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FLEXOELECTRIC TORQUE  
IN UNIFORMLY LYING HELIX STRUCTURES  

OF CHIRAL NEMATIC LIQUID CRYSTALS 

Electric field induced deformations of chiral nematic liquid 
crystal layers were studied numerically. Uniformly lying helix 
structure of short pitch flexoelectric mixtures was considered. The 
electro-optic effect due to rotation of optical axis around the normal to 
the layer was simulated. The flexoelectric torque arising under the 
action of bias voltage and responsible for this rotation was calculated. 
It was found that the prevailing torque occurs in close vicinity of the 
boundary plates. Nonlinearity of superposition of splay and bend 
contributions to the total flexoelectric torque was found. 
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1. INTRODUCTION

Chiral nematic liquid crystals of pitch p shorter than visible light 
wavelength behave as uniaxial birefringent medium with optic axis parallel to 
the helix axis [1]. The twisted cholesteric structure within the layer confined 
between plane-parallel plates is incompatible with homeotropic boundary 
conditions. Therefore the subsurface regions are deformed by splay and bend. If 
the liquid crystal possesses flexoelectric properties then the deformation is 
accompanied by polarization of flexoelectric nature. An interesting linear electro-
optic effect is possible under the action of the electric field of strength E applied 
perpendicular to the layer. The field interacts with the polarization and causes 
director rotation around the normal to the layer by a small angle  [1-3]. This 
effect results in change of orientation of the optical axis, which in this case is 
perpendicular to the twisted director (Fig. 1.). Interactions of dielectric nature are 
undesirable, because they induce a quadratic electro-optic effect and may lead to 
unwinding of the helical structure. Therefore the dielectric anisotropy of the 
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nematic should be zero or as small as possible. The rotation angle is approximately 
proportional to the electric field strength, according to the simplified formula  
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where e and k are the effective flexoelectric coefficient and the effective elastic 
constant, respectively [3]. The direction of deviation depends on the field sign. 
In the most favourable case, the angle  reaches ±22.5° which allows to switch 
between transmission 0 and 1 if the layer is placed between crossed polarizers 
[2]. The switching times are below 1 millisecond [4,5]. 
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Fig. 1. Deviation of the optic axis under the action of electric field 

2. ASSUMPTIONS AND METHOD

The aim of the present paper is to study the spatial distribution of 
flexoelectric torque responsible for rotation of the optical axis around the z axis. 
In particular it is interesting what is the role of flexoelectric coefficients e11 and 
e33 connected with splay and bend, respectively. For this purpose, the chiral 
nematic liquid crystal layer of thickness d = 2 m was taken into account. The 
layer was parallel to the xy plane of the coordinate system. It was placed 
between two electrodes positioned at z = ±d/2. The helical axis was directed 
along the y axis. Director orientation was determined by the polar angle (y,z) 
made between the director and its projection on the xy plane, and by the 
azimuthal angle ( z) between this projection and the x axis. Both angles as well 
as all other quantities were independent of the x coordinate. The azimuthal angle 
was assumed to be independent of y. The chirality of the nematic was 
determined by the intrinsic pitch, smaller than wavelength of visible light, 
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p = 0.3 m. Homeotropic boundary conditions were assumed. The anchoring energy 
was determined by the polar and azimuthal anchoring strength coefficients, 
W = 104 and W = 105 Jm2, respectively ([6]). Dielectric anisotropy was assumed 
to be zero. Three sets of the flexoelectric coefficients were considered:  

1. e11 = 10 pC/m, e33= 
2. e11= , e33= 10 pC/m,
3. e11 = 10 pC/m, e33= 10 pC/m.

Typical elastic constants were adopted: k11 = 8 pN, k22 = 4 pN, k33 = 12 pN. The 
layer was subjected to voltage U ranging from 0 to 10 V. Nematic of high purity 
was assumed i.e. the presence of ions was neglected.  

The deformation of the layer is caused by torque of flexoelectric origin 
(since  is assumed to be zero) which is given by vector product  = P×E, 
where     nnnnP  3311 ee  and VE . In order to find the 

 z-component of the torque responsible for rotation of the optical axis,z = PxEy, 
the director distribution over the cross section of the layer segment of width p 
was calculated. The minimization energy method described in detail in earlier 
papers was used for this purpose. The electric potential distribution V(y,z) was 
also determined by resolving of the Poisson equation [7]. The calculations 
yielded the x-component of the flexoelectric polarization 
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as well as the y-component of electric field strength 
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which allowed to determine z. 

