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DISPERSIVE CHARGE TRANSPORT IN HOPPING 
SYSTEMS UNDER OPEN-CIRCUIT CONDITIONS: 

COMPUTER SIMULATION 
 
 

Applicability of the theories describing the discharge in thin-film 
insulators under open-circuit conditions for dispersive hopping systems 
is the subject of this paper. It is shown by means of computer simulation 
that the drift mobility obtained from application of the theories for such 
systems is underestimated.  The computer simulation was carried out 
for a thin film system in which the charge transport is dominated by 
hopping of charge carriers among localized states in a narrow band at 
the Fermi level. The way of interpretation of the discharge under open-
circuit conditions in such  systems is suggested. The simulation results 
have also been applied for interpretation of the open-circuit discharge 
in thin diamond-like carbon films.  
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1. INTRODUCTION  
 

The main experimental method used for measurements of mobility of 
charge carriers in low-mobility disordered materials is the so-called time-of-
flight (TOF) method [1, 2]. The method consists in measuring the transient 
currents which is caused by charge carriers injected into a sample at a surface 
and moving in the external electric field. The drift mobility  may be calculated 
from the equation: 
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where D is the sample thickness, V0 is the voltage applied, ttr is the transition 
time of charge through the sample. The transition time corresponds to a “kink” 
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on the current pulse. The spatial concentration of moving charge packet remains 
Gaussian during the transport. This kind of charge transport is often called  
a Gaussian type of transport. 

A number of experimental data obtained for amorphous and strongly doped 
materials cannot be interpreted in this simple way because no "kink" on the 
current pulses is detected. Such non-classical data can be understood in terms of 
the model of stochastic hopping presented by Scher and Montroll [3] in 1975. 
The current pulses in Scher-Montroll (SM) model is given by: 

     i(t)  t-(1-)  for t<ttr             (2) 

     i(t)  t-(1+)  for t>ttr             (3) 

where the disorder parameter  is constant. The transition time found from 
equations (2) and (3) corresponds to the time of transport of the fastest charge 
carriers. This kind of charge transport is often called a dispersive transport.  
It was shown during the next few years that both multiple trapping [4-7] and 
trap-controlled hopping [8] may also give rise to the dispersive transport of 
charge. It has also been shown by means of computer simulation [9] that for 
some temperatures the hopping transport in a narrow band of localized states can 
also lead to the dispersive transport if the width of the band is big enough. 

In case of very thin samples we often have to do with a short circuit 
originating during evaporation of electrodes. In this case the classical TOF 
method cannot be used for estimation of the drift mobility of charge carriers. 
However, the discharge under open circuit conditions may be a suitable 
method to find the drift mobility in such systems. The theory describing the 
discharge under open circuit conditions in thin film insulators was given by 
Batra et.al. [10]. The metalized surface is grounded, the free surface is 
charged using either a corona discharge [11, 12] or a low-energetic electron 
beam [13-15]. The time dependence of the voltage between the two surfaces 
is given by [10]:  
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for t > ttr. It results from Batra model and equations (4)(7) that the  time 
corresponding to V = 0.5 V0 (V0 is the voltage at the time t = 0) is the transit time 
of charge carriers.  

The problem of applicability of equations (4)(7) for open-circuit discharge 
in hopping systems in these cases, in which a “kink” on the current pulses 
obtained from the classical TOF experiments is observed, have been discussed 
previously [9]. The aim of this paper is to discuss the problem of applicability of 
equations (4)(7) for the so-called dispersive hopping systems. The simulation 
results were also used for reinterpretation of the open-circuit discharge in thin 
diamond-like carbon films. 
 

 
2. ASSUMPTIONS OF THE SIMULATION  

 
The basic physical assumptions of simulation were as follows [16]: 

1. The charge transport is dominated with hopping in a narrow band of localized 
states at the Fermi level.   

2. The probability of a jump between i and j state was taken in the form[17]: 

       )
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      for Ej-Ei-eF(xj-xi)>0     

        )2exp( ijphij Rp             (8b) 

for Ej-Ei-eE(xj-xi)<= 0 , where e is the electron charge, Ei, Ej are the energies 
of i- and j-states, xi, xj are the positions of the states measured along the 
electric field and F is the intensity of electric field. 

