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MACROSCOPIC MODEL FORMULAE DESCRIBING 
ANISOTROPIC ANCHORING OF NEMATIC LIQUID 

CRYSTALS ON SOLID SUBSTRATES 

Formulae used for description of anchoring energy of nematic 
liquid crystal aligned on solid substrates are reviewed. They are based 
on macroscopic approach considering the concepts of the easy axis 
and of the anchoring strength parameters. Properties of the modified 
formula proposed in our earlier article are illustrated by exemplary 
plots which allows for comparison with other formulae. The modified 
formula describes the dependence of energy on the azimuthal and 
polar deviation of director from the easy axis and is valid  qualitatively 
for deviation of any magnitude.    
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1. INTRODUCTION

Orienting influence of solid surfaces exerted on director is crucial for all 
applications of liquid crystals, e.g. in liquid crystal displays. Properties of liquid 
crystalline systems are usually studied in terms of continuum theory. In this 
approach, the anchoring is determined by the easy axis e and by the anchoring 
strength parameters. The easy axis indicates the preferable director orientation, 
i.e. the orientation adopted in the absence of any external torques. The anchoring 
strength parameters determine the surface energy density i.e. the anchoring energy 
per unit area of the surface, gs. They represent the work necessary to deviate the 
director from the easy axis. Experiments indicate that the anchoring is 
anisotropic, which means that the work needed to rotate the director by an angle 
α around the normal to the substrate is smaller than the work necessary to 
deviate it from the surface by the same angle. The anchoring energy gives 
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important contribution to the free energy of a liquid crystal system and should be 
taken into account during calculations concerning elastic deformations of such 
systems.  For this reasons, the macroscopic models describing the anisotropic 
dependence of anchoring energy on the director deviation from the easy axis are 
required. The most popular are the approaches which stem from the famous 
paper by Rapini and Papoular [1] in which the formula for the energy due to 
director deviation from the planar orientation was proposed. Various forms of 
this formula are used [2-11], for example 

θθ
2cos

2
1 Wgs −=                                              (1) 

where Wθ is the anchoring strength parameter and θ is the angle between the 
director n and the easy axis lying on the surface. (The anchoring energy is 
determined with accuracy to arbitrary constant. Here and in the following the 
formulae predict the negative anchoring energy with maximum equal to zero.) 
This formula is suitable for deformation in which the director remains in the 
plane perpendicular to the surface. Analogous formula  

φφ
2cos

2
1 Wgs −=                                              (2) 

corresponds to director lying in the plane of the surface and rotated around the 
normal to the surface by an angle φ from the easy axis. Both formulae can be 
written in a more general form suitable if the orientation of the easy axis is 
determined by the angle θs (between the plane of the surface, xy, and the easy 
axis e) 

( )ss Wg θθθ −−= 2cos
2
1                                     (3) 

or by the angle φs (between the axis x and the projection of e on the plane xy) 

( )ss Wg φφφ −−= 2cos
2
1 .                                    (4) 

The angles which describe the director orientation are defined in analogous way. 
The angle θ is measured between the xy plane and the director n while the angle 
φ is between the x axis and the projection of n on the plane xy. 

 There are situations in which the director adopts orientation determined by 
θ ≠ θs and simultaneously by φ ≠ φs. Then the anchoring energy can be expressed 
by the formula  

( )2

2
1 en ⋅−= Wgs .                                            (5) 

However, this formula does not take into account anchoring anisotropy i.e. all 
the directions of deviation are equivalent.  
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Anchoring anisotropy manifests itself by the difference between Wθ and Wφ. 
Experiments show that Wθ is even ten times larger than Wφ. In order to describe 
the anisotropy, the sum of formulae (3) and (4) is often used, [12] 

( ) ( )sss WWg φφθθ φθ −−−−= 22 cos
2
1cos

2
1 .                      (6) 

Formula (6) is qualitatively suitable for small deviations from planar 
alignment, however it is inappropriate if the director is oriented homeotropically 
(θ = π/2), since it involves unreasonable dependence on the azimuthal angle φ. 
An example is shown in Fig. 1 where the energy needed for director deviation 
from the planarly aligned easy axis e = [1,0,0] is plotted as a function of the 
azimuthal angle φ for several values of the polar angle θ. The anisotropy is 
determined by adoption that Wθ = 5Wφ. It is evident that for homeotropic director 
orientation, θ = π/2, the anchoring energy density gs depends on φ. 
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Fig. 1. Anchoring energy density gs calculated by use of Eq. (6) as a function of the 

azimuthal angle φ for several values of the angle θ (in degrees) indicated at the curves. 
Planar alignment; e = [1,0,0], Wθ = 10−4 J/m2, Wφ = 2·10−5 J/m2 

 
The formulae of Rapini-Papoular type were proposed to be replaced by 

other expressions.  
The elliptic sine was adopted for the case of homeotropic alignment [13]. 

According to the convention adopted here, the anchoring energy can be 
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expressed as  

( )kWg ss ,sn
2
1 2 θθθ −−=                                        (7) 

This function predicts a very sharp minimum of the surface anchoring for small 
deviations from the easy axis. The width of the corresponding potential energy 
well can be controlled by the choice of parameter k. 

