Abstract
Non-equilibrated transport of charge carriers in the molecular material depends on the structure and packing of the molecules. Explanation of the measurements of the photocurrent generated with use of UV flash light in organic layer needs to define the quantity of charge carriers mobility. Definition of this quantity in the scope of some defined transport model requires the detailed analysis of generation, recombination and charge transfer between neighbouring molecules. The problem is discuss on the basis of transport properties of two anthracene derivatives.
References
Kwon J., Takeda Y., Shiwaku R., Tokito S., Cho K., Jung S. 2019. Threedimensional monolithic integration in flexible printed organic transistors. Nat. commun., 10: 54-1-54-9. https://doi.org/10.1038/s41467-018-07904-5
Irfan A., Al-Sehemi A., A Assiri M., Mumtaz M.W. 2019. Exploring the electronic, optical and charge transfer properties of acene-based organic semiconductor materials. Bull. matter. sci. 42: 145-1–145-7.
Wazzan N., Irfan A. 2018. Theoretical study of triphenylamine-based organic dyes with mono-, di-, and tri-anchoring groups for dye-sensitized solar cells. Org. electr. 63: 328-342. https://doi.org/10.1016/j.orgel.2018.09.039
Blakesley J.C., Castro F. A., Kylberg W., Dibb G. F.A., Arantes C., Valaski R., Cremona M., Kim J. S., Kim J.-S. 2014. Towards reliable charge-mobility benchmark measurements for organic semiconductors. Org. electr. 15: 1263-1272. http://dx.doi.org/10.1016/j.orgel.2014.02.008
de Boer R.W.I., Jochemsen M., Klapwijk T.M., Morpurgo A.F. 2004. Space charge limited transport and time of flight measurements in tetracene single crystals: a comparative study. J. appl. phys. 95: 3, 1196-1202. https://doi.org/10.1063/1.1631079
Slouf M. 2002. Determination of net atomic charges in anthraquinone by means of 5-h X-ray diffraction experiment. J. mol. struct. 611: 1-3, 139-146. https://doi.org/10.1016/S0022-2860(02)00060-1
Gaussian 09, Revision A.02. 2009. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta Jr. J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Wallingford CT: Gaussian, Inc.
Kania S., Kościelniak-Mucha B., Kuliński J., Słoma P. 2016. The effect of symmetry of a molecule electronic density on the dipole moment of unit cell and hole conductivity of thin polycrystalline films of anthrone and anthraquinone. Sci. bull. techn. univ. lodz, physics, 37: 49-64. https://doi.org/10.34658/physics.2016.37.49-64
Kania S., Kościelniak-Mucha B., Kuliński J., Słoma P. 2015. Effect of molecule dipole moment on hole conductivity of polycrystalline anthrone and anthrachinone layers. Sci. bull. techn. univ. lodz, physics, 36: 13-26. http://cybra.lodz.pl/dlibra/publication/17133/edition/13805/content
Yan L., Qi M., Li A., Meng H., Zhao X., Ali M., Xu B. 2019. Investigating the single crystal OFET and photo-responsive characteristics based on an anthracene linked benzo[b]benzo[4,5]thieno[2,3-d]thiophene semiconductor. Org. electr. 72: 1-5. https://doi.org/10.1016/j.orgel.2019.05.039
Landolt-Börnstein. 1971.Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Berlin:Springer Verlag.
Troisi A., Orlandi G. 2006. Charge- transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. Phys. rev. lett. 96: 086601-1-086601-4. DOI: 10.1103/PhysRevLett.96.086601
Troisi A., Orlandi G., Anthony J.E. 2005. Electronic interactions and thermal disorder in molecular crystals containing cofacial pentacene units. Chem. mater. 17: 5024-5031. https://pubs.acs.org/doi/pdf/10.1021/cm051150h
Kania S. 2014. Hole drift mobility of anthrone and anthrachinone layers with different structures. Sci. bull. techn. univ. lodz, physics, 35: 17-24. http://cybra.lodz.pl/dlibra/publication/15667/edition/12516/content
Kania S., Dłużniewski M. 2005.Charge carrier lifetime in DLC films, Diamond & related materials 14: 1, 74-77. https://doi.org/10.1016/j.diamond.2004.07.015
Fritzsche H., Proc. Int. Summer School on Semiconductors, ESPOO, Helsinki, 1982, p. 2.
Datta A., Mohakud S., Pati S.K. 2007. Electron and hole mobilities in polymorphs of benzene and naphthalene: role of intermolecular interactions. J. Chem. Phys. 126: 144710-1-144710-6. https://doi.org/10.1063/1.2721530
Kania S., Kuliński J., Sikorski D. 2018. The origin of the interactions responsible for the difference of hole mobility of two derivatives of anthracene. Sci. bull. techn. univ. lodz, physics, 39: 27-35. https://doi.org/10.34658/physics.2018.39.27-35
Deng W-Q., Goddart III W.A. 2004, Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. J. phys. chem. B108: 8614-8621. https://pubs.acs.org/toc/jpcbfk/108/25
Wen S.-H., Li A., Song J., Deng W.-Q., Han K.-L., Goddart III W.A. 2009. Firstprinciples investigation of anisotropic hole mobilities in organic semiconductors. J. phys. chem. B113: 8813-8819. https://pubs.acs.org/doi/10.1021/jp900512s
Köhler A., Bässler H. 2011. What controls triplet exciton transfer in organic semiconductors? J. mater. chem. 21: 4003-4011. https://doi.org/10.1039/c0jm02886j
Kania S. 2009. Electron drift mobility in amorphous anthrone layers. Sci. Bull. Techn. Univ. Lodz, Physics, 30: 65-72. http://cybra.lodz.pl/dlibra/doccontent?id=3532