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TWO-DIMENSIONAL DEFORMATIONS IN TWISTED 

FLEXOELECTRIC NEMATIC CELLS  
 
 

Electric field induced deformations occurring in twisted nematic 
cells filled with liquid crystalline material possessing flexoelectric 
properties were simulated numerically. The aim of computations 
was to compare the two-dimensional periodic deformations with  
one-dimensional distortions reported in our earlier paper occurring in 
the same cells. It was found that the periodically deformed structures 
have lower free energy counted per unit area of the layer than the 
one-dimensional deformations. 
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1. INTRODUCTION  
 

Twisted nematic cells are fundamental for construction of liquid crystal 
displays. The deformations of the twisted director field occurring under bias 
voltage are crucial for operation of electro-optic liquid crystal devices. Their 
development under the action of external electric field is well known [1,2]. 
Nevertheless, if the nematic material possesses flexoelectric properties [3,4], 
the deformations reveal some novel features. They are interesting because  
flexoelectricity can become essential feature of a nematic mixture if it contains 
mesogenic substances composed of bent-core molecules which exhibit giant 
flexoelectric properties [5,6].  

In our previous paper [7] we reported the results of numerical simulations 
which  concerned deformations of four particular twisted flexoelectric nematic 
cells. The problem was considered as one-dimensional. In the present paper, we 
consider the same cells characterized by the same sets of parameters, however 
we adopt another approach, i.e. we investigate occurring of two-dimensional 
deformations. Such two-dimensional deformations take the form of periodic 
pattern and can be seen under microscope as parallel stripes. They were detected 
experimentally in planar, homeotropic, twisted and super-twisted nematic layers. 
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In some cases, the periodic deformations were attributed to flexoelectricity  
[8-12], nevertheless they can arise in various configurations without contribution 
of flexoelectricity and were observed in magnetic field as well [13-16]. The 
deformation in the form of stripes is undesirable effect which destroys uniform 
appearance over area of an excited pixel of a LCD [17]. The comprehensive 
review of the periodic patterns of various nature is given by Hinov et al. [18]. 
Role of flexoelectricity in pattern formation is described in [4]. Structure and 
properties of periodic pattern were the subject of many theoretical and numerical 
studies [19-27].  

The aim of this paper is to compare the two-dimensional periodic 
deformations with one-dimensional distortions which occurred in the same cells 
and were described in our earlier paper [7]. It is shown that the periodically 
deformed structures have lower free energy than the one-dimensional 
deformations. 

 
2. ASSUMPTIONS AND METHOD  

 
The twisted nematic structure of thickness d confined between two plane 

electrodes parallel to the xy plane of Cartesian coordinate system positioned 
at z = ±d/2 was considered. We assumed that all the physical quantities 
and variables describing the two dimensional structures depended on two 
coordinates, y and z, and were constant along the x axis. The director distribution 
n(y,z) was determined  by means of the polar angle (y,z)  measured between n 
and the xy plane and by the azimuthal angle (y,z)  made between the x axis and 
the projection of n on the xy plane. Voltage U was applied between the 
electrodes. The lower electrode was earthed, i.e. V( d/2) = 0. Boundary 
conditions were determined by the polar and azimuthal angles s1, s2, s1 and 

s2
  which determined orientation of the easy axes e1 and e2 on the lower and 

upper electrode, respectively. The anisotropic surface anchoring, expressed by 
the formula proposed in [7], was assumed. The anchoring energy was 
determined by polar and azimuthal anchoring strengths, W , W , W , W  and 
by means of dimensionless anisotropy parameters ,θ iii WWw  i = 1,2. The 
elastic constants, the flexoelectric coefficients of nematic and the surface tilt 
angles were identical in all the cells: k11 = 6 pN, k22 = 4 pN, k33 = 9 pN, 
e11 = 0, e33 = 40 pC/m, s1 = s2

