Electrical and thermal properties of anthraquinone layers
PDF

Keywords

anthraquinone
differential scanning calorimetry (DSC)
DFT calculations

How to Cite

Kania, S., Kuliński, J., & Sikorski, D. (2019). Electrical and thermal properties of anthraquinone layers. Scientific Bulletin. Physics, 40(1227), 13-25. https://doi.org/10.34658/physics.2019.40.13-25

Abstract

Quantum-chemical calculations indicate that the bond lengths in the anthraquinone anthracene backbone are shorter than the corresponding bonds in unsubstituted anthracene. The shape of the frontier molecular orbitals (FMO) indicates the possibility of more efficient electron capture by the anthraquinone molecule than by the anthracene molecule while maintaining stability in the conditions prevailing in electrochemical cells. Differential scanning calorimetry (DSC) studies indicate the temperature stability of anthraquinone above the melting point up to 300°C. The glass transition is determined at about 100°C.

https://doi.org/10.34658/physics.2019.40.13-25
PDF

References

Yamagata H., Norton J., Hontz E., Olivier Y., Beljonne D., Brédas J. L., Silbey R. J., Spano F.C. 2011. The nature of singlet excitons in oligoacene molecular crystals. J. chem. phys. 134: 204703-1-204703-1. http://dx.doi.org/10.1063/1.3590 871

Köhler A., Bässler H. 2011. What controls triplet exciton transfer in organic semiconductors?. J. mater. chem. 21: 4003-4011. https://doi.org/10.1039/c0jm02886j

Phillips M. 1929. The chemistry of anthraquinone. Chem. Rev. 6: 1, 157-174. https://doi.org/10.1021/cr60021a007

Bitenc J., Lindahl N., Vizintin A. Abdelhamid M. E., Dominko R., Johansson P. 2020. Concept and electrochemical mechanism of an Al metal anode ‒ organic cathode battery. Energy Storage Materials 24: 379-383. https://doi.org/10.1016/j.ensm.2019.07.033

Slouf M. 2002. Determination of net atomic charges in anthraquinone by means of 5-h X-ray diffraction experiment. J. mol. struct. 611: 1-3, 139-146. https://doi.org/10.1016/S0022-2860(02)00060-1

Fu Y., Brock C. P. 1998. Temperature dependence of the rigid-body motion of anthraquinone. Acta Cryst. B54: 308-315. https://doi.org/10.1107/S0108768197013414

Murty B.V.R. 1960. Refinement of the structure of anthraquinone. Z. Kristallogr. 113: 445-465. http://rruff.info/uploads/ZK113_445.pdf

Marciniak B., Pavlyuk V. 2010. Crystal Structure of a Metastable Anthracene Modification, Grown from the Vapor Phase. Mol. cryst. liq. cryst. 373:1, 237-250. https://doi.org/10.1080/10587250210538

Marciniak B., Różycka-Sokołowska E., Balińska A., Davydov W., Pawliuk W. 2000. Crystal structure and morphology of vapour grown anthracene crystals. Visnyk lviv univ. ser. phys. 33: 277-282.

Landolt-Börnstein. 1971. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Berlin: Springer Verlag.

Kania S., Kościelniak-Mucha B., Kuliński J., Słoma P. 2016. The effect of symmetry of a molecule electronic density on the dipole moment of unit cell and hole conductivity of thin polycrystalline films of anthrone and anthraquinone. Sci. Bull. Techn. Univ. Lodz, Physics, 37: 49-64. https://doi.org/10.34658/physics.2016.37.49-64

Kania S., Kościelniak-Mucha B., Kuliński J., Słoma P. 2015. Effect of molecule dipole moment on hole conductivity of polycrystalline anthrone and anthrachinone layers. Sci. Bull. Techn. Univ. Lodz, Physics, 36: 13-25. http://cybra.lodz.pl/dlibra/publication/17133/edition/13805/content

Gaussian 09, Revision A.02. 2009. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta Jr., J.E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Wallingford CT: Gaussian, Inc.

Krygowski T.M., Cyrański M.K. 2001.Structural aspects of aromaticity. Chem. Rev.101: 1385-1419. https://doi.org/10.1021/cr990326u

Portella G., Poater J., Bofill J.M., Alemany P., Sola`M. 2004. Local Aromaticity of [n]Acenes, [n]Phenacenes, and [n]Helicenes (n ) 1-9). J. org. chem. 70: 7, 2509-2521. https://pubs.acs.org/doi/10.1021/jo0480388

Downloads

Download data is not yet available.