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VERIFICATION OF ONE-DIMENSIONAL MODELS 

DESCRIBING ANISOTROPY OF STEP GROWTH 

Models that allow to obtain directional dependencies of normal 

velocity of a straight step on the (001) face of Kossel crystal and its 

edge free energy are reviewed. The dependencies were considered in 

a wide range of crystal growth conditions, which showed some 

significant discrepancies between the models and limitations in the 

scope of their applicability. The results presented concern on 

one-dimensional kinetic and thermodynamic models of a single step. 

Keywords: step growth, Burton Cabrera Frank theory, Monte Carlo simulation 

of crystal growth. 

1. INTRODUCTION

The growth of a perfect crystal is possible only when nuclei of critical size 

are forming on its surface. However, the rate of creation of critical nuclei, which 

can be estimated on thermodynamical basis, is too small to explain many 

experimental data on the growth rate. This observation led Frank to formulate 

suggestions that those crystals which grow are not perfect and the steps on the 

crystal surface are generated by dislocations [1]. Therefore, a need arose to 

develop theoretical models predicting the structure of the step, its edge free 

energy, velocity of motion and their directional dependencies. Among the 

published works, the theory developed by Burton, Cabrera and Frank (BCF) in 

1959 [2] is particularly well known and is still cited in recent papers. While the 

BCF theory is based on thermodynamic grounds, a kinetic approach has been 

applied in some other works. The latter include mainly analytical approach 

based on a stationary kinetic equation method [3-5] and some fragmentary 

results obtained using of one-dimensional (1D) Monte Carlo (MC) simulations 

[6] and two-dimensional (2D) MC simulations [7-9]. Although many other 

works on crystal growth are known from the literature, most of them do not 

provide any quantitative description of anisotropy of step growth. 
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The motion and interaction of the spirals generated by different dislocations 

significantly affect the kinetics of crystal growth. However, available 

quantitative analyzes of this effect are still focused on a particularly simple case 

of isotropic spirals [10-14]. In the anisotropic case, an equation describing time 

evolution of any contour may be formulated as in Ref. [15] based on the 

Ginzburg-Landau theory 
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where  is the local displacement of the contour in the normal direction n, D is 

a transport coefficient,  is the angle between n and any fixed vector in the 

system, R is the local radius of curvature of the contour,  is the area covered by 

a single growth unit, and   = F is the edge free energy per unit length of the 

contour. As can be seen from Eq. (1) the coefficient D is proportional to the normal 

velocity V of straight step. In the isotropic case Eq. (1) reduces to the form 

known the BCF theory d/dt = V(1  Rc/R), where Rc is the critical radius. For 

the anisotropic motion, the directional dependencies D() and F() must be 

known from other models. 

The aim of this work is to review the directional dependencies D() and 

F() resulting from models known from the literature, critical analysis of results 

obtained in a wide range of parameters characterizing crystal growth conditions 

and drawing some conclusions. Due to the wide range of necessary analyzes, we 

will focus in this work on 1D models. Although the 1D one-dimensional 

approach is relatively old, it still remains the only one for which a completely 

analytic derivation of the D() and F() dependencies is known from literature. 

2. THEORY

All the works that concern one-dimensional models use some common 

assumptions to simplify description of a microscopic state of a step. First of all, 

only the (001) face of Kossel crystal is considered. Moreover, the assumption 

known as "solid-on-solid" is applied for two perpendicular crystallographic 

directions, which allows one to describe the state of a step by 1D array h(x) 

containing the heights of columns of solid blocks in monoatomic layer (Fig. 1). 

This restriction excludes overhangs in a step, and limits all possible processes to 

locations lying on the edge of the step. The difference of columns heights at the 

two neighbouring locations h(x + 1)  h(x) determines the height of kink k, which 

may take any integer values 0, 1, 2,... measured in lattice constant units. 
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Fig. 1. The growth step on the (001) face of Kossel crystal considered as a columns of 

solid blocks in monoatomic layers 

Let X(k) be the probability of finding a kink of height k. The probability of 

finding any kink is 

1)( 
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k

kX . (2)

Following the works [2,5], the average orientation of the step will be described 

by the parameter h 
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where  is the angle between the step and the +x crystallographic axis (Fig. 1). 

