A DFT study of reorganization energy of some chosen carbazole derivatives
PDF

Keywords

reorganization energy
DFT calculations
benzocarbazoles
Marcus-Hush theory of electron transport

How to Cite

Kania, S., Kościelniak-Mucha, B., Kuliński, J., Słoma, P., & Wojciechowski, K. (2020). A DFT study of reorganization energy of some chosen carbazole derivatives. Scientific Bulletin. Physics, 41(1229), 33-42. https://doi.org/10.34658/physics.2020.41.33-42

Abstract

Strong efforts toward finding an organic semiconductor with a molecule characterized by a low charge transfer energy applying quantum-chemical calculations are undertaken. Density Functional Theory (DFT) calculations made for carbazole (Cz) and three isomers of benzocarbazole, benzo (a) carbazole (BaCz), benzo (b) carbazole (BbCz) and benzo (c) carbazole (BcCz) proves the possibility of lacking the growth of reorganization energy despite the molecule dimentions enlargement. Benzo(b)carbazole molecules with high longitudinal dimension of the rigid skeleton d = 9,05 Å posses the low value of reorganization energy for both hole and electron transport of 0,18 eV and 0,11 eV, respectively. We suggest that the reduction of reorganization energy may be related to the diminishing of intramolecular hydrogen interactions.

https://doi.org/10.34658/physics.2020.41.33-42
PDF

References

Varathan E., Vijayc D., Subramanian V. 2016. Quantum chemical design of carbazole-and pyridoindole-based ambipolar host materials for blue phosphorescent OLEDs. RSC Adv. 6: 74769-74783. DOI: 10.1039/c6ra15748c

Marzinzik A.L., Rademacher P., Zander M. 1996. Structural chemistry of polycyclic heteroaromatic compounds. Part 9. Photoelectron spectra and electronic structures of anellated carbazoles. Extension of Clar's aromatic sextet model to hetarenes. J. Mol. Struct. 375: 117-126. https://doi.org/10.1016/0022-2860(95)09029-0

Batra I.P., Bagus P.S., Clementi E., Seki H. 1973. Ab initio Calculations for the Electronic Structure of Carbazole and Trinitrofluorenone. Theoret.Chim. Acta (Berl.) 32: 279-293. https://link.springer.com/article/10.1007/BF00526864

Gajda K., Zarychta B., Kopka K., Daszkiewicz Z., Ejsmont K. 2014. Substituent effects in nitro derivatives of carbazoles investigated by comparison of low­temperature crystallographic studies with density functional theory (DFT) calculations. Acta Cryst. C70: 987–991. doi:10.1107/S205322961402634 A DFT study of reorganization energy of carbazole derivatives

Gaussian 09, Revision A.02. 2009. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., M. Ehara, Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta Jr., J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Wallingford CT: Gaussian, Inc.

Becke, J. 1996. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. Chem. Phys. 104: 1040-1046. https://doi.org/10.1063/1.470829

Lee C., Yang W., Parr R.G. 1998. Development of the Colle-Salvetti correlation­energy formula into a functional of the electron density. Phys. Rev. B 37: 785-789. https://doi.org/10.1103/PhysRevB.37.785

Pan J-H., Chiu H-L., Wang B-C. 2005. Theoretical investigation of carbazole derivatives as hole-transporting materials in OLEDs. Journal of Molecular Structure: THEOCHEM 725: 89–95. doi:10.1016/j.theochem.2005.02.061

Hlel A., Mabrouk A., Chemek M., Ben Khalifa I., Alimi K. 2014. A DFT study of charge-transfer and opto-electronic properties of some new materials involving carbazole units. Computational Condensed Matter 3: 30-40. http://dx.doi.org/ 10.1016/j.cocom.2015.02.001

Marcus R.A. 2000. Tutorial on rate constants and reorganization energies. J. Electroanalytical Chem. 483: 2-6. http://dx.doi.org/10.1016/S0022-0728(00)00011-5

Marcus, R.J. 1993. Electron transfer reactions in chemistry. Theory and experiment. Rev. mod. phys. 65: 3, 599-610. DOI:https://doi.org/10.1103/RevModPhys.65.599

Malloci G., Cappellini G., Mulas G., Mattoni A. 2011. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: a systematic (time­dependent) density functional theory study. Chem. Phys. 384(1): 19-27. https://doi.org/10.1016/j.chemphys.2011.04.013

Malloci G., Mulas G., Capellini G., Joblin C. 2007. Time-dependent density functional study of the electronic spectra of oligoacenes in the charge states .1, 0, +1, and +2, Chem. Phys. 340: 43-58. DOI: 10.1016/j.chemphys.2007.07.046

Tsuneda T., Song J.-W., Suzuki S., Hirao K. 2010. On Koopmans’ theorem in density functional theory. Chem. Phys. 133, 174101-1 -174101-9. https://doi.org/10. 1063/1.3491272

Downloads

Download data is not yet available.