Mushrooms of the Pleurotus genus – properties and application
PDF

Keywords

Pleurotus
biotransformation
bioremediation
biodegradation

How to Cite

Grabarczyk, M., Mączka, W., Wińska, K., & Uklańska-Pusz, C. (2019). Mushrooms of the Pleurotus genus – properties and application. Biotechnology and Food Science, 83(1), 13-30. https://doi.org/10.34658/bfs.2019.83.1.13-30

Abstract

Mushrooms of the Pleurotus genus are found naturally in forests in almost all latitudes where they are responsible for the decomposition of wood. These fungi are valuable to cultivate and eat, as they are source of valuable nutrients and healing ingredients. Mycelium of white rot is known for its bioremediation abilities, including the accumulation of heavy metals and chlorinated aromatic hydrocarbons. Mushrooms of the Pleurotus genus have also been found applicable in the biotransformation of unsaturated terpenoid compounds. These reactions involve hydroxylation at the allyl position and subsequent oxidation of the introduced hydroxyl group. The article presents a number of applications of various strains of fungi of the Pleurotus genus.

https://doi.org/10.34658/bfs.2019.83.1.13-30
PDF

References

Lohmeyer TR, Kũnkele U. Grzyby. Rozpoznawanie i zbieranie. Warszawa 2006.

Pointing SB. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 2001, 57:20-33.

Gapiński M, Woźniak W, Ziombra M. Boczniak. Technologia uprawy i przetwarzania. Poznań: PWRiL, 2001.

Gunde-Cimerman N, Cimerman A. Pleurotus fruiting bodies contain the inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase-lovastatin. Exp Mycol 1995, 19:1-6.

Bonatti M, Karnopp P, Soares HM, Furlan SA. Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chem 2004, 88:425-428.

Maftoun P, Johari H, Soltani M, Malik R, ZO Nor, El Enshasy HA., The edible mushroom Pleurotus spp.: I. Biodiversity and nutritional values. Int J Biotech Well Indus 2015, 4:67-83.

Lindequist U, Niedermeyer THJ, Jülich WD. The pharmacological potential of mushrooms. eCAM, 2005, 2:285-299.

Sánchez C. Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol 2010, 85:1321-1337.

Kalač P. Edible mushrooms: chemical composition and nutritional value. Academic Press 2016.

Siwulski M, Sobieralski K, Miran D. Wpływ wilgotności podłoża na plonowanie dwóch odmian boczniaka. Roczniki AR Pozn. Ogrodn. 2007, 41:615-618.

Ali N, Khairudin H, Mohamed M, Hassan O. Cultivation of Pleurotus ostreatus on oil palm fronds mixed with rubber tree sawdust. Chem Eng Trans 2018, 63:547-552.

Shen Q, Dan H, Chen Y, Royce D. Comparison of oyster mushroom production practices in China and the United States. In: Mushroom Biology and Mushroom Products: Proceedings of the Fourth International Conference held at Shanghai, China, eds. Chang, S., Buswell, J, Chiu, S. The Chinese University Press Google Scholar, 2004.

Stamets P. Growing gourmet and medicinal mushrooms. Third edition. Ten Speed Press, 2000.

Yang W, Guo F, Wan Z. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi J Biol Sci 2013, 20:333-338.

Jin Z, Li Y, Ren J, Qin N. Yield, nutritional content, and antioxidant activity of Pleurotus ostreatus on corncobs supplemented with herb residues. Mycobiology 2018, 46:24-32.

Narh Mensah DL, Addo P, Dzomeku M, Obodai M. Bioprospecting of powdered pineapple rind as an organic supplement of composted sawdust for Pleurotus ostreatus mushroom cultivation. Food Sci Nutr 2018, 6:280-286.

Mbassi Josiane EG, Mobou Estelle Y, Ngome Francis A, Sado Kamdem SL. Effect of substrates on nutritional composition and functional properties of Pleurotus ostreatus, Curr Res Agric Sci 2018, 5:15-22.

AlarconJ, Aguila S, Arancibia-Avila P, FuentesO, Zamorano-Ponce E, Hernandez M. Production and purification of statins from Pleurotus ostreatus (Basidiomycetes) strains. Z Naturforsch 2003, 58c:62-64.

Fraatz MA, Riemer SJL, Stöber R, Kaspera R, Nimtz M, Berger RG, Zorn H. A novel oxygenase from Pleurotus sapidus transforms valencene to nootkatone. J Mol Catal B: Enzymatic 2009, 61:202-207.

