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MODIFICATION OF BRAGG-WILLIAMS 
APPROXIMATION APPLIED IN JACKSON’S MODEL 

OF CRYSTAL GROWTH 
 
 

Results of Monte Carlo simulations for single-layer solid-fluid 
interface were compared with Bragg-Williams approximation, which 
describes the number of bonds between solid and fluid cells in 
Jackson's crystal growth model. The comparison shows that Bragg-
Williams approximation produces much higher values than those 
resulting from simulations. The use of better approximations based on 
the results of the simulation does not lead directly to improvement of 
predictions given by Jackson’s model, but rather reveals further 
problems. In particular, the estimation of entropy seems to be also very 
overvalued. Monte Carlo simulations were used also to investigate the 
number of stable states of a single boundary layer for various crystal 
growth conditions. The results obtained differ significantly from those 
resulting from the analysis of free energy minima in Jackson’s model, 
but are in good agreement with the results of multi-layer simulations. 
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1. INTRODUCTION 

 
1.1. Motivation and aim of the paper 

 
Jackson’s one-layer model describes the crystal-mother phase interface 

using very simple statistics and provides the results concerning crystal growth 
mechanisms. Although its serious limitations are known (see e.g. [1]) and many 
years have passed since the first publication in 1958 [2], the model is still 
interesting because of its didactic importance: it is relatively easy to understand, 
illustrates a number of essential concepts for the science of crystal growth, and 



26 M. Izdebski  

allows to derive an analytical solution. The model has been extended by 
Mutaftschiev [3] for two-layers interface and later generalized by Temkin [4,5] 
to multi-layers model. Allowing a thicker interface influenced the results 
noticeably, but this was achieved at the cost of more difficult solving of the 
obtained equations. Meanwhile, a number of other rough approximations remain 
in all of these models and they are suspected of spoiling the final results. For this 
reason, confrontation with studies based on computer simulations does not show 
satisfactory compliance. 

The main purpose of this work is to improve the Bragg-Williams 
approximation employing Monte Carlo simulations of crystal growth. Due to 
the simplicity of Jackson’s model we focused in this work on the case of 
single-layer interface. Bragg-Williams approximation describes the total average 
number Nsf of solid-fluid bonds between closest-neighboring units 
 Nsf = z xs (1 – xs), (1) 
where z is the number of the closest neighboring cells and xs = Ns/N is the 
fraction of solid cells in the interface layer, i.e. the ratio of the number of solid 
cells Ns to the number of all cells N. Since solid on solid (SOS) assumption is 
applicable in Jackson’s model, only lateral neighbors are taken into account. 
Typically the cubic and tetragonal crystals are considered and z = 4. 

The Bragg-Williams approximation is based on the assumption of ideally 
random mixing of solid and liquid cells. Such an assumption is justified in the 
case of gas mixture, whereas for the crystal-mother phase interface it seems 
to contradict well known crystal growth mechanisms, e.g. growth by 
two-dimensional nucleation. Any form of grouping of one type cells leads to a 
reduction in the number of solid-fluid bonds Nsf in comparison to a random 
mixture. The great advantage of Monte Carlo simulation is the lack of any 
assumptions about the ordering of elementary units. 

An additional goal of this work is to find stable states of single-layer 
solid-fluid interface for various growth conditions on the basis of the evolution 
of the interface during Monte Carlo simulation. The results of such analysis are 
confronted with the analysis of free energy minima known from the Jackson’s 
approach. This approach should reduce the methodological differences between 
Jackson’s thermodynamic model and Monte Carlo simulations. 
 

1.2. Jackson’s model 
 
 Jackson's model of crystal-mother phase interface was described step by 
step in some previous papers [1,2]. Here we recall only briefly some selected 
fragments, which are important for understanding of this work. We also tried to correct 
some minor editorial mistakes, which were found in the formulas given in [1]. 
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The conditions of crystal growth in Jackson’s model are described by two 
coefficients: the Temkin coefficient α and the coefficient β related to kinetic 
roughening. The Temkin coefficient is defined as 

 
kT
z Φ=α , (2) 

where z = 4 for the assumed cubic or tetragonal crystal, k is the Boltzmann 
constant, T is the temperature, and Φ is a change in bond energy when a solid 
cell in a pure solid crystal and a fluid cell in a pure fluid area are exchanged  

 )(
2
1 ffsssf Φ+Φ−Φ=Φ . (3) 

The symbols Φsf, Φss and Φff denote negative energies related to solid-fluid, 
solid-solid, and fluid-fluid bonds, respectively. 

The second parameter β describes the driving force of crystallization 

 )1ln(sf σ+=µ−µ=β
kT

, (4) 

where µf and µs are the standard chemical potentials of the fluid and liquid cells, 
respectively, and σ is relative supersaturation of mother phase. 

