Bufadienolides - natural, biologically active compounds for medicines and cosmetics. A review.
PDF

How to Cite

Szymczak, K., & Bonikowski, R. (2023). Bufadienolides - natural, biologically active compounds for medicines and cosmetics. A review. Biotechnology and Food Science, 85(1), 3-15. https://doi.org/10.34658/bfs.2023.85.1.3-15

Abstract

Toad skin secretions are a rich source of various biologically active compounds, such as alkaloids, bufadienolides, biogenic amines, or peptides. Also plants from Hyacinthaceae and Crassulaceae can be a potent source of these groups of molecules. These compounds play a crucial role in amphibians’ and plants’ physiology such as defense against predators or pathogenic microorganisms. Among them, bufadienolides are the focus of many researches in recent years. These molecules have a very interesting, steroidal chemical structure and have potent activity at the cellular level. They possess cardiotonic, antiviral, antibacterial, antitumor, anti-inflammatory, hemostatic, bacteriostatic, wound-healing, and antiparasitic properties. Although the structures of about 500 bufadienolides are known, it is strongly suggested that this group of compounds is still very poorly examined. Moreover, bufadienolides may be an excellent basis for the chemical synthesis of new drugs with selective bioactivity. The aim of this paper is to briefly overview bufadienolides as potent compounds for medicines and cosmetics.

https://doi.org/10.34658/bfs.2023.85.1.3-15
PDF

References

Krenn L, Kopp B. Bufadienolides from animal and plant sources. Phytochemistry 1998, 48:1-29.

Favre H, Giles P, Hellwich K-H, McNaught A, Moss G, Powell W. Revised Section F: Natural products and related compounds (IUPAC Recommendations 1999). Corrections and modifications Pure Appl Chem 2004, 76:1283-1292.

Steyn PS, van Heerden FR. Bufadienolides of plant and animal origin. Nat Prod Rep 1998, 15:397-413.

Tempone AG, Pimenta DC, Lebrun I, Sartorelli P, Taniwaki NN, de Andrade HF, et al. Antileishmanial and antitrypanosomal activity of bufadienolides isolated from the toad Rhinella jimi parotoid macrogland secretion. Toxicon 2008, 52:13-21.

Cunha-Filho GA, Resck IS, Cavalcanti BC, Pessoa CÓ, Moraes MO, Ferreira JRO, et al. Cytotoxic profile of natural and some modified bufadienolides from toad Rhinella schneideri parotoid gland secretion. Toxicon 2010, 56:339-348.

Zhang J, Sun Y, Liu J-H, Yu B-Y, Xu Q. Microbial transformation of three bufadienolides by Nocardia sp. and some insight for the cytotoxic structure–activity relationship (SAR). Bioorg. Med. Chem. Lett. 2007, 17:6062-6065.

Gao H, Zehl M, Leitner A, Wu X, Wang Z, Kopp B. Comparison of toad venoms from different Bufo species by HPLC and LC-DAD-MS/MS. J Ethnopharmacol 2010, 131:368376.

Cunha Filho GA, Schwartz CA, Resck IS, Murta MM, Lemos SS, Castro MS, et al. Antimicrobial activity of the bufadienolides marinobufagin and telocinobufagin isolated as major components from skin secretion of the toad Bufo rubescens. Toxicon Off J In. So. Toxinology 2005, 45:77-782.

Ferreira PMP, Lima DJB, Debiasi BW, Soares BM, Machado K da C, Noronha J da C, et al. Antiproliferative activity of Rhinella marina and Rhaebo guttatus venom extracts from Southern Amazon. Toxicon 2013, 72:43-51.

Schmeda-Hirschmann G, Quispe C, Theoduloz C, de Sousa PT, Parizotto C. Antiproliferative activity and new argininyl bufadienolide esters from the “cururú” toad Rhinella (Bufo) schneideri. J Ethnopharmacol 2014, 155:1076-1085.

Gentry HS, Verbiscar AJ, Banigan TF. Red squill (Urginea maritima, Liliaceae). Econ Bot 1987, 41:267-282.

Steyn PS, Heerden FR van, Vleggaar R, Anderson LAP. Bufadienolide glycosides of the Crassulaceae. Structure and stereochemistry of orbicusides A—C, novel toxic metabolites of Cotyledon orbiculata. J Chem Soc Perkin Trans 1 1986, 1633-1636.

Pohl T, Koorbanally C, Crouch NR, Mulholland DA. Bufadienolides from Drimia robusta and Urginea altissima (Hyacinthaceae). Phytochemistry 2001, 58:557-561.

Kolodziejczyk-Czepas J, Sieradzka M, Moniuszko-Szajwaj B, Pecio Ł, Ponczek MB, Nowak P, et al. Bufadienolides from Kalanchoe daigremontiana as thrombin inhibitors-In vitro and in silico study. Int J Biol Macromol 2017, 99:141-150.

Wu P-L, Hsu Y-L, Wu T-S, Bastow KF, Lee K-H. Kalanchosides A−C, New Cytotoxic Bufadienolides from the Aerial Parts of Kalanchoe gracilis. Org Lett 2006, 8:5207-5210.

Anderson LAP, Steyn PS, Heerden FR van. The characterization of two novel bufadienolides, lanceotoxins A and B from Kalanchoe lanceolata[Forssk.] Pers J Chem Soc Perkin Trans 1 1984, 1573-1575.

Supratman U, Fujita T, Akiyama K, Hayashi H. New insecticidal bufadienolide, bryophyllin C, from Kalanchoe pinnata. Biosci Biotechnol Biochem 2000, 64:1310-1312.