Krügener S, Krings U, Zorn H, Berger RG. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation. Bioresour Technol 2010, 101:457-462.

Lehnert N, Krings U, Sydes D, Wittig M, Berger RG. Bioconversion of car-3-ene by a dioxygenase of Pleurotus sapidus. J Biotechnol 2012, 159:329-335.

Weidmann V, Schaffrath M, Zorn H, Rehbein J, Maison W. Elucidation of the regioand chemoselectivity of enzymatic allylic oxidations with Pleurotus sapidus – conversion of selected spirocyclic terpenoids and computational analysis. Beilstein J Org Chem; 2013, 9:2233-2241.

Kaspera R, Krings U, Pescheck M, Sell D, Schrader J, Berger RG. Regio- and stereoselective fungal oxyfunctionalisation of limonenes. Z. Naturforsch 2005, 60c:459-466.

Purnomo AS, Mori T, Putra SR, Kondo R. Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodeter Biodegr 2013, 82:40-44.

Javaid A, Bajwa R, Shafique U, Anwar J. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenergy 2011, 35:1675-1682.

Jin Y, Teng C, Yu S, Song T, Dong L, Liang J, Bai X, Liu X, Hu X, Qu J. Batch and fixed-bed biosorption of Cd(II) from aqueous solution using immobilized Pleurotus ostreatus spent substrate. Chemosphere 2018, 191:799-808.

Bharath YN, Singh S, Keerthiga G, Prabhakar R. Mycoremediation of contaminated soil in MSW sites. In: Waste Management and Resource Efficiency, Springer Nature Singapore Pte Ltd. 2019, 321-329.

Liu B, Huang Q, Su Y, Xue Q, Sun L. Cobalt speciation and phytoavailability in fluvo-aquic soil under treatments of spent mushroom substrate from Pleurotus ostreatus. Environ Sci Pollut Res Int. 2019, https://doi.org/10.1007/s11356-018-04080-3.

Kocaoba S, Arisoy M. Biosorption of cadmium(II) and lead(II) from aqueous solutions using Pleurotus ostreatus immobilized on bentonite. Sep Sci Technol 2018, 53:1703-1710.

Marco-Urrea E, Perez-Trujillo M, Vicent T, Caminal G. Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 2009, 74:765-772.

Hata T, Shintate H, Kawai S, Okamura H, Nishida T. Elimination of carbamazepine by repeated treatment with laccase in the presence of 1-hydroxybenzotriazole. J Hazard Mater 2010, 181:1175-1178.

Golan-Rozen N, Chefetz B, Ben-Ari J, Geva J, Hadar Y. Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: Role of cytochrome P450 monooxygenase and manganese peroxidase. Environ Sci Technol 2011, 45:6800–6805.

Jackson III LW, Pryor BM. Degradation of aflatoxin B1 from naturally contaminated maize using the edible fungus Pleurotus ostreatus. AMB Expr 2017, 7:110.

Hirano T, Honda Y, Watanabe T, Kuwahara M. Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Biosci Biotechnol Biochem 2000, 64:1958-1962.

Patel H, Gupte A, Gupte S. Biodegradation of fluoranthene by basidiomycetes fungal isolate Pleurotus Ostreatus HP-1. Appl Biochem Biotechnol 2009, 157:367-376.

Pereira PM, Sobral Teixeira RS, de Oliveira MAL, da Silva M, Ferreira-Leitão VS. Optimized atrazine degradation by Pleurotus ostreatus INCQS 40310: an alternative for impact reduction of herbicides used in sugarcane crops. J Microb Biochem Technol 2013, S12:006.

Purnomo AS, Mori T, Kamei I, Takafumi Nishii T, Kondo R. Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDTcontaminated soil, Int Biodeter Biodegr 2010, 64:397-402.

Purnomo AS, Nawfa R, Martak F, Shimizu K, Kamei I. Biodegradation of Aldrin and Dieldrin by the White-Rot Fungus Pleurotus ostreatus. Curr Microbiol. 2017, 74:320-324.

Ahuactzin-Pérez M, Tlecuitl-Beristain S, García-Dávila J, Santacruz-Juárez E, González-Pérez M, Gutiérrez-Ruíz MC, Sánchez C. A novel biodegradation pathway of the endocrine-disruptor di(2-ethylhexyl) phthalate by Pleurotus ostreatus based on quantum chemical investigation. Ecotoxicol Environ Safety 2018, 147:494-499.

Downloads

Download data is not yet available.