3. The values of localization parameter 2R = 3,5,7,9,11,13 were taken ( is the 
electron localized wave-function, R is the distance between the localized states).  

4. The distribution of the state energies is the normal one and is described by 
the standard deviation E, which changes in the range 0.010.16 eV. 

5. The temperature changes in the range between 100 K and 500 K. 
The algorithm of the simulation was described in [9]. The algorithm used 

was tested for the classical TOF experiment and a good agreement between the 
results of simulation and the theoretical description of hopping transport was 
obtained [9]. 
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In order to solve the problem of applicability of equations (4)(7) for 
interpretation of discharge under open-circuit conditions in dispersive hopping 
systems one has to compare the results of drift mobility resulting from 
application of equations (4)(7) with the real value of drift mobility in these 
systems. The real value of drift mobility for this comparison can be obtained in 
two ways: 
1. The values  can  be  calculated  from  the  theoretical  formulae describing the 

hopping transport in a narrow band of localized states [18]:   

             
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     where R is the distance between the states, k is the Boltzmann constant, T 
is the temperature, ph is the phonon frequency, W is the effective 
activation energy related to the width of the band of localised states. 
However, the above expression is very sensitive to the assumed value of 
W. Though the approximate relation between the effective activation 
energy W and the standard deviation E was given previously [9], it is 
obvious that the comparison with the mobility estimated from equation (8) 
would be burdened with some systematic error resulting from the 
inaccuracy of determination of W. For instance assuming W = 2E or  
W = 4E we obtain the ratio of the resulting mobilities   
(at T = 300 K) close to 1 order of magni-tude for E = 0.03 eV and 
exceeding 2 orders of magnitude for E = 0.07 eV.

2. The real values of drift mobility can be obtained from simulation of charge 
transport in the classical TOF experiment. In case of dispersive transport 
(which is a subject of this paper) the current pulses obtained from the 
simulation (when no “kink” on the current curves is detected) should be 
interpreted using SM model (equations (2) and (3)). The mobility obtained 
in this way is to be compared with the mobility obtained from Batra  
theory describing the discharge under open-circuit conditions (i.e. with  
1/2 resulting from equations (4)(7) for ttr corresponding to the voltage  
V = 0.5 V0). This second way of comparison enables to avoid any 
systematic errors resulting from application of equation (8), because the 
only difference between the two simulations is the kind of simulated 
experiment (the discharge under open circuit conditions is the subject of the 
first simulation, the transport in the classical TOF experiment in order to 
obtain the real value of mobility for comparison is a subject of the second 
simulation). 

3.  In this situation the mobility obtained from simulation of charge transport in 
the classical TOF experiment was taken for our comparison.  



                           Dispersive charge transport in hopping systems                      9 
 

3. RESULTS 
 

3.1. Simulation results 
 
The obtained values of real/1/2 are shown in Tables 15. The tables 

summarise both the results obtained for Gaussian transport published earlier ([9], 
italic) and the results concerning the dispersive transport (bold) which in general  
occur for the higher values of the standard deviation E defining the width of 
band of localised states (for details see [9]). In order to interpret the data 
properly one should estimate the error of the points obtained from the 
simulation. The error consists of two components. The first one results from the 
technical treatment of the voltage-time pulses obtained from the simulation. In 
order to find the real/1/2 ratio one must find the time of flight both for the 
classical TOF experiment and for the open-circuit discharge. Both the times are 
burdened with some error. The second component of the error results from the 
stochastic nature of the process simulated which means, that for a number of 
simulations carried out for the same starting parameters the value of the time of 
flight can differ a little. The total error of the obtained real/1/2 ratios was  esti-
mated as 20%. Fig. 1 shows the simulation data for the two temperatures 200 K 
and 500 K at E = 0.05 eV.  
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Fig. 1. real/1/2 as a function of the localisation parameter 2R for T = 200 K (�) and  

T = 500 K (). E = 0.05 eV. The full line corresponds to the real/1/2 ratio 
estimated for T = 200 K. 
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Table 1. The ratio real/1/2 for various values of the localization parameter 2R and the 
standard  deviation E at T = 100 K. Italic=Gaussian transport, bold=dispersive 
transport.