Steyn PS, Heerden FR van, Vleggaar R, Anderson LAP. Structure elucidation and absolute configuration of the tyledosides, bufadienolide glycosides from Tylecodon grandiflorus. J Chem Soc Perkin Trans 1 1986, 429-435.

Crouch NR, du Toit K, Mulholland DA, Drewes SE. Bufadienolides from bulbs of Urginea lydenburgensis (Hyacinthaceae: Urgineoideae). Phytochemistry 2006, 67:2140-2145.

Gray TC. The use of d-tubocurarine chloride in anaesthesia. Ann R Coll Surg Engl 1947, 1:191-203.

Myers CW, Daly JW, Malkin B. A dangerously toxic new frog (Phyllobates) used by Emberá Indians of western Colombia, with discussion of blowgun fabrication and dart poisoning. Bulletin of the AMNH 1978, 161, article 2.

Oufir M, Seiler C, Gerodetti M, Gerber J, Fürer K, Mennet-von Eiff M, et al. Quantification of bufadienolides in Bryophyllum pinnatum leaves and manufactured products by UHPLC-ESIMS/MS. Planta Med 2015, 81:1190-1197.

Kamano Y, Yamashita A, Nogawa T, Morita H, Takeya K, Itokawa H, et al. QSAR evaluation of the Ch’an Su and related bufadienolides against the colchicine-resistant primary liver carcinoma cell line PLC/PRF/5(1). J Med Chem 2002, 45:5440-5447.

Kamboj A, Rathour A, Kaur M.. Bufadienolides and their medicinal utility: A review. Int J Pharm Pharm Sci 2013, 5:20-27.

Wang G, Sun G, Tang W, Pan X. The application of traditional Chinese medicine to the management of hepatic cancerous pain. J Tradit Chin Med Chung Tsa Chih Ying Wen Pan 1994, 14:132-138.

Meng C, Xu D, Son Y-J, Kubota C. Simulation-based economic feasibility analysis of grafting technology for propagation operation, 62nd IIE Annual Conference and Expo 2012, pp. 1923-1932.

Kolodziejczyk-Czepas J, Nowak P, Wachowicz B, Piechocka J, Głowacki R, Moniuszko-Szajwaj B, et al. Antioxidant efficacy of Kalanchoe daigremontiana bufadienolide-rich fraction in blood plasma in vitro. Pharm. Biol. 2016, 54:3182-3188.

Aucamp J. 2014. The antioxidant properties of bufadienolides, analogous to the orbicusides of Cotyledon orbiculata L. var orbiculata (Haw.) DC. undefined.

Yamagishi T, Haruna M, Yan XZ, Chang JJ, Lee KH. Antitumor agents, 110. Bryophyllin B, a novel potent cytotoxic bufadienolide from Bryophyllum pinnatum. J Nat Prod 1989, 52:1071-1079.

Kuo P-C, Kuo T-H, Su C-R, Liou M-J, Wu T-S. Cytotoxic principles and α-pyrone ring-opening derivatives of bufadienolides from Kalanchoe hybrida. Tetrahedron 2008, 64:3392-3396.

Huang H-C, Lin M-K, Yang H-L, Hseu Y-C, Liaw C-C, Tseng Y-H, et al. Cardenolides and bufadienolide glycosides from Kalanchoe tubiflora and evaluation of cytotoxicity. Planta Med 2013, 79:1362-1369.

Supratman U, Fujita T, Akiyama K, Hayashi H. Insecticidal compounds from Kalanchoe daigremontiana x tubiflora. Phytochemistry 2001, 58:311-314.

Holden WM, Reinert LK, Hanlon SM, Parris MJ, Rollins-Smith LA. Development of antimicrobial peptide defenses of southern leopard frogs, Rana sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Dev Comp Immunol 2015, 48:65-75.

Ackleh AS, Carter J, Chellamuthu VK, Ma B. A model for the interaction of frog population dynamics with Batrachochytrium dendrobatidis, Janthinobacterium lividum and temperature and its implication for chytridiomycosis management. Ecol Model 2016, 320:158-169.

What are the 3 secrets of Kalanchoe plant for anti-aging benefits? – ZALI. Available from https://zalicosmetics.com/discover-3-secrets-of-choosing-a-kalanchoe-product-for-best-anti-aging-benefits/. Accessed Jul. 21, 2022.

Effect of Kalanchoe daigremontiana on skin regeneration. Available from https://helpcosmetics-b2b.com/blogs/blog-helpcosmetics/wplyw-kalanchoe-daigremontiana-na-regeneracje-skory. Accessed Jul. 21, 2022.

Destandau E, Krolikiewicz-Renimel I, El Abdellaoui S, Cancellieri P, Fougère L, Toribio A, et al. Bio-guided targeting for preservative and anti-ageing cosmetic ingredient development. Cosmetics 2014, 1:14-28.

Pattewar SV, Patil DN. Formulation of herbal antibacterial cream by using extract from Kalanchoe pinnata leaves. Res J Top Cosmet Sci 2014, 5:1-4.

Coutinho MAS, Casanova LM, Nascimento LBDS, Leal D, Palmero C, Toma HK, et al. Wound healing cream formulated with Kalanchoe pinnata major flavonoid is as effective as the aqueous leaf extract cream in a rat model of excisional wound. Nat Prod Res 2021, 35:6034-6039.

Leaf of life - quenches skin from within - clarins - clarins. Available from https://www.clarinsusa.com/en/explore-beauty-trip/leaf-of-life.html. Accessed Jul. 21, 2022.

The wonderful benefits of the Kalanchoe in cosmetics and how it can benefit acne – ZALI. Available from https://zalicosmetics.com/the-wonderful-benefits-of-the-kalanchoe-in-cosmetics-and-how-it-can-benefit-acne/. Accessed Jul. 21, 2022.

Downloads

Download data is not yet available.