In Jackson’s thermodynamic model a two-dimensional 100% solid crystal 
and a 100% fluid area was taken as a reference state. The free energy Fr of this 
reference system depends on the number Ns of solid cells and the number Nf 
of fluid cells 
 Fr = µs Ns + µf Nf . (5) 
The change of free energy due to the mixing of solid and fluid cells is given by 
 ∆Fmix = ∆Umix – T ∆Smix , (6) 
where ∆Umix and ∆Smix are the energy of mixing and the entropy of mixing, 
respectively. Total change of free energy is 
 ∆F = Fr + ∆Fmix . (7) 
The energy ∆Umix in Eq. (6) depends on estimation of the number Nsf 
of solid-fluid bonds in the mixture 
 ∆Umix = NKTα Nsf . (8) 
Assuming random mixing of the blocks, Bragg-Williams approximation given 
by the formula (1) may be substituted into Eq. (8). The entropy ∆Smix in Eq. (6) 
is given by Boltzmann expression 
 ∆Smix = k ln(g). (9) 
where g is the number of configurations of the system under consideration. 
All possible states are treated as equally probable. For the reference state g = 1 
and after mixing 
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After some transformations the following formula can be derived:  

 ssssssss   )1ln()1(ln)1()( xxxxxxx
NkT

F
xf β−−−++−α=∆= . (11) 

The function f(x) has one or two minima depending on the crystal growth 
conditions given by the α and β parameters (see e.g. Fig. 1). In the case of 
thermodynamic equilibrium state β = 0 the function (11) has only one minimum 
for xs = 0.5 when α < 2 and two minima for xs close to 0 and 1 when α > 2. 
It means that one phase consisting of 50% solid cells mixed with 50% fluid cells 
is stable when α < 2, and large nearly solid domains separated by nearly fluid 
regions are stable when α > 2. The critical value αc of α for supersaturated 
mother phase (β > 0) is higher than 2 and increases with increasing value of β. 
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Fig. 1. Relative free energy ∆F/NkT described by the formula (11) as a function of the 

fraction xs of solid cells in the interface, plotted for Temkin coefficient α = 3 
taken as an example, and various values of parameter β 

 
2. MONTE CARLO SIMULATIONS 

 
2.1. Simulation algorithm 

 
Our Monte Carlo simulations are based on the algorithm known 

from the early papers of Gilmer and Bennema [6,7]. In order to adopt this 
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algorithm to the specific properties of Jackson’s model the following 
modifications were made: 
1) Surface diffusion was omitted, i.e., the length of diffusion path Xs = 0. 
2) Solid-fluid interface was limited to one layer of growth units. In contrast to 

multi-layer simulations, it is necessary to introduce an additional lock for 
these creations and annihilations, which cannot be performed inside fixed 
boundary layer for given (x, y) coordinates. According to solid on solid 
(SOS) assumption all layers below the single-layer interface are always 
completely filled with solid blocks and all layers above the interface are filled 
with only fluid blocks. 

In our simulations the solid-fluid interface was described by an array 
of 200 × 200 growth units. This size was chosen as a compromise between 
the time necessary to carry out our numerous simulations and the reliability 
of the obtained results [8]. 
 

2.2. Methods for analysis of simulation results 
 

The results of performed single-layer Monte Carlo simulations were used to 
obtain the following data: 
1) Changing the interface state during the simulation enabled calculation of the 

average number of solid-fluid bonds Nsf as a function of the fraction xs of 
solid blocks. In order to reduce fluctuations of the results, each forward and 
backward crossing through each of 200 selected values of xs was registered. 

2) During the simulation run for a sufficiently long time, single-layer interface 
reaches steady state, and only small fluctuations around the average stable 
value of xs are recorded. We concluded from the observations that the number 
of possible stable values of xs is one or two and it depends on the conditions 
of crystal growth. The results presented in such form have two useful 
features: (a) the analogy to the analysis of free energy minima in Jackson's 
model is clearly visible, (b) the transition between one and two stable values 
of xs is sharp for small changes in growth conditions. 

The simulation was carried out at least twice for each set of � and � 
parameters, applying different initial conditions: xs,init = 0 (completely liquid 
interface) and xs,init = 1 (completely solid interface). When existence of two 
considerably different stable values of xs was detected, numerous additional 
simulations were performed, starting with purely random mixture of solid and 
fluid growth units in the interface for xs,init = 0.5. The results obtained during 
rapid grouping of units of the same type for xs oscillating near 0.5 were omitted 
from our diagrams. 
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2.3. Frequencies of creation and annihilation 
 

The results presented in this paper relate to the crystal growing from 
solution. According to the formulae derived by Binsbergen the frequencies 

of creation +
ik  and annihilation −

ik  are [9]: 
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The frequency ft is 
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where ∆Gη is a free energy of activation of viscous flow or of rotational 
diffusion. 
 In the case of the growth from vapour different formulas should be used, 
which are given e.g. in Refs. [6,7]. Application of these formulas, however, 
leads to very similar results. 
 

