Abstrakt
Symulowano numerycznie efekt fleksoelektro-optyczny w warstwach nematyków chiralnych. Obliczenia dotyczyły materiałów o krótkim skoku, z osią helisy równoległą do płaszczyzny warstwy. Symulowano odkształcenia związane z dużymi kątami obrotu osi optycznej warstwy wokół normalnej do warstwy, które pozwalają uniknąć gromadzenia się jonów na elektrodach i kontrolować efekt elektrooptyczny napięciem prostokątnym. Zbadano wpływ wybranych parametrów na skuteczność tego efektu.
Bibliografia
Patel J.S., Meyer R.B. 1987. Flexoelectric electro-optics of a cholesteric liquid crystal. Phys. Rev. Lett. 58: 1538-1540.
Rudquist P., Buivydas M., Komitov L., Lagerwall S.T. 1994. Linear electrooptic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy. J. Appl. Phys. 76: 7778-7783.
Rudquist P., Carlsson T., Komitov L., Lagerwall S.T. 1997. The flexoelectro-optic effect in cholesterics. Liq. Cryst. 22: 445-449.
Rudquist P. Lagerwall S.T. 1997. On the flexoelectric effect in nematics. Liq. Cryst. 23: 503-510.
Coles H.J., Morris S.M., Choi S.S., Castles F. 2010. Ultrafast switching liquid crystals for next-generation transmissive and reflective displays. Proc. SPIE 7618. Emerging Liquid Crystal Technologies V. 7618-14.
Lee S.D., Patel J.S., Meyer R.B. 1990. Effect of flexoelectric coupling on helix distortions in cholesteric liquid crystals. J Appl Phys.67:1293–1297.
Xiuze Wang, Fells J.A.J., Welch C., Tamba M.-G., Mehl G.H., Morris S.M., Elston
S.J. 2018. Characterization of large tilt angle flexoelectro-optic switching in chiral nematic liquid crystal devices. Liq. Cryst. 46:408-414.
Bolis S., Tartan C.C., Beeckman J., Kockaert P., Elston S.J., Morris S.M. 2018. Solvent-induced self-assembly of uniform lying helix alignment of the cholesteric liquid crystal phase for the flexoelectro-optic effect, Liq. Cryst. 45: 774-782. Flexoelectro-optic effect with large rotation angle
Varanytsia A., Chien L.-C. 2015. Fast flexoelectric liquid crystal switching based on polymer-stabilized uniform lying helix. 2015. IEEE Photonics Conference (IPC). Reston, VA USA. pp. 38-44.
Xiuze Wang, Fells J.A.J., Yip W.C. Taimoor A., Jia-de Lin, Welch C., Mehl G.H., Booth M.J., Wilkinson T. D., Morris S.M., Elston S.J. 2019. Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector. Sci. Rep. 9:7016.
Born M., Wolf E. Principles of Optics -Pergamon Press Oxford, 1964.
Derfel G, Buczkowska M. 2015. Macroscopic model formulae describing anisotropic anchoring of nematic liquid crystals on solid substrates. Sci. Bull. Techn. Univ. Lodz, Physics. 36: 5-12.
Babakhanova G., Parsouzi Z., Paladugu S., Wang H., Nastishin Y. A., Shiyanovskii S.V., Sprunt S., Lavrentovich O.D. 2017. Elastic and viscous properties of the nematic dimer CB7CB. Phys. Rev. E 96: 062704.
Morris S. M., Clarke M. J., Blatch A. E., Coles H. J. 2007. Structure-flexoelastic properties of bimesogenic liquid crystals. Phys. Rev. E 75: 041701.
Coles H., Clarke M., Morris S., Broughton B., Blatch A.J. 2006. Strong flexoelectric behavior in bimesogenic liquid crystals. Appl. Phys. 99: 34104.
Buczkowska M., Derfel G. 2017. Spatially periodic deformations in planar and twisted flexoelectric nematic layers. Phys. Rev. E 95: 062705-1 -062705-8.
Corbett D.R., Elston S.J. 2011. Modelling the helical-flexo-electro-optic effect. Phys Rev E. 84: 041706-1 -041706-13.
Outram B.I., Elston S.J. 2013. Dielectric enhancement of chiral flexoelectro-optic switching. Liq. Cryst. 40: 1529-1534.