6				
[KIN]	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6				
0										
320										
360	0,05									
400	0,10	0,10								
440	0,20	0,20								
480	0,45	0,25	0,50							
520	0,60	0,30	0,90							
560	0,70	0,75	1,00							
600	1,00	1,05	1,35							
640	1,10		1,90	1,00						
680	1,10		2,30	1,25						
720	1,30		2,60	1,50						
760	1,40		2,80	1,70						
800	1,60		3,20	2,00						
840	1,80		3,40	2,20						
990										