Correlation between kinks at neighbouring locations leads to a system of 

equations, which has not been solved analytically. Therefore, the correlation was 

neglected in analytical works, including both the BCF theory and the works 

based on kinetic equations. Hence, the approximate value of the probability 

X(k1, k2, …) of finding a given combination of neighbouring kinks [2, 4, 5] is 

)()(),,( 2121 kXkXkkX   . (4) 

The correlation may be, however, examined by MC simulations. 

Further derivations of probabilities X(k) are different in the BCF theory and 

in the approach based on kinetic equation. 

2.1. BCF model 

The paper publisher by Burton, Cabrera and Frank [2] refers to a number of 

2D and 3D concepts, such as two-dimensional nucleation and growth pyramids. 

In this work, however, we refer only to that part of the paper where the problem 

of the structure of a step is a 1D problem. 
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In the BCF theory, particular processes between some selected 

configurations of kinks in equilibrium have been considered (a detailed 

description of the processes taken into account can be found in Appendix C of 

Ref. [2]). If the energies of the two configurations are the same, the probabilities 

of their occurrence are equal X(k1, k2, …) = X(k'1, k'2, …). When the energy SS 

of solid nearest neighbours interaction must be supplied in going from 

(k1, k2, …) to ),,( 21 kk   configuration, the probabilities satisfy the following 

relationship 
2

2121 ),,(),,(  kkXkkX . (5) 

The term  in Eq. (5) is defined as 

  = exp(SS/2kBT), (6a) 

where kB is the Boltzmann constant and T is temperature. In the original 

formulation of the BCF theory, only the energy SS of solid-solid bonds is taken 

into account. Following thermodynamic models of Jackson [16,17] and Temkin 

[18] as well as kinetic models [5,6,19-21], we will also include the energies FF 

and SF of fluid-fluid and solid-fluid bonds. Each process considered in BCF, 

which leads to a change in the configuration of atoms without changing the 

number of atoms forming a crystal, is associated with a change in the energy by 

a certain multiple of factor /2. Equation (6a) can therefore be generalized as 

  = exp(/4), (6b) 

where  is the Jackson-Temkin parameter 

 = (2SS + 2FF  4SF)/kBT. (7) 

It can be proved from equations (2)-(5) that the following relations must be 

satisfied [2] 
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where 0  g  1 and 
2gg , (9) 
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The dependence of the normal velocity of a straight step on its direction 

V(h) has not been proposed in the original formulation of the BCF model. 

Following the argumentation presented e.g. in Refs. [15, 22], crystal growth 
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occurs primarily by the absorption of atoms at kinks. Consequently, the transport 

coefficient D and the normal velocity V are proportional to the density of 

kinks C 

D(h) ~ V(h) ~ C = [1  X(0)](1 + h2)1/2, (13) 

where [1  X(0)] is the density along the [1,0,0] direction and the term 

(1 + h2)1/2 = cos allows to obtain the density per unit length of the step. 

In the BCF theory the configurational free energy per unit length of 

a straight step was found as F = (U  TS)(1 + h2)1/2/N. The internal energy of 

the step is U = (N + NSF)kBT/4, where NkB /4 is the energy of a perfectly 

straight step and 
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k

kXkNN )(||SF  is the increase in the number of

solid-fluid bonds due to the formation of kinks. The entropy S is given by the 

Boltzmann formula S = kBlnW, where W is the number of ways in which 

[1  X(0)]N kinks of any height can be arranged in N locations. In this 

calculation X(k)N kinks of a given height k are treated as undistinguishable, 

while the kinks of different heights are distinguishable. This reasoning together 

with equations (2), (3) and (8) allows us to derive the formula 
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The approach based on the kinetic equation (which is discussed is section 2.2) 

may lead to other values of (g+g), X(0), g+, g than those given by Eqs. (9)-(12) 

but the formula (14) still remains correct. In the particular case when the 

solution (9) can also be used, the formula (14) simplifies to the form known 

from the original formulation of the BCF theory [2] 

