Intermolecular interactions for two chosen anthracene derivatives
PDF

Keywords

intermolecular interactions
anthrone
anthraquinone
DFT calculations
organic semiconductors

How to Cite

Kania, S., Kuliński, J., Kościelniak-Mucha, B., Słoma, P., & Wojciechowski, K. (2021). Intermolecular interactions for two chosen anthracene derivatives. Scientific Bulletin. Physics, 42(1230), 5-12. https://doi.org/10.34658/physics.2021.42.5-12

Abstract

The nature of intermolecular interactions for anthrone and anthraquinone differs due to the symmetry of substitution of the central benzene ring, i.e. anthrone substituted with only one keto group and anthraquinone substituted with two keto groups. In order to interpret the interactions among the molecules, the interaction energies between molecules in crystals were calculated using DFT B3LYP calculations. The results reveal the consistency between calculated “lattice energies” and theirs terms and thermodynamical properties as density, boiling point and melting point of examined compounds.

https://doi.org/10.34658/physics.2021.42.5-12
PDF

References

Huang J., Su J.-H., Tian H. 2012. The development of anthracene derivatives for organic light-emitting diodes. J. Mater. Chem. 22:10977-10989. DOI: 10.1039/ c2jm16855c

Belghiti N., Bennani M., Hamidi M., Bouzzine S.M., Bouchrine M. 2012. New compounds based on anthracene as a good candidate for organic dye-sensitized solar cells: Theoretical investigations. Afr. J. Pure Appl. Chem. 6:164-172. DOI: 10.5897/AJPAC12.021

Kania S., Kuliński J., Sikorski D. 2020. Electrical and thermal properties of anthrone. Sci. Bull. Techn. Univ. Lodz. Physics, 41:43-51. https://doi.org/10.34658 /physics.2020.41.43-51

Kania S., Kuliński J., Sikorski D. 2019. Electrical and thermal properties of anthraquinone layers. Sci. Bull. Techn. Univ. Lodz, Physics, 40:13-25. https://doi. org/10.34658/physics.2019.40.13-25

Kania S., Kościelniak-Mucha B., Kuliński J., Słoma P. 2015. Effect of molecule dipole moment on hole conductivity of polycrystalline anthrone and anthrachinone layers. Sci. Bull. Techn. Univ. Lodz, Physics, 36:13-25. http://cybra.lodz.pl/dlibra/ publication/17133/edition/13805/content

Kania S., Kościelniak-Mucha B., Kuliński J., Słoma P., Wojciechowski K. 2019. Polarization of organic aromatic molecule in anionic and cationic state. Sci. Bull. Techn. Univ. Lodz, Physics, 40:27-35. https://doi.org/10.34658/physics.2019.40.27-35

Flack H.D. 1970. I. Refinement and thermal expansion coefficients of the structure of anthrone (20,-90°C) and comparison with anthraquinone, Phil. Trans. A, 266:561-574. https://www.jstor.org/stable/73658

Murty B.V.R. 1960. Refinement of the structure of anthraquinone. Zeitschrift für Kristallographie 113:445-465. https://doi.org/10.1524/zkri.1960.113.jg.445

Srivastava S. N. 1964. Three-Dimensional refinement of the structure of anthrone, Acta Cryst. 17:851-856. https://doi.org/10.1107/S0365110X64002286

Mackenzie C.F., Spackman P.R., Jayatilaka D., Spackman M.A. (2017). CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 4: 575–587. https://doi.org/10.1107/S205225251700848X

Grimme S. 2006. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 27:1787-1799. DOI 10.1002/jcc

Dance I. 2003. Distance criteria for crystal packing analysis of supramolecular motifs. New J. Chem. 27:22–27. DOI: 10.1039/b206867b

Gaussian 09, Revision A.02. 2009. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta Jr. J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Wallingford C.T.: Gaussian, Inc.

http://www.chemicalbook.com

Thomas S.P., Spackman P.R., Jayatilaka D., Spackman M.A. 2018. Accurate lattice energies for molecular crystals from experimental crystal structures. J.Chem. Theory and Comput. 14:1614-1623. DOI: 10.1021/acs.jctc.7b01200

Downloads

Download data is not yet available.