Abstract
Based on the model of impedance and modulation time constants for vertical-cavity surface-emitting lasers (VCSELs) we study the resistances and capacitances of an equivalent circuit as a function of the current flowing through the VCSEL. We observe reduction of some components of the resistance and the capacitance, as well as the modulation time constants for increasing current.
References
Li H., Lott J.A., Wolf P., Moser P., Larisch G., Bimberg D. 2015. Temperature-dependent impedance characteristics of temperature-stable high-speed 980 nm VCSELs. IEEE Photon. Technol. Lett. 27:832-835.
Li H., Wolf P., Moser P., Larisch G., Lott J.A., Bimberg D. 2014. Temperature-stable 980 nm VCSELs for 35 Gb s−1operation at 85°C with 139 fJ/bit dissipated heat. IEEE Photon. Technol. Lett. 26:2349-2352.
Moser P., Lott J.A., Larisch G., Bimberg D. 2015. Impact of the oxide-aperture diameter on the energy-efficiency, bandwidth, and temperature stability of 980 nm VCSELs. J. Lightwave Technol. 33:825-831.
Ou Y., Gustavsson J.S., Westbergh P., Haglund Å., Larsson A., Joel A. 2009. Impedance characteristics and parasitic speed limitations of high-speed 850nm VCSELs. IEEE Photon. Technol. Lett. 21:1840-1842.
Wasiak M., Śpiewak P., Moser P., Walczak J., Sarzała R.P., Czyszanowski T., Lott J.A. 2016. Numerical model of capacitance in vertical-cavity surface-emitting lasers. J. Phys. D: Appl. Phys. 49:175104.
Piskorski Ł., Sarzała R.P., Nakwaski W. 2007. Self-consistent model of 650 nm GaInP/AlGaInP quantum-well vertical-cavity surface-emitting diode lasers. Semicond. Sci. Technol. 22:593-600.
Xu D., Tong C., Yoon S.F., Fan W., Zhang D.H., Wasiak M., Piskorski Ł., Gutowski K., Sarzała R.P., Nakwaski W. 2009. Room-temperature continuous-wave operation of the In(Ga)As/GaAs quantum-dot VCSELs for the 1.3μm optical-fibre communication. Semicond. Sci. Technol. 24:055003.