   2/12
B )1(ln)0(ln4/)1( 

  hghXhTkF . (15) 

2.2. Kinetic analytical approach 

In the kinetic approach, the rates dX(k)/dt are associated with fluxes of 

molecules being created and annihilated at the edge of the step. In particular, 

where diffusional processes are neglected and approximation (4) is applied we 

get the following equality for a stationary state [5] 
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and +(k1, k2) and (k1, k2) are the frequencies of creation and annihilation, 

respectively, at a column between a kink of height k1 on the left and k2 on the 

right. The stationary normal velocity of the step is given by 
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where a is the lattice constant. 

If + and  depend only on the signs of k1 and k2 (negative, zero or 

positive), but do not depend on the height of a kink, the exact solution of Eq. 

(16) is again in the form (8). Moreover, taking advantage of Eqs. (2), (3) and (8) 

one can express  = g+ + g as a function of  = g+g and of the average step 

orientation h [5] 

  )1()1(4)1( 2222 hhh  . (20) 

The value of  appear to depend on the choice of the + and  frequencies. 

There are two different types of dynamics known from classic works on 2D MC 

simulations [19-24] which were later adapted to 1D simulations [6] and 1D 

analytical models [5]: 

A) In the case of growth from vapour, no energy barrier exists for attaching the

atom to the crystal and the frequency of creation does not depend on the local

configuration of neighbouring atoms
  etf ,    2/)2(exp ii . (21) 

B) If the free energy of activation of viscous flow in the mother phase is very

important then the rates are symmetric

 2/4/)2(expt  ifi ,  2/4/)2(expt  ifi . (22) 

In equations (21) and (22) ft denotes a constant factor with a dimension of 

frequency, i is the number of nearest solid neighbours, and the conditions 

of crystal growth are given by Jackson-Temkin parameter  defined by Eq. (7) 

and the second parameter 

 = (f  s)/kBT, (23) 

where f and s are the chemical potentials of fluid and solid particles. In the 

case of 2D models, the number i = 0, 1, 2, 3, or 4 when the neighbour in the 
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previous completely solid layer is omitted. The second SOS assumption made in 

1D models limits the possible values to: 
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The use of dynamics (21) in the kinetic equation (16) leads to 
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Here we have corrected an editorial error in the formula (25) that was previously 

made in Ref. [5], while the other formulae and plots seem to be correct. The 

dynamics (21) together with Eqs. (2), (8) and (19) allow to determine 

the following normal velocity of the step [5] 
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The dynamics (22) substituted into the kinetic equation (16) leads to [5] 
2/e  , (27) 

which means that the structure of the step is always the same as in equilibrium 

state ( = 0). The velocity (19) for the dynamics (22) takes the form [5] 
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The edge free energy has not been considered in works [3-6] employing the 

1D kinetic approach but the formula (14) resulting from the BCF theory may 

always be applied together with the results of kinetic analytical approach. 

Unfortunately, it is difficult to indicate any method suitable for MC simulation, 

where the lack of correlation between neighbouring kinks may not be assumed. 

2.3. Kinetic one-dimensional Monte Carlo simulations 

In 1D MC simulations the current state of solid-fluid interface is described 

by the array h(x) stored in computer memory and updated after each random 

event. Therefore, the frequency of creation and annihilation are always 

unambiguously known for every possible location x, and the probabilities X 

together with the approximations (4) and (8) are no longer needed. In order to 

obtain the assumed step orientation , the ends of the array h(0) and h(N  1) are 

connected cyclically with an additional shift in the direction of the Y axis. The 

normal velocity of the step results directly from the increase N in the number 

of atoms in the crystal at the time t [6, 21] 
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where j is the time passing between the j-th and the next elementary event, and 
F
ijn  and 

S
ijn  are numbers of fluid and solid blocks at the interface, respectively, 

surrounded by i solid lateral neighbours after the j-th event. 

