Abstract
Abstract: The aim of the study was to determine the effect of osmotic dehydration in sucrose solution on the level and profile of the main saccharides in frozen chokeberry and apricot. A 50°Bx sucrose solution at a temperature of 25, 35, 45 and 55°C was used in the tests. The influence of temperature and dehydration time on the dry matter content in the tested fruits was demonstrated. Both in apricot and chokeberry the highest increase was recorded in the first hour of the process, for apricots to the level of 25.1-32.4%, for chokeberry 30.4-33.4%. The use of the highest temperature (55°C) increased the content of glucose and fructose while reducing the amount of sucrose (hydrolysis); at 25-35°C the opposite effect was obtained. At low temperatures, chokeberry was not very susceptible to migration of sucrose. Also, the transport of water was not intense. There was no correlation between the temperature of the process and the increase in dry matter in the sample. The greatest loss of water, i.e. 1 g H2O/g i.d.m., occurred after five hours at 55°C. Under analogous conditions, apricots showed a higher water loss, at the level of 4.68 g H2O/g i.d.m. At 25°C, after the first hour of dehydration, the energy value of saccharides in apricots was 315 kJ/100 g; at 55°C, after 3÷5 hours it fluctuated around 500 kJ/100g. Dehydrated chokeberry was characterized by approx. 1.5÷2 times lower energy value than apricot.
References
Cichowska J, Kowalska H, Czajkowska K, Hankus M. Wykorzystanie potencjału odwadniania osmotycznego i prozdrowotnych właściwości owoców w kreowaniu nowych produktów spożywczych. Postępy Tech. Przetw. Spoż. 2016, 2: 103–107.
Żubernik J, Dadan M, Czyżewski J, Witrowa-Rajchert D. Wpływ etanolu na przebieg suszenia oraz wybrane właściwości tkanki jabłka. Zesz. Probl. Post. Nauk Roln. 2017, 589: 145–153.
Szparaga A, Dymkowska-Malesa M, Wesołowski A. Odwadnianie osmotyczne w technologii utrwalania owoców i warzyw, Postępy Tech. Przetw. Spoż., 2014, 1: 97–101.
Lech K, Michalska A, Wojdyło A, Nowicka P, Figiel A. The influence of physical properties of selected plant materials on the process of osmotic dehydration. LWT. 2018, 91: 588–594.
Lerici CR, Pinnavaia G, Dalla Rosa M, Bartolucci L. Osmotic dehydration of fruit: Influence of osmotic agents on drying behavior and product quality. J. Food Sci. 1985, 50: 1217–1219.
Cichowska J, Samborska K, Kowalska H. Influence of chokeberry juice concentrate used as osmotic solution on the quality of differently dried apples during storage. Eur. Food Res. Technol. 2018, 244: 1773–1782.
Ciurzyńska A, Lenart A, Siemiątkowska M. Wpływ odwadniania osmotycznego na barwę i właściwości mechaniczne liofilizowanych truskawek, Acta Agrophys. 2011, 17 (1): 17-32.
Ruskova MM, Aleksandrov SS, Bakalov IY, Popescu EC, Petrova TV, Gotcheva VG, Penov ND. Osmotic dehydration as a preliminary technological process for the production of dried chokeberry (Aronia melanocarpa). Bulg. Chem. Commun. 2016, 48(E): 412–417.
Lech K, Michalska A, Wojdyło A, Nowicka P, Figiel A. The Influence of the osmotic dehydration process on physicochemical properties of osmotic solution. Molecules. 2017, 22(12): 2246.
Samborska K, Eliasson L, Marzec A, Kowalska J, Piotrowski D, Lenart A, Kowalska H. The effect of adding berry fruit juice concentrates an by-product extract to sugar solution on osmotic dehydration and sensory properties of apples. J. Food Sci. Technol. 2019, 56: 1927–1938.
Matusek A, Czukor B, Merész P. Comparison of sucrose and fructo-oligosaccharides as osmotic agents in apple. Innov. Food Sci. Emerg. Technol. 2008, 9: 365–373.
Michalska K, Klewicki R, Wojtczak M. Odwadnianie osmotyczne mrożonych gruszek w roztworach sacharozy z dodatkiem wybranych soli wapnia. Żywn. Nauka. Technol. Jakość. 2017, 24, 2 (111): 88–105.
Klewicki R, Uczciwek M. Effect of osmotic dehydration in fructose, sucrose and fructooligosaccharide solutions on the content of saccharides in plums and apples and their energy values. Agr. Food Sci. 2008, 17(4): 367–375.
Chwastek A, Klewicka E, Klewicki R, Sójka M. Lactic acid fermentation of red beet juice supplemented with waste highbush blueberry–sucrose osmotic syrup as a method of probiotic beverage production. J. Food Process. Preserv. 2016, 40 (4): 780–789.
Piasecka E, Uczciwek M, Klewicki R. Odwadnianie osmotyczne owoców w roztworach zawierających fruktooligosacharydy, Żywn. Nauka. Technol. Jakość. 2009, 2 (63): 138–153.
Lewicki PP, Lenart A. Osmotic dehydration of fruits and vegetables. In: Handbook of industrial drying, 3rd ed. Editor Mujumdar AS, CRC Press, Boca Raton, USA, 2006, pp. 665–687.
Ahmed I, Qazi IM, Jamal S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov. Food Sci. Emerg. Technol. 2016, 34: 29–43.
Mavroudis NE, Dejmek P, Sjöholm I. Osmotic-treatment-induced cell death and osmotic processing kinetics of apples with characterised raw material properties. J. Food Eng. 2004, 63(1): 47–56.
Kowalska H, Lenart A, Leszczyk D. The effect of blanching and freezing on osmotic dehydration of pumpkin. J. Food Eng. 2008, 86: 30–38.
Jiménez-Hernández J, Estrada-Bahena EB, Maldonado-Astudillo YI, Talavera-Mendoza Ó, Arámbula-Villa G, Azuara E, Álvarez-Fitz P, Ramírez M, Salazar R. Osmotic dehydration of mango with impregnation of inulin and piquin-pepper oleoresin. LWT – Food Sci. Technol. 2017, 79: 609-615.
Taiwo KA, Angersbach A, Ade-Omowaye BIO, Knorr D. Effects of pretreatments on the diffusion kinetics and some quality parameters of osmotically dehydrated apple slices. J. Agric. Food Chem. 2001, 49: 2804−2811.
Kucner A, Klewicki R, Sójka M. The influence of selected osmotic dehydration and pretreatment parameters on dry matter and polyphenol content in highbush blueberry (Vaccinium corymbosum L.) fruits. Food Bioprocess Technol. 2013, 6: 2031–2047.
Kucner A, Klewicki R, Sójka M, Klewicka E. Osmotic concentration of gooseberry fruits – the influence of temperature, time and pretreatment methods on mass transfer and total polyphenol and organic acid content. Food Technol. Biotechnol. 2014, 52(4): 411–419.