Ab initio investigation of ethanol-tetracene interactions during adsorption
PDF

Keywords

noncovalent interactions
adsorption energy
quantum chemistry calculations

How to Cite

Kania, S., Kościelniak-Mucha, B., Kuliński, J., Słoma, P., & Wojciechowski, K. (2018). Ab initio investigation of ethanol-tetracene interactions during adsorption. Scientific Bulletin. Physics, 39(1224), 13-25. https://doi.org/10.34658/physics.2018.39.13-25

Abstract

Ab initio calculations presented in this work are performed to investigate the geometry, interaction energy and bonding properties of binary complexes formed between neutral ethanol and tetracene molecules. Two different geometries were applied for the study. The interaction energies between molecules in the complex posses minimum at the distance of about 3.6 Å among oxygen atom in ethanol and the neighbouring carbon atom of tetracene skeleton.

https://doi.org/10.34658/physics.2018.39.13-25
PDF

References

Karlický F., Otyepková E., Lo R., Pitonák M., Jurecka P., Pykal M., Hobza P., Otyepka M. 2017. Adsorption of organic molecules to van der Waals materials: comparison of fluorographene and fluorographite with graphene. J. Chem. Theory Comput. 13: 1328-1340.

Kania S., Kościelniak-Mucha B., Kuliński J., Słoma P., Wojciechowski K. 2017. Sensitivity of tetracene layer. Sci. Bull. Techn, Univ.Lodz, Physics, 38: 45-51.

Kania S., Kuliński J. 2013. Adsorption of ethanol to thin layer of acenes as a process of interconnected networks. Sci. Bull. Techn, Univ.Lodz, Physics, 34: 27-34.

Kania S., Kuliński J. 2011. Absorbtion enhanced currents in thin layers of low dimension organics. Sci. Bull. Techn. Univ. Lodz, Physics, 32: 23-30.

Mallocci G., Cappellini G., Mulas G., Mattoni A. 2011. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: a systematic (time-dependent) density functional theory study, Chem. Physics 384: 19-27.

Boys S.F., Bernardi F. 1970. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19: 553-566.

Coropceanu V., Cornil J., da Silva Filho D.A., Olivier Y., Silbey R., Bredas J-L. 2007. Charge Transport in Organic Semiconductors, Chem. Rev. 107: 926-952.

Morokuma K., Kitaura K. 1981. Energy decomposition analysis of molecular interactions. [in:] Chemical Applications of Atomic and Molecular Electrostatic Potentials, ed. Politzer P., 215-242. New York: Springer Science and Business Media.

Chen W., Gordon M.S. 1996. Energy decomposition analyses for many-body interaction and applications to water complexes. J. Phys. Chem. 100:14316-14328.

Grimme S., Anthony J., Ehrlich S., Krieg H. 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132: 154104-01-154104-19.

Grimme S., Ehrlich S., Goerigk L. 2011. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32: 1456-1465.

Brandão F.G.S.L., Horodecki M. 2015.Exponential decay of correlations implies area law. Commun. Math. Phys. 333: 761-798.

Karlický F., Otyepková E., Banás P., Lazar P., Kocman M., Otyepka M. 2015. Interplay between ethanol adsorption to high-energysites and clustering on graphene and graphite alters the measured isosteric adsorption enthalpies. J. Phys. Chem. C 119: 20535-20543.

Downloads

Download data is not yet available.