The algorithm of MC simulations of crystal growth described by Gilmer 

and Bennema in Ref. [19] is one of the simplest to implement, but also one of 

the least effective, especially for high values of the  parameter. In this work, 

we use an algorithm, which is a 1D version of the quick algorithm described in 

Ref. [21]. The choice of the algorithm, however, should affect only the time 

necessary to complete the simulation but not the results of simulations. 

3. RESULTS AND DISCUSSION

This is known from 2D MC simulations that the layer-by-layer growth 

mechanism manifests itself on the (001) face of Kossel crystal when 

 > 3.2 ... 3.5 [25]. According to our best knowledge, the predictions resulting 

from 1D models described in section 2 have not been analyzed before for such 

small values of . In addition, only the plots of the growth velocity (V/cos) in 

column direction Y (see Fig. 1) have been presented in previous papers on the 

kinetic approach (see e.g. [5, 6]), which makes it difficult to assess the normal 

velocity V. The V() and F() dependencies given by the formulas (13) and (15) 

resulting from the BCF theory have been used to plot some spirals growing 

around screw dislocations (see, e.g. Ref. [15]). However, the plots of these 

dependencies probably have not been presented and discussed anywhere. 

3.1. BCF model 

The dependencies derived in Chapter 2 on the basis of 1D description of the 

step, apply directly only to the orientations 0    45 [2,15]. The use of these 

dependencies for any step may therefore require additional relationships 

resulting from the symmetry of assumed (001) face of Kossel crystal, such as 

e.g. V() = V() and V(45°  ) = V(45° + ). However, as can be seen in Figs. 

2, 4 and 5, the functions V(), F(), d2F()/d2 appearing in Eq. (1) are not 

smooth in the extended range of  and the results obtained for  = 45° + n 90° 

should be considered as non-physical. Unfortunately, we cannot even say 

that the functions are nearly smooth with some good approximation for 

layer-by-layer growth mechanism when   3.5 … 8. 
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The minimum and maximum of the V() dependence can be expected 

for  = 0° and  = 45° [7-9, 15]. The ratio of normal velocities V(45)/V(0) 

is therefore useful as a measure of the anisotropy of normal velocity. It can be 

seen in Fig. 3 that all three relations V(45) > V(0), V(45) = V(0) and 

V(45) < V(0) are possible for V calculated according to Eq. (13). Because 

the boundary value 1   for V(45) = V(0) is in the area of the 

layer-by-layer growth mechanism, three qualitatively different cases could be 

expected in 2D models of spiral growth, namely: isotropic spiral and 

polygonized spirals with two possible orientations relative to the 

crystallographic axes. However, this prediction does not agree with the results 

of 2D MC simulations (see, e.g., Refs. [7, 9]). 

3.2. Kinetic analytical approach 

When the frequencies of elementary events are given by the formula (22), 

the kinetic approach and the BCF theory lead to the same state of the step X(k) 

given by Eq. (8), where the g+ and g factors are determined by equivalent 

equations (20) and (27) for the kinetic approach or (6b), (9)-(12) in the case of 

the BCF theory. It should be noted, however, that in the BCF theory the values 

of X(k) were found only for equilibrium state  = 0, while in the kinetic model 

any value of  was allowed and the lack of dependence of X(k) on  was proved. 

The normal velocities V() calculated according to the formula (28) from 

the kinetic analytical model and shown in Figs. 6 and 7 differ significantly from 

the velocities in Figs. 2 and 3 resulting from the formula (13). Because we 

compare here the velocities corresponding to the same dynamics (22) and the 

same state X(k), the only source of observed differences lies in the two methods 

used to calculate the velocity. Certainly the formula (28), which takes into 

account various configurations of neighbouring atoms, should be considered as 

more accurate than the formula (13) based on total number of any kinks. 