3. RESULTS 
 

3.1. Thermodynamic equilibrium state 
 

We will start by considering a state of thermodynamic equilibrium, which 
corresponds to β = 0. The results of our Monte Carlo simulations show that 
Bragg-Williams approximation given by formula (1) is quite good only when α 
is close to zero. This approximation becomes more and more overvalued with 
increasing values of α for a wide range of xs (Fig. 2). Monte Carlo simulations 
and formula (1) give similar results only for the interface layer almost 
completely filled with blocks of the same type. The dependencies Nsf /N on xs 
obtained using both these approaches have the diagonal asymptote Nsf /N = 4xs 
for xs → 0 and the asymptote Nsf /N = 4(1 - xs) for xs → 1. 

The results of Monte Carlo simulation suggest that the following empirical 
formula can be proposed instead of the Bragg-Williams approximation: 
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 [ ])1(sf ss1
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SN

N
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where S is an empirical parameter depending on Temkin coefficient α. The plots 
of the function (15) for various values of α with values of S adjusted for best fit 
to simulation results are shown in Fig. 2. The function reaches its maximum 
for xs = 0.5 
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Fig. 2. Average number Nsf of solid-fluid bonds to the number N of cells as a function 

of the fraction xs of solid cells in the interface layer plotted for β = 0. Circles 
show the results of individual Monte Carlo simulations, solid lines are plotted 
according to the function given by the formula (15) 

 
The results of simulations show that the S(α) dependence is a nearly linear 
function S = α for α close to zero and tends to another linear relationship with a 
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much larger slope coefficient A for large values of α. These observations allow 
us to propose an empirical formula: 

 [ ]1ln
1

)( )( +−+α=α −α CBe
B

A
S , (17) 

where A = 199.40, B = 1.8947, C = 4.8157 are dimensionless constants. The 
values of these constants were calculated by least-squares method for the 
smallest difference between the values of (Nsf /N)max resulting from Monte Carlo 
simulations and the approximation (Nsf /N)max = f(S(α)) obtained by substitution 
of Eq. (17) into (16). The results of simulations and their approximation are 
shown in Fig. 3. 
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Fig. 3. Maximum values of the Nsf /N ratio for xs = 0.5 obtained from Bragg-Williams 

approximation (1) and Monte Carlo simulations carried out for β = 0. Circles 
show the results of individual Monte Carlo simulations for various values 
of α, solid line represents the approximation obtained by substitution of Eq. (17) 
into (16) 

 
In the case of α = 0 the approximation given by formula (15) becomes very 

close to Bragg-Williams approximation (1). The exact equality of these two 
approximations would come for S = 0 

 [ ] )1(41
4
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)1(

0
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S
xSx

S
−=− −

→
. (18) 

However, because of the approximate nature of Eq. (17) we obtain S ≈ 0.0114 
for α = 0, which corresponds to (Nsf /N)max ≈ 0.9986 according to Eq. (16). 
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3.2. Kinetic roughening 
 

Crystal surface can become rough due to two main reasons: (a) temperature 
and (b) the supersaturation of the mother phase, which leads to crystallization. 
The existence of a driving force for crystallization (β > 0) should therefore 
increase the number of solid-fluid bonds Nsf in comparison to the equilibrium 
state discussed in previous chapter. This effect, called kinetic roughening, 
becomes visible when the temperature roughening gradually loses importance 
with increasing Temkin coefficient α (see Fig. 4). Moreover, kinetic roughening 
has the greatest importance for the values of x far from 0 (fully fluid layer) and 1 
(fully solid layer). It should be pointed out, however, that this state becomes 
more and more unstable with increasing values of the α and β coefficients. 
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Fig. 4. Average number Nsf of solid-fluid bonds to the number N of cells as a function of 

the fraction xs of solid cells in the interface layer plotted for various values of β 
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3.3. Stable states of solid-fluid interface 
 

The results of our Monte Carlo simulations indicate that single-layer 
interface does not affect noticeably the estimation of the critical value αc 
of Temkin coefficient α for the transition between the continuous and layered 
growth mechanism. The transition between one and two possible stable values 
of xs (fraction of solid blocks in the interface) was observed for αc ≈ 3.4 in 
thermodynamic equilibrium state β = 0. This result is consistent with a value 
of 3.2…3.5 estimated on the basis of crystal surface roughening observed 
in multi-layer simulations for β close to 0. 
 

