Analytical kinetic block model of crystal-mother-phase multilayer interface
PDF

Keywords

crystal-mother-phase interface
Temkin’s model
kinetic block model
Bragg-Williams approximation

How to Cite

Organiściak, M., Izdebski, M., & Ledzion, R. (2015). Analytical kinetic block model of crystal-mother-phase multilayer interface. Scientific Bulletin. Physics, 36(1204), 64-76. https://doi.org/10.34658/physics.2015.36.64-76

Abstract

Zaproponowano prosty kinetyczny blokowy model wielowarstwowej granicy faz kryształ-faza macierzysta. Model ten prowadzi do układu równań różniczkowych, które rozwiązuje się bez potrzeby przeprowadzania symulacji Monte Carlo. Zaproponowany model wykorzystuje przybliżenie Bragga-Williamsa (zwane także przybliżeniem zerowego rzędu), założenie znane w literaturze jako „solid-on-solid” oraz inne założenia wspólne z termodynamicznym modelem Temkina, co umożliwia sprawdzenie zgodności podejścia kinetycznego i termodynamicznego w sytuacji gdy nie występują inne istotne różnice pomiędzy modelami. Ponadto porównanie zaproponowanego modelu z kinetycznymi symulacjami Monte Carlo umożliwia lepsze zrozumienie znaczenia przybliżenia Bragga-Williamsa.

https://doi.org/10.34658/physics.2015.36.64-76
PDF

References

Jackson K.A. 1958. Mechanism of growth. in: Liquid metals and solidification, ed. Moddin M., 174-186. Cleveland: Am. Soc. for Metals.

Bennema P. 1992. Growth forms of crystals: possible implications for powder technology. KONA Powder and Particle 10: 25-40.

Jackson K.A. 2004. Constitutional supercooling surface roughening, J. Cryst. Growth 264: 519-529.

Mutaftschiev B. 1965. Sur la rugosité des surfaces crystallines et son rôle dans les phénomènes de croissance. in : Adsorption et croissance cristalline, ed. Kern M.R.,231-253. Paris: Centre Nationale de la Recherche Scientifique.

Temkin D.E. 1966. Molecular roughness of the crystal-melt boundary. in: Crystallization processes, eds. Sirota N.N. et al., 15-23. New York: Consultants Bureau.

Bennema P., Gilmer G.H. 1973. Kinetics of crystal growth. in: Crystal growth: an introduction, ed. P. Hartman, 263-327. Amsterdam: North-Holland Publ.

Gilmer G.H., Bennema P. 1972. Simulation of crystal growth with surface diffusion. J. Appl. Phys. 43: 1347-1360.

Gilmer G.H., Bennema P. 1972. Computer simulation of crystal surface structure and growth kinetics. J. Cryst. Growth 13/14: 148-153.

Rak M., Izdebski M., Brozi A. 2001. Kinetic Monte Carlo study of crystal growth from solution. Comp. Phys. Commun. 138: 250-263.

Binsbergen F.L. 1970. A revision of some concepts in nucleation theory. Kolloid Z. Z. Polym. 237: 289-297.

Izdebski M., Włodarska M. 2011. Comparison of thermodynamic and kinetic models of single-layer crystal-mother-phase interface. Cryst. Res. Technol. 46: 1241-1249.

Izdebski M., Włodarska M., Kinetic block model of crystal-mother-phase interface with preferential clustering - single layer case. Cryst. Res. Technol.: accepted for publication.

Organiściak M. 2015. Analityczny kinetyczny model blokowy granicy faz kryształ-faza macierzysta, Engineering Thesis, Łódź: Institute of Physics, Lodz University of Technology.

Huitema H.E.A., Vlot M.J., van der Eerden J.P. 1999. Simulations of crystal growth from Lennard-Jones melt: Detailed measurements of the interface structure. J. Chem. Phys. 111: 4714-4723.

Reilly A.M., Briesen H. 2012. A detailed kinetic Monte Carlo study of growth from solution using MD-derived rate constants, J. Cryst. Growth 354: 34-43.

Downloads

Download data is not yet available.