Polarization of organic aromatic molecule in anionic and cationic state
PDF

Keywords

DFT
anthraquinone
anthrone
charge transport

How to Cite

Kania, S., Kościelniak-Mucha, B., Kuliński, J., Słoma, P., & Wojciechowski, K. (2019). Polarization of organic aromatic molecule in anionic and cationic state. Scientific Bulletin. Physics, 40(1227), 27-35. https://doi.org/10.34658/physics.2019.40.27-35

Abstract

The modification of electron states and the change in the geometry of the structure of molecule during hopping transport of charge carriers depends on the symmetry of the molecule. During electric transport the molecule reversibly transforms from neutral state to cation when hole conductivity occurs or to anion when electron conductivity occurs. The energies of orbitals HOMO and HOMO1 of anthrone and anthrachinone are always negative, what allows for holes transport. Positive energies of LUMO and LUMO+1 orbitals of anion of anthrone and anthraquinone in structure of anion or neutral molecule make electron transport difficult.

https://doi.org/10.34658/physics.2019.40.27-35
PDF

References

Oberhofer H., Reuter K., Blumberger J. 2017. Charge transport in molecular materials: an assessment of computational methods. Chem. Rev. 117: 10319-10357. https://doi.org/10.1021/acs.chemrev.7b00086

Kukhta A.V., Kukhta I.N., Kukhta N.A., Neyra O.L., Meza E. 2008. DFT study of the electronic structure of anthracene derivatives in their neutral, anion and cation forms. J. Phys. B: At. Mol. Opt. Phys. 41: 20, 205701. https://doi.org/10.1088/0953-4075/41/20/205701

Wen S.-H., Li A., Song J., Deng W.-Q., Han K.-L., Goddard III W.A. 2009. Firstprinciples investigation of anisotropic hole mobilities in organic semiconductors. J. Phys. Chem. B113: 8813-8819. https://pubs.acs.org/doi/10.1021/jp900512s

Marcus R.A. 2000. Tutorial on rate constants and reorganization energies. J. Electroanal. Chem. 483: 1-2, 2-6. https://doi.org/10.1016/S0022-0728(00)00011-5

Datta A., Mohakud S., Pati S.K. 2007. Electron and hole mobilities in polymorphs of benzene and naphthalene: role of intermolecular interactions. J. Chem. Phys. 126: 144710-1-144710-6. https://doi.org/10.1063/1.2721530

Marcus R.J. 1993. Electron transfer reactions in chemistry. Theory and experiment. Rev. mod. phys. 65: 3, 599-610. https://doi.org/10.1103/RevModPhys.65.599

Ehrlich S., Moellmann J., Grimme S. 2012. Dispersion-corrected density functional theory for aromatic interactions in complex systems. Accounts Chem. Res. 46: 4, 916-926. https://www.pubs.acs.org/accounts 10.1021/ar3000844

Kania S. 2014. Hole drift mobility of anthrone and anthrachinone layers with different structures. Sci. Bull. Techn. Univ. Lodz, Physics, 35: 17-24. http://cybra.lodz.pl/dlibra/publication/15667/edition/12516/content

Kania S., Kuliński J., Sikorski D. 2018. The origin of the interaction responsible for the difference of hole mobility of two derivatives of anthracene. Sci. Bull. Techn. Univ. Lodz, Physics, 39: 27-35. https://doi.org/10.34658/physics.2018.39.27-35

Gaussian 09, Revision A.02. 2009. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta Jr., J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Wallingford CT: Gaussian, Inc.

Skobel’tsyn D.V. 1966. Chapter III The oriented gas model and its application to molecular crystals polarization diagrams of luminescence. in: Physical optics. The Lebedev Physics Institute series. 25: 44-66. https://doi.org/10.1007/978-1-4684-7206-6_3

Choi S.-I., Jortner J., Rice S.A., Silbey R. 1964. Charge transfer exciton states in aromatic molecular crystals. J. chem. phys. 41: 3294-3306. http://dx.doi.org/10.1063/1.1725728

Fu Y. 1998. Temperature dependence of the rigid-body motion of anthraquinone. Acta Cryst. B54, 308-315. https://doi.org/10.1107/S0108768197013414

Srivastava S.N. 1962. Crystal structure of anthrone. Z. Krist. 117: 5-6, 386-398. https://doi.org/10.1524/zkri.1962.117.5-6.386

Downloads

Download data is not yet available.