E [eV] 
 
         2R

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

3 1.58 1.64 2.03 2.11 2.28 2.33 2.42 2.58 
5 1.81 2.35 2.77 3.82 4.74 -- -- -- 
7 2.19 3.18 3.94 3.62 5.01 -- -- -- 
9 2.02 2.78 3.02 3.57 3.82 -- -- -- 

11 1.80 -- -- -- -- -- -- -- 
13 1.38 -- -- -- -- -- -- -- 

 

Table 2. The ratio real/1/2 for various values of the localization parameter 2R and the 
standard deviation E at T = 200 K. Italic=Gaussian transport, bold=dispersive 
transport. The values for E equal to 0.01 eV and 0.02 eV are not shown and can be 
found in [9].

E [eV] 
 
        2R

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 

3 1.73 1.57 2.05 2.81 2.88 2.76 2.72 3.06 3.05 3.54 
5 1.50 2.59 2.43 2.17 2.22 2.22 2.75 2.72 2.84 3.37 
7 2.18 2.36 -- 2.09 2.22 2.44 2.33 -- -- -- 
9 2.22 2.12 2.28 2.33 2.64 2.79 2.81 -- -- -- 

11 2.31 2.41 2.77 -- -- -- -- -- -- -- 
13 1.84 2.02 1.93 3.02 -- -- -- -- -- -- 

 
Table 3. The ratio real/1/2 for various values of the localization parameter 2R and the 
standard deviation E at T = 300 K. Italic=Gaussian transport, bold=dispersive 
transport. The values for E equal to 0.01 eV and 0.02 eV are not shown and can be 
found in [9].

E [eV] 
 
        2R

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 

3 1.58 1.41 1.62 1.85 1.83 2.36 2.25 2.03 2.26 2.32 
5 2.50 2.17 2.65 2.38 2.79 2.21 2.55 1.62 1.94 2.52 
7 2.31 2.57 1.88 2.52 2.39 2.40 1.88 1.78 2.16 2.07 
9 2.22 -- -- 2.34 2.20 1.94 1.80 2.63 2.59 3.49 

11 1.78 1.96 2.15 2.2 1.89 -- -- -- -- -- 
13 1.66 2.11 1.97 2.06 2.19 2.12 -- -- -- -- 
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Table 4a. The ratio real/1/2 for various values of the localization parameter 2R and the 
standard deviation E at T = 400 K. Italic=Gaussian transport, bold=dispersive 
transport. The values E between 0.01 eV and 0.07 eV are presented.

E [eV] 
 
2R

0.01

 

0.02 0.03 0.04 0.05 0.06 0.07 

3 1.34 1.30 1.46 1.41 1.49 1.50 1.53 
5 1.99 1.65 1.88 2.11 2.22 2.64 2.41 
7 2.83 2.80 2.90 2.50 3.16 2.02 1.88 
9 1.93 2.16 1.90 2.16 2.13 1.77 1.45 

11 1.68 1.84 1.76 1.69 1.83 1.78 1.71 
13 1.54 1.72 1.70 1.96 1.78 1.97 1.94 

 
Table 4b: The ratio real/1/2 for various values of the localization parameter 2R and the 
standard deviation E at T = 400 K. Italic=Gaussian transport, bold=dispersive 
transport. The values E between 0.07 eV and 0.14 eV are presented.