4. DISCUSSION 
 

The kinetic roughening phenomena considered in Section 3.2 manifest 
themselves most clearly in conditions which are also the most unstable. 
Thus, the approximation of Nsf(xs) dependence proposed in Section 3.1 for 
β = 0 seems to be acceptable also for β > 0. Such an approximation is 
slightly underestimated, but it is certainly better than highly overestimated 
Bragg-Williams approximation. 

Jackson’s model of the crystal-mother phase interface leads to estimation 
of free energy in the form given by formula (11). Replacing only the 
Bragg-Williams approximation with the approximation based on the results 
of Monte Carlo simulations causes a radical change in estimation of free energy 

 [ ] sssss
)1(

 )1ln()1(ln1 ss xxxxxe
SNkT

F xSx β−−−++−α=∆ − , (19) 

where the dependence of the S parameter on Temkin coefficient α is described 
by Eq. (17). After making this change the free energy given by the formula (19) 
has only one minimum (for xs = 0.5 in the equilibrium state β = 0) irrespective of 
the value of α. Unfortunately, this result indicates that the model completely 
stopped working! Such a negative result does not imply, however, that the 
results provided by Monte Carlo simulations are definitely wrong. We believe 
rather that the reliability of other components included in the calculation of free 
energy in the Jackson’s model is also questionable. The impression that the 
model in its original form works more or less correctly is the result of 
cumulative effects of several very rough approximations. In particular, the 
entropy calculated using the Boltzmann expression (9) seems to be highly 
overvalued. The various possible configurations of solid and liquid blocks in the 
interface layer can vary significantly in terms of their likelihood. For this reason, 
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estimation of entropy is a task much more complicated than in the Boltzmann’s 
approach and needs some further works. 

According to the results of our single-layer Monte Carlo simulations the 
transition between one and two possible stable values of xs was observed for 
αc ≈ 3.4 in thermodynamic equilibrium state β = 0. This result is consistent with 
multi-layer Monte Carlo simulations, but predictions based on the original 
Jackson's model differ significantly – the transition between one and two 
minima of the function ∆F(xs) given by the formula (11) occurs for αc = 2.0. 
We are convinced that the main reason of this discrepancy is the assumption 
of purely random mixing of solid and liquid cells in the interface used in 
Jackson’s model. This assumption underlies Bragg-Williams approximation as 
well as Boltzmann expression describing the entropy. 

6. CONCLUSIONS 

The assumption of a single-layer crystal-mother phase interface applied 
in Jackson’s model does not seem to cause significant error. This assumption 
is very beneficial to simplify the analysis of the formulas obtained. However, 
there is also a number of other very rough approximations, which are common to 
single-layer Jackson’s model and multi-layer Temkin’s model. In this paper we 
proposed to replace Bragg-Williams approximation by an approximation based 
on the results of Monte Carlo simulations, in which the formation of groups 
of solid blocks is taken into account. Differences between the proposed 
approximation and the Bragg-Williams approximation clearly increase with 
increasing value of Temkin coefficient. Introducing just this one improvement in 
Jackson's model did not lead to satisfactory results but further problems have 
become more visible. In particular, the next problem that should be considered 
is a more realistic estimation of the entropy. 
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MODYFIKACJA PRZYBLI�ENIA  
BRAGGA-WILLIAMSA W MODELU JACKSONA 

WZROSTU KRYSZTAŁÓW 
 

Streszczenie 
 

Wyniki symulacji Monte Carlo dla jednowarstwowej granicy faz 
porównano z przybli�eniem Bragga-Williamsa, które w modelu Jacksona 
wzrostu kryształów opisuje liczb� wi�za� mi�dzy blokami stałymi i ciekłymi. 
Porównanie to pokazało, �e przybli�enie Bragga-Williamsa daje znacznie 
wi�ksze warto�ci od tych otrzymanych na podstawie symulacji. Zastosowanie 
lepszego przybli�enia opartego na wynikach symulacji nie prowadzi wprost do 
poprawy przewidywa� modelu Jacksona, lecz raczej ujawnia kolejne problemy. 
W szczególno�ci oszacowanie entropii wydaje si� tak�e bardzo zawy�one. 

Symulacje Monte Carlo zastosowano tak�e do zbadania liczby stanów 
stabilnych pojedynczej warstwy granicznej w zale�no�ci od warunków wzrostu 
kryształu. Uzyskane wyniki ró�ni� si� znacznie od tych wynikaj�cych z analizy 
liczby minimów energii swobodnej w modelu Jacksona, natomiast pozostaj� 
w dobrej zgodno�ci z wynikami symulacji wielowarstwowych. 


