The origin of the interaction responsible for the difference of hole mobility of two derivatives of anthracene
PDF

Keywords

anthrone
anthraquinone
DFT calculations
mobility

How to Cite

Kania, S., Kuliński, J., & Sikorski, D. (2018). The origin of the interaction responsible for the difference of hole mobility of two derivatives of anthracene. Scientific Bulletin. Physics, 39(1224), 27-35. https://doi.org/10.34658/physics.2018.39.27-35

Abstract

Hole mobility of the layers built from two anthracene derivatives differing in the substitution of the central benzene ring, i.e. anthrone substituted with only one keto group and anthraquinone substituted with two keto groups differs by one order of magnitude despite the fact that both have almost identical crystal structure. We ascribe this difference to existence of an additional intermolecular interaction arising in the layer of anthrone.

https://doi.org/10.34658/physics.2018.39.27-35
PDF

References

Buckingham A.D., Fowler P.W. 1984. A model for the geometries of van der Waals complexes. Can. J. Chem. 63, 2018-2025.

Yatsenko A.V. 2003. Molecular crystals: the crystal field effect on molecular electronic structure. J. Mol. Model. 9, 207-216.

Weber G. 1981. The structure of a 2:1 host guest complex between p-nitroaniline and 18-crown-6. Z. Naturforsch. B 36, 896-897.

Fu Y. 1998. Temperature dependence of the rigid-body motion of anthraquinone. B54, 308-315.

Yap G.P.A., Wisner J.A. 1997. CSD Communication (Private Communication).

Landolt-Börnstein. 1971. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Berlin: Springer Verlag.

Kania S. 2014. Hole drift mobility of anthrone and anthrachinone layers with different structures. Sci. Bull. Techn. Univ. Lodz, Physics, 35: 17-24.

Gaussian 09, Revision A.02. 2009. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., M. Ehara, Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta Jr., J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J.E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., and Fox D.J., Wallingford CT: Gaussian, Inc.

Badri Z., Foroutan-Nejad C. 2016. Unification of ground-state aromaticity criteria – structure, electron delocalization, and energy – in light of the quantum chemical topology Phys. Chem. Chem. Phys. 18: 11693-11699.

Pendás A.M., Blanco M.A., Francisco E. 2006. Chemical fragments in real space: definitions, properties, and energetic decompositions. J. Comput. Chem., 28, 161-184.

Pope M., Swenberg C.E. 1982. Electronic processes in organic crystals, New York: Clarendon Press.

Kitaigorodskii A.J. 1973. Molecular Crystals and Molecules, New York: Acad. Press.

Downloads

Download data is not yet available.