E [eV] 
 
2R

0.08 0.09 0.10 0.11 0.12 0.13 0.14 

3 1.98 2.22 2.10 2.00 2.25 1.92 1.84 
5 2.27 1.71 1.89 2.34 1.74 -- -- 
7 2.04 2.01 1.82 1.69 2.01 -- -- 
9 2.10 2.03 2.23 1.98 2.80 -- -- 

11 -- -- -- -- -- -- -- 
13 1.89 -- -- -- -- -- -- 

 
Table 5a. The ratio real/1/2 for various values of the localization parameter 2R and the 
standard deviation E at T = 500 K. Italic=Gaussian transport, bold=dispersive 
transport.  The values E between 0.01 eV and 0.08 eV are presented.

E [eV] 
 
2R

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

3 1.08 1.01 1.08 0.96 0.98 1.04 1.04 1.48 
5 2.02 2.14 2.06 1.78 2.11 2.44 2.06 2.31 
7 2.01 2.15 2.26 2.59 2.06 2.04 1.83 1.69 
9 1.93 2.17 1.90 2.16 2.13 1.58 1.69 1.84 

11 1.69 1.82 1.80 1.70 1.81 1.89 1.71 -- 
13 1.55 1.62 1.65 1.91 1.60 2.02 1.83 -- 
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Table 5b. The ratio real/1/2 for various values of the localization parameter 2R and the 
standard deviation E at T = 500 K. Italic=Gaussian transport, bold=dispersive 
transport.  The values E between 0.09 eV and 0.16 eV are presented.

E [eV] 
 

2R

0.09 0.10 0.11 0.12 0.13 0.14 0.15 

3 1.40 1.50 1.53 1.70 1.61 1.42 1.69 
5 2.18 1.61 1.91 1.57 1.57 1.61 1.78 
7 1.82 1.93 1.87 2.04 2.05 1.93 -- 
9 1.74 1.89 2.34 2.08 2.01 2.35 -- 

11 -- -- -- -- -- -- -- 
13 -- -- -- -- -- -- -- 

 
The errors for the data corresponding to 200 K are also depicted in this figure. It 
results from the figure that for all the values of 2R the  real/1/2 ratio may be 
assumed to exceed 2 a little for T = 200 K. The data for 500 K shows the ratio to 
be a little lower. One point obtained for the lowest value of  2R (corresponding 
to the Gaussian transport) diverges significantly from the others. This means that 
for the lowest values of R (i.e. for the weaker localisation of the localised 
electron wave-function) the ratio real/1/2 drops down from its most frequent 
value of about 2. This is confirmed by Fig. 2 showing the function  real/1/2 vs. 
the standard deviation E for T = 500 K and 2R = 3. For all the cases of  the 
 

 
Fig. 2. real/1/2 as a function of the standard deviation E describing the energetic 

disorder of the system.   Gaussian transport,   dispersive transport. T = 500 K, 
2R = 3. 
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Gaussian transport (occurring up to E = 0.08 eV) the ratio real/1/2 remains 
close to 1, starting to increase at E = 0.08 eV, for which the dispersive transport 
begins to dominate. It seems that the increase of the ratio real/1/2 for the 
dispersive transport takes place for the lowest value of R first of all (see also 
Tables 15) except for the temperature 100 K, where the increase is not so 
evident. For the higher values of R the change of the kind of transport does not 
influence the value of real/1/2 so evidently. For instance, the ratio can be 
regarded equal to about 2 for all values of  E at 2R = 9 (see Fig. 3).  It results 
from the data  
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Fig. 3. real/1/2 as a function of the standard deviation E describing the energetic 

disorder of the system.   Gaussian transport,   dispersive transport. T = 500 K, 
2R = 9. 