The frequencies of elementary events given by the formula (21) lead to the 

solution (25) and the normal velocity (26). As it can be seen in Figs. 8 and 9, 

the velocity is noticeably different from that in Figs. 6 and 7 corresponding to 

the dynamics (22). Derivation of probabilities X(k) equivalent to the dynamics 

(21) does not seem possible on the basis of the BCF theory. 

The edge free energy was not considered in previous works on the kinetic 

analytical approach, but we can always use the formula (14). In this way we get 

the same result for the dynamics (22) as in the BCF model, while the result for 

the dynamics (21) differs very little and the corresponding plots look like those 

presented in Figs. 4 and 5. 
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Fig. 6. Normal velocity of a step V given 

by Eq. (28) as a function of the 

step azimuth  normalized to 

the level of velocity for  = 45° 

Fig. 7. Ratio of normal velocities V 

given by Eq. (28) for  = 45° and 

 = 0° as a function of the 

parameter 
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by Eq. (26) as a function of the 

step azimuth  normalized to 
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Fig. 9. Ratio of normal velocities V 

given by Eq. (26) for  = 45° and 

 = 0° as a function of the 

parameter 

3.3. Kinetic one-dimensional Monte Carlo simulations 

The analytical model presented in section 2.2 has been evaluated in Ref. [5] 

as consistent for small supersaturations with the results of 1D MC simulations 

available in Ref. [6]. Because the data available so far were very fragmentary, 

in this work we present the results of our new simulations. 
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Comparing the plots in Figs. 10 and 11 with the plots in Figs. 6 and 7, one 

can notice some discrepancies between the results of 1D MC simulations and 

the kinetic analytical approach, which are very small for small values of , but 

clearly increase with the increase of . Our MC simulations were performed for 

 = 0.05, which may be considered as a small value in terms of crystal growth 

conditions, but it is also large enough to avoid a strong random dispersion of 

the results. Since the basic assumptions regarding the geometry of the system 

and the frequencies of elementary processes (22) are the same in both cases, 

the discrepancies arise from the assumption (4), which is applied only in the 

analytical approach. 

When the dynamics (21) of elementary events is assumed, the results 

of 1D MC simulations shown in Figs. 12 and 13 differ only slightly from the 

predictions of the analytical approach presented in Figs. 8 and 9. 
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Fig. 10. Normal velocity of a step V 

resulting from Eq. (29) and 1D 

MC simulations performed for 

 = 0.05 and the frequencies (22) 

as a function of the step azimuth 

. The velocity is normalized to

its level for  = 45° 

Fig. 11. Ratio of normal velocities V 

resulting from Eq. (29) and 1D 

MC simulations performed for 

 = 0.05 and the frequencies (22) 

for orientations  = 45° and 

 = 0° as a function of the 

parameter 
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Fig. 12. Normal velocity of a step V 

resulting from Eq. (29) and 1D 

MC simulations performed for 

 = 0.05 and the frequencies (21) 

as a function of the step azimuth 

. The velocity is normalized to

its level for  = 45° 

Fig. 13. Ratio of normal velocities V 

resulting from Eq. (29) and 1D 

MC simulations performed for 

 = 0.05 and the frequencies (21) 

for orientations  = 45° and 

 = 0° as a function of the 

parameter 

4. DISCUSSION

The “solid-on-solid” (SOS) assumption is commonly used in 2D models of 

the crystal-mother phase interface and does not lead to erroneous predictions in 

the area of layer-by-layer mechanism of crystal growth. The re-use of the SOS 

assumption for the second direction leads to a 1D description of the step on the 

crystal face. This simplification allowed a fully analytical derivation of the 

normal velocity V and of the edge free energy F of a straight step moving in any 

direction  on the (001) face of Kossel crystal. The V() and F() dependencies 

are necessary, for example, to model the evolution of any step under anisotropic 

conditions. 