A generalized anchoring energy formula  based on a spherical harmonic 
expansion was proposed in in the form 

( ) ( )22 ηnξn ⋅+⋅= ηξ WWgs                                      (8) 
where versors ξ, η and e create an orthonormal vector triplet [14]. Its orientation 
with respect to the surface determines the anisotropy of the aligning properties 
of the substrate. Equation (8) implies the presence of surface-induced nematic 
biaxiality. The parameter Wξ concerns the deviation of director from the easy 
axis in the e,ξ plane, whereas Wη describes the deviation in the e,η plane. This 
formula is suitable for the homeotropic surface with in-plane anisotropy. 

 
2. MODIFIED FORMULA FOR ANCHORING ENERGY 

 
In order to avoid the disadvantage of Eq. (6) and to retain simultaneously 

the possibility of description of arbitrary deviations, a modified macroscopic 
model of anisotropic anchoring was proposed in our previous article [15]. It is  
expressed by the formula 

( ) ( ) ( )22 21 1cos sin 1
2 2s s sg W W Wϕ θ θθ θ θ θ   = − + − − −   ne .        (9) 

Here, the last term was added for convenience in order to obtain the range of 
energy comparable with the ranges obtained by previous formulae. The proposed 
model has proper qualitative features and can be used for all kinds of 
deformations of director adjacent to the solid substrate, e.g. for the twisted 
nematic cells. In the present paper we give examples which allow to compare it 
with other formulae.  

Figure 2 presents the predictions of Eq. (9) for the same planar alignment of 
the easy axis, e = [1,0,0], and for the same anchoring strengths as those used in 
Eq. (6) and shown in Fig. 1.  For homeotropic director orientation, θ = π/2, the 
energy density gs is independent of φ. Figures 3-5 illustrate the gs(θ,φ) function 
for planar, oblique and homeotropic orientations of the easy axis. In the case of 
planar alignment, (Fig. 3) the stable equilibrium orientation due to global 
minimum equal to −Wθ /2  occurs for θs = 0° and φs = 0°. The work necessary to 
rotate director by 90° around the  normal  to the  surface  is  Wφ /2 and  the  work 
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Fig. 2. Anchoring energy density gs calculated by use of Eq. (9) as a function of 
the azimuthal angle φ for several values of the angles θ (in degrees) indicated at the 
curves. Planar alignment; e = [1,0,0], Wθ = 10−4 J/m2, Wφ = 2·10−5 J/m2 
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Fig. 3. Anchoring energy density gs calculated by use of Eq. (9) as a function of the 
angles θ and φ. Planar alignment, θs = 0°, φs = 0°, e = [1,0,0], Wθ = 10−4 J/m2, 
Wφ = 2·10−5 J/m2 
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Fig. 4. Anchoring energy density gs calculated by use of Eq. (9) as a function of the 
angles θ and φ. Oblique alignment, θs = 30°, φs = 0°; Wθ = 10−4 J/m2, 
Wφ = 2·10−5 J/m2  
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Fig. 5. Anchoring energy density gs calculated by use of Eq. (9) as a function of the 
angles θ and φ. Homeotropic alignment, θs = 90°, φs = 0°; e = [0,0,1], 
Wθ = 10−4 J/m2, Wφ = 2·10−5 J/m2 
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needed to deviate director by 90° from the plane xy is Wθ /2. The unstable 
equilibrium corresponds to the homeotropic director orientation. 

In the example of oblique alignment, (Fig. 4), determined by θs = 30° 
and φs = 0°, the stable equilibrium due to global minimum −Wθ /2  occurs. The 
homeotropic orientation is not due to any equilibrium. Maximum corresponds to 
orientation perpendicular to the easy axis. The work necessary to achieve the 
planar orientation depends on the angle φ.  

In the case of homeotropic orientation of the easy axis, (Fig. 5), only the 
angle θ is of importance. Deviation by some angle from e requires the work 
which does not depend on direction of deviation i.e. is independent of the  
angle φ. The planar director orientation, θ = 0°, corresponds to an unstable 
equilibrium.  

To summarize, we considered the formula (Eq. (9)), proposed in our 
previous article [15] which describes the model of anisotropic anchoring of 
nematic liquid crystal on solid substrates. The formula allows to avoid the 
disadvantage of Eq. (6) and yields qualitatively valid description of polar and 
azimuthal anchoring. Properties of the proposed model were illustrated by plots 
presented for three particular orientations of easy axis.  
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MAKROSKOPOWE MODELE ANIZOTROPOWEGO 
KOTWICZENIA NEMATYCZNYCH CIEKŁYCH 
KRYSZTAŁÓW NA POWIERZCHNIACH CIAŁ 

STAŁYCH 

Streszczenie 

Artykuł zawiera przegląd wzorów stosowanych do opisu energii 
kotwiczenia ciekłych kryształów nematycznych na powierzchniach ciał stałych. 
Wywodzą się one z makroskopowego podejścia wykorzystującego pojęcie osi 
łatwej i energetyczne parametry opisujące oddziaływanie ciekłego kryształu 
z podłożem. Opisano właściwości zaproponowanego we wcześniejszym artykule 
zmodyfikowanego wzoru, uwzględniającego anizotropię oddziaływania 
powierzchniowego, który ujmuje zależność energii kotwiczenia od odchylenia 
direktora od osi łatwej i jest słuszny jakościowo dla odchylenia o dowolnej 
wielkości. Zilustrowano go przykładowymi wykresami pozwalającymi na 
porównanie z innymi wzorami. 