 
presented in the tables that the values of drift mobility in dispersive hopping 
systems obtained from direct application of Batra model are underestimated. 
The ratio real/1/2 is close to 2 for the most of  the cases investigated.  
No clear difference (except for the lower values of R) in this ratio for 
Gaussian transport and the dispersive transport has been found. Having the 
data depicted in Tables 15 and the estimated values of E and 2R one can 
estimate the real value of drift mobility in a hopping system from the 
discharge pulses obtained under open-circuit conditions. An example of 
application of the simulation results for experimental data is presented in 
section 3.2. 
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2.2. Comparison with experimental results 
 

Diamond-like carbon (DLC) thin films is an example of an amorphous 
system, in which the charge transport is dominated with hopping transport in 
a narrow band of  localised states [13-15].  The values of the drift mobility 
1/2 found from the discharge curve are shown in Fig. 4 [13]. The values of 
the  parameter -1 in DLC  films was  found to  be about 1.01.2 nm [19].  
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Fig. 4. Drift mobility of electrons in DLC thin films.   mobility values obtained 

directly from Batra model [13],   real values of mobility obtained from the 
factor real/1/2 resulting from Fig. 3. 
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Fig.5. Relations between the activation energy of mobility and the standard deviation E 

  for various values of 2R. The relations are described by the equations: for 
  2R = 9 W = 1.0366E-0.0079 eV; for 2R = 11 W = 1.2716E-0.0141 eV;  for 
  2R = 13 W = 1.6029E-0.0192 eV. 



                           Dispersive charge transport in hopping systems                      15 
 

The average distance of R in DLC films was found to be 5÷7 nm [20]. This 
gives the value of 2R equal to about 10. To find the ratio real/1/2 one must  
find the value of the standard deviation E for the case investigated. This can be 
found from the data published previously [9] and for completeness and clarity of 
the paper presented in Fig. 5. As seen from the figure, the value of E 
corresponding to the experimentally found activation energy W = 0.03 eV  
[13, 20] is close to 0.04 eV. Fig. 6 shows the ratio real/1/2 for both 2R = 9 and 
2R = 11 assuming E = 0.04 eV. The figure shows, that for the case considered 
the ratio real/1/2 is close to 2.6. This enables to find the real values of the 
mobility presented in Fig. 6 to compare the values to those obtained directly 
from Batra model. 
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Fig. 6. real/1/2 ratio for E = 0.04 eV and 2R = 9 and 2R = 11. The full line gives the 

   ratio for the parameters which result from the estimations given in the text. 
 
 

3. CONCLUSIONS 

The following conclusions result from the presented simulation data: 
1. In case of systems dominated with hopping transport the drift mobility 

obtained from direct application of Batra model is usually underestimated 
both for the case of Gaussian and dispersion transport. Only for the higher 
temperatures (T = 500 K) and weak localisation (2R = 3) direct application 
of Batra model gives correct results. 
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2. For most of the cases investigated the ratio real/1/2 is close to 2 regardless of 

the kind of transport dominating. However, for some cases (weak localisation 
2R = 3, high temperatures) the change of kind of transport leads to 
detectable change of the ratio real/1/2

 . 
3. In general the ratio real/1/2 slightly increases with increasing standard 

deviation E describing the off-diagonal disorder, though in some cases the 
increase is not quite evident and could be interpreted as stochastic 
oscillations within the simulation error. 
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DYSPERSYJNY TRANSPORT ŁADUNKU  
W UKŁADACH PRZESKOKOWYCH  

W WARUNKACH OBWODU OTWARTEGO: 
SYMULACJA KOMPUTEROWA 

 
Streszczenie 

 
Badano stosowalność teorii opisujących rozładowanie cienkich warstw 

izolatorów z przeskokowym transportem ładunku w warunkach obwodu otwartego. 
Pokazano, że wartości ruchliwości otrzymane w wyniku zastosowania tych teorii 
do układów dyspersyjnych są niedoszacowane. Symulację wykonano dla 
układów, w których transport przeskokowy odbywa się w wąskim paśmie  
w pobliżu poziomu Fermiego. Otrzymane wyniki zastosowano do reinterpretacji 
wyników badań ruchliwości w warstwach DLC.  