 = s
 = 0.5°. Other parameters of the layers are 

gathered in Table 1. The presence of ions was neglected, i.e. the nematic was 
treated as perfect insulator. The equilibrium structures of the director field inside 
the layer were determined by minimization of the free energy counted per unit 
area of the layer. For this purpose, we used the method which  was  successfully   
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Table 1 
Parameters of the layers 
 

 Cell A Cell B Cell C Cell D 
 4 4 4 8 

W  [J/m2] 10−4 10−4 10−4  3.3×10−4 
W  [J/m2] 10−5 5×10−5 10−4 3.3×10−5 
W  [J/m2] 2×10−5 2×10−5 2×10−5 5×10−5 
W  [J/m2] 2×10−6 10−5 2×10−5 5×10−6 
w 10 2 1 10 
d [ m] 3.50 3.30 3.245 2.32 

s2  s1  90° 90° 90° 86.6° 
 

applied  in  earlier works  [23,24]. A single  stripe of width  was considered 
during the computations. It was parallel to the x axis which means that the wave 
vector q of the periodic structure was directed along the y axis. The periodic 
boundary conditions along the y axis were imposed. The free energy of a single  
stripe was expressed as a function of the set of variables which contained the 
discrete angles ij and ij defined in sites of the regular lattice, the spatial period 
of deformations  and the angle 212 ss  between the stripes and the 
average direction of the easy axes 2121 eeeee . Energy of the stripe was 
divided by in order to obtain the total free energy per unit area of the layer:  
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where n1, n2 denote the directors adjacent to the lower and upper plate, 
respectively whereas 1 and  2 are their polar orientation angles. 
The final set of the variables, which approximated the real equilibrium director 
distribution, was calculated in the course of an iteration process during which 
these variables were varied successively by small intervals. The free energy per 
unit area of the layer was calculated after each change. New values of the 
variables were accepted if they led to the lower free energy. This procedure was 
repeated until no further reduction in the total free energy could be achieved. 
Then the interval was decreased and the process was repeated. As a result, 
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a state with minimum energy, characterized by the angles ij and ij, spatial 
period  and orientation of the stripes , was obtained.  

The electric potential distribution V(y,z) in the layer was calculated by 
resolving the Poisson equation written here in compact form: 

0
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                                            (2) 

where gel is the electric part of the bulk free energy density, yVV y , 
zVVz ,  0)2/( dV  and UdV )2/(  where U > 0. 

 
3. RESULTS 

 
In all the four layers a small one-dimensional deformations appeared 

at low voltages starting from U = 0, due to the non zero tilt angles  
s1 = s2

 = 0.5°. Two different types of two-dimensional deformations were 
found. The first type, which we denote as Type 1, arose on the background of 
the one-dimensional distortions at some threshold voltage U1. The calculations 
showed that above this threshold the energy of the periodic deformations was 
lower than that of the one-dimensional deformations which would arise at the 
same voltage. The dependence of the angles  and  on y coordinate can be 
approximated by functions proportional to y2sin  and y2cos  
respectively. Maximum amplitude of this variation reached c. 40°. The stripes 
orientation angle  depended on voltage and varied between c. 10° and 30°. The 
spatial period decreased with increasing voltage. This form of distortion 
developed up to some higher threshold, U2. The second type of the periodic 
deformations, denoted as Type 2, appeared rapidly at this threshold. The energy 
per unit area decreased although the distortion became much stronger. Variation 
of the angles  and  along the y coordinate differed significantly from 
sinusoidal. Maximum amplitude of variation tended to c. 90°. The stripes of 
Type 2 were oriented at  = 45° with respect to the vector e, i.e. they were 
perpendicular to the y axis and simultaneously parallel to the easy axis e1, where 
the anchoring was stronger. The spatial period decreased farther with voltage. 
When the voltage was lowered, the Type 2 pattern was maintained below U2, 
which led to hysteresis. The stripes became wider with decreasing voltage and 
they kept constant orientation  = 45°.   