3. RESULTS AND DISCUSSION

The typical deformation of the helical structure is presented in Fig. 2 by 
means of cylinders symbolizing the director. The azimuthal angle which 
measured the director rotation around the normal to the layer was found to adopt 
the same value in the prevailing part of the cross section with exception of thin 
subsurface regions. This value was taken as the rotation angle of the optic axis 
. The director distribution is analogous to the pattern presented by Bouligand 
[3,8] i.e. it is composed of regions of splay and bend deformations. The spatial 
period of the deformed structure is equal to p/2 just like in the undisturbed chiral 
nematics in which the properties are repeated every half of pitch due to identity  
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Fig. 2. Director distribution in the cross section of the layer along the pitch; p = 0.3 m, 
e11 = 10 pC/m, e33 = 10 pC/m, U = 12 V. 
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Fig. 3. Deviation angle  as a function of bias voltage; curve (a): e11 = 10 pC/m and  
e33 = 10 pC/m; curve (b): e11 = 10 pC/m and e33 =  as well as e11 = 0 and 
e33 = 10 pC/m; (both sets of flexoelectric coefficients give identical results). 
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n ≡ n. The field induced deformations realized with the three mentioned sets of 
flexoelectric coefficients are qualitatively the same. In Fig. 3, the voltage 
dependencies of the angle  calculated for the three sets of flexoelectric 
coefficients are compared. It is evident that separate contributions of 
e11 = 10 pC/m and e33= 10 pC/m to the electro-optic effect are identical due to 
equality e11 = e33 (curve b), whereas the simultaneous contributions of both 
coefficients lead to doubled rotation angles (curve a).  It was also checked that 
rotation does not occur if e11 = e33 i.e. if e11  e33 vanishes. The above statements 
are coherent with theoretical predictions that the angle  depends on difference 
of flexocoefficients, e11  e33, and not on their particular values [2]. 

The exemplary flexoelectric torques responsible for rotation of optical axis 
are illustrated in Figs. 4-6 as functions of y and z. The distributions are 
symmetrical with respect to y = p/2 i.e. z (y) = z (p  y). This means that the 
spatial period of the torque is equal to p in contrary to the spatial period p/2 of 
the director distribution. Such property is due to the symmetries of the 
polarization and electric field components expressed by relations 
Px(y) = Px(p  y) and Ex(y) = Ex(p  y), respectively. 

The flexoelectric torque counteracts the subsurface anchoring torque and 
the elastic torque in the bulk. It reaches the highest values at the boundary plates 
and in the regions where the director components nx, ny and nz as well as their 
spatial derivatives have significant values. The equilibrium between the 
flexoelectric, elastic and anchoring torques can be achieved at high as well as at 
low values of flexoelectric torque and it can result in non-zero rotation angle . 
Comparison of Figs. 4-6 with Fig. 2 shows that no torque is induced in the 
vicinity of y/p = 0.25 and y/p = 0.75. This is due to the fact that the deformation 
contains neither splay nor bend in those regions, therefore the flexoelectric 
polarization is zero. In the region surrounding y/p = 0.5, the nx and ny 
components are practically zero and the nz component weakly depends on z 
therefore Px (Eq. (2)) is negligible. The torque vanishes also at y/p = 0 and 
y/p = 1 for similar reasons.  

The spatial distributions of torque over the cross section of the layer are 
rather complicated. The torque distributions vary with voltage. They arise as a 
result of self consistency between director field deformations producing 
flexoelectric polarization and interactions of the polarization with external 
electric field which also influence the director orientation. 

In the case of e11 = 10 pC/m, e33 = 10 pC/m, (Fig. 4), both splay and bend 
give rise to the flexoelectric polarization and to the torque. The largest z values 
occur in the subsurface regions, in particular at z = d/2 and correspond to 
significant variations of director orientation. The small opposite torque occurs at  
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Fig. 4. Torque per unit volume as a function of position in the cross section of the layer; 
 p = 0.3 m, e11 = 10 pC/m, e33 = 10 pC/m, U = 8 V. 
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Fig. 5. Torque per unit volume as a function of position in the cross section of the layer;  
p = 0.3 m, e11 = 0 pC/m, e33 = 10 pC/m, U = 8 V.  
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Fig. 6. Torque per unit volume as a function of position in the cross section of the layer;  
p = 0.3 m, e11 = 10 pC/m, e33 = 0 pC/m, U = 8 V.  

z = d/2 whereas the torques in prevailing part of the cross section are 
practically inessential. Much more complex distributions occur in the two other 
situations shown in Figs. 5 and 6. Significant torques arise not only in the 
vicinity of the boundary plates abut also in the bulk of the layer. In particular, 
four regions of non-zero torques can be distinguished along the pitch. It is also 
evident that sum of the torque distributions occurring when either e11 or e33 are 
zero does not give the distribution arising when both flexoelectric coefficients do 
not vanish. This is an example of nonlinear superposition which is the 
pronounced manifestation of complexity of elastic, flexoelectric and surface 
interactions leading to equilibrium structures. 
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FLEXOELEKTRYCZNY MOMENT SIŁ  
W STRUKTURACH NEMATYKÓW CHIRALNYCH  

Z OSIĄ HELISY LEŻĄCĄ W PŁASZCZYŹNIE 
WARSTWY 

Streszczenie 

Zbadano numerycznie odkształcenia warstw nematyków chiralnych 
wywołane polem elektrycznym. Obliczenia dotyczyły nematyka o krótkim 
okresie struktury i właściwościach fleksoelektrycznych z osią helisy równoległą 
do płaszczyzny warstwy. Symulowano efekt elektrooptyczny polegający na 
obrocie osi optycznej warstwy wokół normalnej do płaszczyzny warstwy. 
Obliczono fleksoelektryczny moment sił powstający pod wpływem zewnętrznego 
napięcia i odpowiedzialny za ten obrót. Pokazano, że przeważający moment sił 
powstaje w pobliżu elektrod. Stwierdzono nieliniowy charakter superpozycji 
rozkładów momentów polegający na tym, że suma rozkładów momentów 
istniejących gdy e11 = 0 lub e33 = 0 różni się od rozkładu powstającego gdy oba 
współczynniki są różne od zera. 