However, in the light of the results presented in this paper, all approaches 

based on one-dimensional description, such as the BCF theory, the kinetic 

equation and 1D MC simulations, lead to some clearly incorrect predictions: 

1) The normal velocity V() may satisfy relations V(0°) > V(45°),

V(0°) = V(45°) or V(0°) < V(45°) depending on the parameters determining

crystal growth conditions. The case V(0°) > V(45°), however, is impossible to

confirm based on the 2D MC simulations, which show that the spiral growing

around a screw dislocation on the (001) face of the Kossel crystal can only be
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isotropic or anisotropic with the orientation corresponding to the relation 

V(0°) < V(45°) depending on the  and  parameters (see, e.g., Refs. [7, 9]). 

2) The normal velocity V() and the edge free energy F() are not smooth

functions for  = 45° + n 90°. The functions becomes nearly smooth only for

the large values of the Jackson-Temkin parameter  > 8 … 10, while the

results are clearly unphysical for the remaining values of  in the area of

layer-by-layer growth mechanism.

In addition, we must note some other problems appearing in the analytic models 

that are not directly related to the one-dimensional description of a step: 

3) The assumption that there is no correlation between neighbouring kinks may

significantly affect the obtained V() dependency for high values of the 

parameter.

4) According to the BCF theory, the entropy of a step was calculated using the

Boltzmann formula S = kBlnW. However, the total energy of all bonds formed

by the atoms at the edge of the step may take various levels El for the state

described by the given set of probabilities X(k). Hence, the probabilities

of individual configurations should not be equal, but proportional to

exp(El/kBT).

The derivation of new analytical dependencies V() and F(), which should 

be free of the problems mentioned in points 1-4, is a very complicated task. 

Hence, it seems that future works should rather focus on determining these 

dependencies on the basis of 2D MC simulations and finding interpolations for 

a wide range of crystal growth conditions. This research direction was taken in 

Refs. [7-9], but the proposed form of the function V() is inconsistent with the 

results of MC simulations for large values of  and the relationship between 

the parameter of this function and crystal growth conditions is not well defined. 

The movement and interaction of spirals on the crystal surface may be 

studied using 2D MC simulations, however, many interesting results has been 

also obtained by solving the equation of evolution without considering any 

microscopic details [10-14]. Unfortunately, recent papers are still based on the 

isotropic formulation of the problem known from the BCF theory of 1951. In 

this situation, even the use of rough approximations of the V() and F() 

dependencies could lead to progress in understanding the dynamics of spirals. 

Many crystals of key importance for technology can not be described by the 

Kossel model of crystal. For such crystals Monte Carlo simulations are 

performed (see, e.g. growth of GaN modelled in Ref. [26]), while the analytical 

approach is not popular in the literature. 
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5. CONCLUSIONS

The analysis presented in this paper shows that all one-dimensional models 

of the step on the crystal surface lead to similar results, which are clearly 

non-physical for small values of the Jackson-Temkin parameter. The results, 

however, become more reliable with the increase in the value of this parameter. 

The obtained dependences can therefore be used with the step evolution equation 

under strongly anisotropic conditions. This approach seems promising as an 

extension of many previous works focused only on isotropic conditions. 
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WERYFIKACJA JEDNOWYMIAROWYCH MODELI 

OPISUJĄCYCH ANIZOTROPIĘ STOPNIA WZROSTU 

Streszczenie 

Dokonano przeglądu modeli znanych z literatury, które umożliwiają 

otrzymanie kierunkowych zależności prędkości normalnej prostoliniowego 

stopnia wzrostu na ścianie (001) kryształu Kossela oraz jego krawędziowej 

energii swobodnej. Zależności zostały rozważone w szerokim zakresie 

warunków wzrostu kryształu, co umożliwiło ukazanie niezgodności pomiędzy 

modelami oraz ograniczeń w zakresie ich stosowalności. Przedstawione wyniki 

koncentrują się na jednowymiarowych kinetycznych i termodynamicznych 

modelach pojedynczego stopnia wzrostu. 




