Subwavelength high contrast gratings as optical sensing elements
PDF

Keywords

Vertical-Cavity Surface-Emitting Lasers (VCSELs)
Optical sensors
subwavelength gratings

How to Cite

Marciniak, M., Gębski, M., Dems, M., & Czyszanowski, T. (2017). Subwavelength high contrast gratings as optical sensing elements. Scientific Bulletin. Physics, 38(1219), 61-70. https://doi.org/10.34658/physics.2017.38.61-70

Abstract

Subwavelength high contrast gratings (HCG) can be used as high reflective mirrors and can be used as mirrors of vertical-cavity surface-emitting lasers. HCG mirrors can be designed in such a way that they are extremely sensitive to environmental changes - changes in the refractive index of ambient substance or changes in the absorption coefficient may cause changes in mirror reflectivity. This phenomenon can be used to detect liquids and gases. In this paper we present analysis of HCG properties. We consider the various HCG mirror designs and the possibilities of detecting gases and liquids.

https://doi.org/10.34658/physics.2017.38.61-70
PDF

References

Chang-Hasnain C.J., Yang W. 2012. High-contrast gratings for integrated optoelectronics. Adv. Opt. Photonics 4: 379-440.

Chung I-S. Mork J., Gilet P., Cheikonov A. 2008. Subwavelength grating-mirror VCSEL with a thin oxide gap. IEEE Photon. Technol. Lett. 20: 105-107.

Sciancelepore C., Ben Bakir B., Letartre X., Fedeli J.-M., Olivier N., Bordel D., Seassal C., Rojo-Romeo P., Regreny P., Viktorovitch P. 2011. Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration. IEEEJ.Lightwave Technology 29: 2015-2024.

Huang M.C.Y., Zhou Y., Chang-Hasnain C.J. 2007. Surface emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photonics 1: 119-122.

Chase C., Rao Y., Hoffmann W., Chang-Hasnain C.J. 2010. 1550 nm high contrast gratingVCSEL. Opt. Express 18: 15461-15466.

Hashemi E., Bengtsson J., Gustavsson J.S., Carlsson S. 2015. TiO2membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime. J. Vac. Sci. Technol. B33: 050603.

Wu T.S. Wu T.T., Syu Y.C., Wu S.H., Chen W.T., Lu T.C., Wang S.C., Chiang H.P., Tsai D.P. 2012. Sub-wavelength GaN-based membrane high contrast grating reflectors. Opt. Express 20: 20551-20557.

Gębski M., Dems M., Szerling A., Motyka M., Marona L., Kruszka R., UrbańczykD., Walczakowski M., Pałka N., Wójcik-Jedlińska A., Wang Q.J., ZhangD.H., Bugajski M., Wasiak M., Czyszanowski T. 2015. Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror. Opt. Express 23: 11674-11686.

Marciniak M., Gębski M., Dems M., Haglund E., Larsson A., Riaziat M., Lott J.A., Czyszanowski T. 2016. Optimal parameters of monolithic high-contrast grating mirrors. Optics letters. 41: 3495-3498.

Karagodsky V., Tran T., Wu M., Chanh-Hasnain C. 2011. Double-Resonant Enhancement of Surface Enhanced Raman Scattering Using High Contrast Grating Resonators. CLEO:2011 ‒Laser Applications to Photonic Applications.

Dems M., Kotyński R., Panajotov K. 2005. Plane Wave Admittance Method –a novel approach for determining the electromagnetic modes in photonic structures. Opt. Express 13: 3196-3207.

Hodgkinson J., Tatam R.P. 2013. Meas. Sci. Technol. Optical gas sensing: a review. 24: 012004.

Pettit G.D., Turner W.J. 1965. Refractive Index of InP. J.App. Phys. 36: 2081.

Li H.H. 1980. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J.Phys. and Chem. Reference data 9: 561.

Gao L., Lemarchand F., Lequime M. 2012. Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express 20: 15734.

Downloads

Download data is not yet available.