Numerical study of ionic current in a dielectric liquid layer subjected to square wave voltage
PDF

Keywords

dielectric liquid
ionic current
polarity inversion

How to Cite

Derfel, G., & Opioła, P. (2009). Numerical study of ionic current in a dielectric liquid layer subjected to square wave voltage. Scientific Bulletin. Physics, 30(1057), 19-28. https://doi.org/10.34658/physics.2009.30.19-28

Abstract

Ionic current flowing in a thin layer of dielectric liquid under the action of square wave voltage was studied numerically. Quasi-blocking electrodes and equal mobilities of anions and cations were assumed. Field dependent dissociation and recombination were taken into account. The spatial distributions of ion concentrations and the ionic current density during a single voltage cycle were calculated as functions of time. A bump of the current was observed at suitably high voltage, low ion content and low frequency. This effect resulted from redistribution of ions which occurred in the whole layer. Two gradually diffusing groups of ions wandering across the layer, one formed by cations and the other formed by anions, could be distinguished. There was no unambiguous relationship between the moment at which the bump occurred and the value of ions mobility.

https://doi.org/10.34658/physics.2009.30.19-28
PDF

References

Mada H., Ryuzaki M., Jpn. J. Appl. Phys. 34 (1995) L1134.

Mada H., Ohnoya S., Endoh H., Fukuro H., Jpn. J. Appl. Phys. 35 (1996) L1114.

Naemura S., Nakazono Y., Nishikawa K., Sawada A., Kirsch P., Bremer M., Tarumi K., Mat. Res. Soc. Symp., Proc. 508 (1998) 235.

Maximus B., De Ley E., De Meyere A., Pauwels H., Ferroelectrics 121 (1991) 103.

Blinov L. M., Palto S. P., Podgornov F. P., Moritake H., Haase W., Liq. Cryst. 31 (2004) 61.

Ray T., Kundu S., Pal Majumder T., Roy S. K., Dbrowski R., J. Mol. Liq. 139 (2008) 35.

Briere G., Gaspard F., Herino R., J. Chim. Phys. 68 (1971) 845.

Naemura S., Mat. Res. Soc. Symp., Proc. 559 (1999) 263.

Derfel G., Lipiski A., Mol. Cryst. Liq. Cryst. 55 (1979) 89.

Naemura S., Sawada A., Mol. Cryst. Liq. Cryst. 400 (2003) 79.

Costa M. R., Altafim R. A., Mammana A. P., Liq. Cryst. 28 (2001) 1779.

Chen H.-Y., Yang. K.-X., Lee W., Optics Express, 12 (2004) 3806.

Naito H., Yoshida K., Okuda M., Sugimura A., J. Appl. Phys., 73 (1993) 1119.

Martins O. G., Barbero G., Pedreira A. M., Jákli A., Sawade H., Figueiredo Neto A. M., Appl. Phys. Lett., 88, (2006) 212904

Derfel G., J. Mol. Liq., 144 (2009) 59.

Derfel G., Lipiski A., Mycielski W., Acta. Phys. Pol., A55 (1979) 107.

Maximus B., Colpaert C., De Meyere A., Pauwels H., Plach H. J., Liq. Cryst. 15 (1993) 871.

Colpaert C., Maximus B., De Meyere A., Liq. Cryst. 21 (1996) 133.

Maximus B., Colpaert C., SID Digest, 95 (1995) 609.

Bert T., Beunis F., De Smet H., Neyts K., International Display Workshop, 11 (2004) 1749.

Koval’chuk A. V., J. Phys.: Condens. Matter. 13 (2001) 10333.

Murakami S., Naito H., Jpn. J. Appl. Phys. 36 (1997) 773.

de Vleeschouwer H., Verschueren A., Bougriona F., Van Asselt R., Alexander E., Vermael S., Neyts K., Pauwels H., Jpn. J. Appl. Phys. 40 (2001) 3272.

Downloads

Download data is not yet available.