Flexoelectro-optic efects with large rotation angle of optic axis
PDF

Keywords

chiral nematic
helical axis
flexoelectro-optic effect

How to Cite

Buczkowska, M. (2020). Flexoelectro-optic efects with large rotation angle of optic axis. Scientific Bulletin. Physics, 41(1229), 23-31. https://doi.org/10.34658/physics.2020.41.23-31

Abstract

The flexoelectro-optic effect in layers of chiral nematics was investigated numerically. The simulations concerned short pitch materials with the helix axis parallel to the layer plane. Configurations which allow to avoid accumulation of ions at the electrodes and are suitable for square-wave driving voltage were considered. They were related to large rotation angles of the optical axis of the layer about the normal to the layer. Influence of chosen parameters on efficiency of the electro-optic effect was studied.

https://doi.org/10.34658/physics.2020.41.23-31
PDF

References

Patel J.S., Meyer R.B. 1987. Flexoelectric electro-optics of a cholesteric liquid crystal. Phys. Rev. Lett. 58: 1538-1540.

Rudquist P., Buivydas M., Komitov L., Lagerwall S.T. 1994. Linear electrooptic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy. J. Appl. Phys. 76: 7778-7783.

Rudquist P., Carlsson T., Komitov L., Lagerwall S.T. 1997. The flexoelectro-optic effect in cholesterics. Liq. Cryst. 22: 445-449.

Rudquist P. Lagerwall S.T. 1997. On the flexoelectric effect in nematics. Liq. Cryst. 23: 503-510.

Coles H.J., Morris S.M., Choi S.S., Castles F. 2010. Ultrafast switching liquid crystals for next-generation transmissive and reflective displays. Proc. SPIE 7618. Emerging Liquid Crystal Technologies V. 7618-14.

Lee S.D., Patel J.S., Meyer R.B. 1990. Effect of flexoelectric coupling on helix distortions in cholesteric liquid crystals. J Appl Phys.67:1293–1297.

Xiuze Wang, Fells J.A.J., Welch C., Tamba M.-G., Mehl G.H., Morris S.M., Elston

S.J. 2018. Characterization of large tilt angle flexoelectro-optic switching in chiral nematic liquid crystal devices. Liq. Cryst. 46:408-414.

Bolis S., Tartan C.C., Beeckman J., Kockaert P., Elston S.J., Morris S.M. 2018. Solvent-induced self-assembly of uniform lying helix alignment of the cholesteric liquid crystal phase for the flexoelectro-optic effect, Liq. Cryst. 45: 774-782. Flexoelectro-optic effect with large rotation angle

Varanytsia A., Chien L.-C. 2015. Fast flexoelectric liquid crystal switching based on polymer-stabilized uniform lying helix. 2015. IEEE Photonics Conference (IPC). Reston, VA USA. pp. 38-44.

Xiuze Wang, Fells J.A.J., Yip W.C. Taimoor A., Jia-de Lin, Welch C., Mehl G.H., Booth M.J., Wilkinson T. D., Morris S.M., Elston S.J. 2019. Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector. Sci. Rep. 9:7016.

Born M., Wolf E. Principles of Optics -Pergamon Press Oxford, 1964.

Derfel G, Buczkowska M. 2015. Macroscopic model formulae describing anisotropic anchoring of nematic liquid crystals on solid substrates. Sci. Bull. Techn. Univ. Lodz, Physics. 36: 5-12.

Babakhanova G., Parsouzi Z., Paladugu S., Wang H., Nastishin Y. A., Shiyanovskii S.V., Sprunt S., Lavrentovich O.D. 2017. Elastic and viscous properties of the nematic dimer CB7CB. Phys. Rev. E 96: 062704.

Morris S. M., Clarke M. J., Blatch A. E., Coles H. J. 2007. Structure-flexoelastic properties of bimesogenic liquid crystals. Phys. Rev. E 75: 041701.

Coles H., Clarke M., Morris S., Broughton B., Blatch A.J. 2006. Strong flexo­electric behavior in bimesogenic liquid crystals. Appl. Phys. 99: 34104.

Buczkowska M., Derfel G. 2017. Spatially periodic deformations in planar and twisted flexoelectric nematic layers. Phys. Rev. E 95: 062705-1 -062705-8.

Corbett D.R., Elston S.J. 2011. Modelling the helical-flexo-electro-optic effect. Phys Rev E. 84: 041706-1 -041706-13.

Outram B.I., Elston S.J. 2013. Dielectric enhancement of chiral flexoelectro-optic switching. Liq. Cryst. 40: 1529-1534.

Downloads

Download data is not yet available.