Abstract
Hole mobility of the layers built from two anthracene derivatives differing in the substitution of the central benzene ring, i.e. anthrone substituted with only one keto group and anthraquinone substituted with two keto groups differs by one order of magnitude despite the fact that both have almost identical crystal structure. We ascribe this difference to existence of an additional intermolecular interaction arising in the layer of anthrone.
References
Buckingham A.D., Fowler P.W. 1984. A model for the geometries of van der Waals complexes. Can. J. Chem. 63, 2018-2025.
Yatsenko A.V. 2003. Molecular crystals: the crystal field effect on molecular electronic structure. J. Mol. Model. 9, 207-216.
Weber G. 1981. The structure of a 2:1 host guest complex between p-nitroaniline and 18-crown-6. Z. Naturforsch. B 36, 896-897.
Fu Y. 1998. Temperature dependence of the rigid-body motion of anthraquinone. B54, 308-315.
Yap G.P.A., Wisner J.A. 1997. CSD Communication (Private Communication).
Landolt-Börnstein. 1971. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Berlin: Springer Verlag.
Kania S. 2014. Hole drift mobility of anthrone and anthrachinone layers with different structures. Sci. Bull. Techn. Univ. Lodz, Physics, 35: 17-24.
Gaussian 09, Revision A.02. 2009. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., M. Ehara, Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta Jr., J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J.E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., and Fox D.J., Wallingford CT: Gaussian, Inc.
Badri Z., Foroutan-Nejad C. 2016. Unification of ground-state aromaticity criteria – structure, electron delocalization, and energy – in light of the quantum chemical topology Phys. Chem. Chem. Phys. 18: 11693-11699.
Pendás A.M., Blanco M.A., Francisco E. 2006. Chemical fragments in real space: definitions, properties, and energetic decompositions. J. Comput. Chem., 28, 161-184.
Pope M., Swenberg C.E. 1982. Electronic processes in organic crystals, New York: Clarendon Press.
Kitaigorodskii A.J. 1973. Molecular Crystals and Molecules, New York: Acad. Press.