The structure of stripes is determined by the functions (y,z), (y,z). 
However for simplicity, we present the deformations by y-dependence of 
the angles (z = d/2) and (z = d/2) which determine polar and azimuthal 
orientations of director adjacent to the upper electrode where the anchoring is 
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weaker than that on the lower plate. In Fig. 1a, the profiles characterizing the 
periodic pattern of both types arising in the cell A for low and high voltage are 
illustrated by means of those angles plotted as a function of reduced coordinate 
y/ . In Fig. 1b, the structure of the stripe of Type 2 is presented by means of 
cylinders symbolizing the director. 
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Fig. 1. (a) Periodic deformations illustrated by angles  and  adjacent to the upper 

electrode varying with the reduced coordinate y/  perpendicular to the stripes. 
Cell A. Dashed line – Type 1, U = 0.55 V, continuous line – Type 2, U = 0.80 V, 
(b) Director field within a single stripe of Type 2. Cell A, U = 0.80 V 

 
The hysteretic behaviour is shown in Fig. 2 where the amplitude of the  

angle (z = d/2) is plotted as a function of voltage. Figs. 3 and 4 exemplify 
the voltage dependence of the spatial period and of the angle , respectively.  

 

(a) 

(b) 
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Fig. 2. Amplitude of the angle  adjacent to the upper electrode as a function of voltage 

plotted for all four layers 
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Fig. 3. Spatial period of the two-dimensional deformations in the layer B as a function of 
voltage. The lower branch corresponds to the Type 1 of patterns, the upper branch 
concerns the Type 2 
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Fig. 4. Orientation of the stripes determined by the angle  as a function of voltage. Cell 
B. The lower branch corresponds to the Type 1 of patterns, the upper branch 
concerns the Type 2 
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The stripes of Type 2 widened when the bias voltage was decreased. Two 
halves of the stripe could be distinguished. Deformation in the halves were 
uniform and had opposite directions, i.e. the halves differed in signs of polar and 
azimuthal angles. The halves  were  separated by thin regions where the polar 
angle  took significant values and the azimuthal angle  changed its sign. At 
sufficiently low voltage the spatial period  tended to infinity, which means that 
the uniform deformation in one half, coherent with the tilt angle s, spread over 
the whole layer.  
 
 

4. SUMMARY 
 

The four layers considered in this paper differed in thickness and in 
boundary conditions, in particular in the anisotropy of the anchoring strengths. 
Differences in anchoring strengths are particularly significant when the nematic 
possesses flexoelectric properties. They are responsible for different threshold 
voltages and different spatial periods. Nevertheless qualitative similarities 
between patterns observed in the four layers are evident. In each case the two 
types of stripes were found and rapid transitions with hysteresis between them 
were detected. The results agree qualitatively with experimental observations 
which showed the existence of stripes oriented at the angle  < 45° [10]. The 
director distributions in the stripes of both types found here are similar to 
the structures arising in the non-twisted planar layers which were simulated in 
our earlier work [27]. Simultaneously they are different from the structures of 
patterns arising in magnetic field which were simulated in [25] and denoted 
as X and Y stripes. 
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DWUWYMIAROWE ODKSZTAŁCENIA 
SKRĘCONYCH WARSTW NEMATYKÓW 

FLEKSOELEKTRYCZNYCH  
 

Streszczenie 
 

Przeprowadzono symulacje wywołanych polem elektrycznym odkształceń 
występujących w skręconych warstwach nematyków posiadających właściwości 
fleksoelektryczne. Ich celem było porównanie deformacji dwuwymiarowych 
z deformacjami jednowymiarowymi tych samych warstw, opisanymi we 
wcześniejszym artykule. Stwierdzono, że struktury przestrzennie okresowe mają 
niższą energię niż deformacje jednowymiarowe.  




