Abstract
Three hesperetin Schiff bases: hesperetin thiosemicarbazone (HTSC), hesperetin isoniazone (HIN) and hesperetin benzhydrazone (HHSB) have been synthesized and characterized by using analytical and spectral techniques. The influence of substituents on hesperetin antioxidant activity has been studied in vitro using mitochondrial assays. The studied compounds have been found to exhibit both antioxidant and pro-oxidant activity.
References
Green K, Brand MD, Murphy MP. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 2004, 53:S110-S118. http://dx.doi.org/10.2337/diabetes.53.2007.S110
James AM, Murphy MP. How mitochondrial damage affects cell function. J Biomed Sci 2002, 9:475–487. doi:10.1007/BF02254975
Jaeschke H, Bait ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci. 2006;89:31-41.
Krähenbühl LC. Relationship between hepatic mitochondrial functions in vivo and in vitro in rats with carbon tetrachloride-induced liver cirrhosis. J Hepatol 2000, 33:216-223.
Kriváková P, Lábajová A, Cervinková Z, Drahota Z. Inhibitory effect of t-butyl hydroperoxide on mitochondrial oxidative phosphorylation in isolated rat hepatocytes. Physiol Res 2007, 56:137–40.
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003, 552: 335-344.
Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 2004, 74:2157-2184. doi: 10.1016/j.lfs.2003.09.047 S0024-3205(03)01145-7
Lien EJ, Ren S, Bui HH, Wang R. Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radical Biol Med 1999, 26:285–294. doi: S0891-5849(98)00190-7
Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behaviour of flavonoids: structure-activity relationships Free Radical Biol Med 1997, 22:749–760. doi:10.1016/S0891-5849(00)00510-4 S0891-5849(00)00510-4
Silva MM, Santos MR, Caroço G, Rocha R, Justino G, Mira L. Structure-antioxidant activity relationships of flavonoids: a re-examination. Free Radical Res 2002, 36:1219–1227. doi: 10.1080/198-1071576021000016472
Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 1995, 33:1061-1080. doi: 0278-6915(95)00077-1
Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res 2015, 29:323-331. doi:10.1002/ptr.5256
Watson RR, Preedy VR, Zibadi S. Polyphenols in human health and disease, Academic Press, USA, 2013.
Lodyga-Chruscinska E, Symonowicz M, Sykula A, Bujacz A, Garribba E, Rowinska-Zyrek M, Oldziej S, Klewicka E, Janicka M, Krolewska K, Cieslak M, Brodowska K, Chruscinski L. Chelating ability and biological activity of hesperetin Schiff base. J Inorg Biochem 2015, 143:34–47. http://dx.doi.org/10.1016/j.jinorgbio.2014.11.005
Brodowska K, Sykuła A, Garribba E, Łodyga-Chruścińska E, Sójka M. Naringenin Schiff base: antioxidant activity, acid–base profile, and interactions with DNA. Transition Met Chem 2016 41:179–189. DOI 10.1007/s11243-015-0010-7
Yýldýz M, Ünver H, Erdener D, Kiraz A, Iskeleli NO. Synthesis, spectroscopic studies and crystal structure of (E)-2-(2.4-dihydroxybenzylidene)thiosemicarbazone and (E)-2-[(1H-indol-3-yl)methylene]thiosemicarbazone. J Mol Struci 2009, 919:227-234. doi:10.1016/j.molstruc.2008.09.008
Rollas S, Küçükgüzel ŞG. Biological activities of hydrazone derivatives. Molecules 2007, 12:1910-1939. doi:10.3390/12081910
Sykula A, Kowalska-Baron A, Dzeikala Aliaksandr, Bodzioch Agnieszka, Lodyga-Chruscinska E. An experimental and DFT study on free radical scavenging activity of hesperetin Schiff bases. Chem Physic 2019, 517:91-103. https://doi.org/10.1016/j.chemphys.2018.09.033
Long J, Wang X, Gao H, Liu Z, Liu C, Miao M, Liu J. Malonaldehyde acts as a mitochondrial toxin: Inhibitory effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Life Sci 2006, 99:1466-1472.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265–275.
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959, 82:70-77.
Rossi R, Cardaioli E, Scaloni A, Amiconi G, Di Simplicio P. Thiol groups in proteins as endogenous reductants to determine glutathione-protein mixed disulphides in biological systems. Biochim Biophys Acta, 1993, 1164:289-298.
Stocks J, Dormandy TL. The autoxidation of human red cell lipid induced by hydrogen peroxide. Brit J Haematol 1971, 20:95-111. DOI: 10.1111/j.1365-2141.1971.tb00790.x
Martinez JI, Launay JM, Dreux C. A sensitive fluorimetric microassay for the determination of glutathione peroxidase activity. Application to human blood platelets. Anal Biochem 1979, 98:154–159.
Habig WH, Pabst MJ, Jacoby WB. Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974, 249:7130–7139.
Łodyga-Chruścińska E, Pilo M, Zucca A, Garribba E, Klewicka E, Rowińska-Żyrek M, Symonowicz M, Chruściński L, Cheshchevik VT. Physicochemical, antioxidant, DNA cleaving properties and antimicrobial activity of fisetin-copper chelates. J Inorg Biochem 2018, 180: 101-118.
Choi JW, Lee CW, Lee J, Choi DJ, Sohng JK, Park YI. 7,8-Dihydroxyflavone inhibits adipocyte differentiation via antioxidant activity and induces apoptosis in 3T3-L1 preadipocyte cells. Life Sci 2016, 144, 103-112. DOI:10.1016/j.lfs.2015.11.028
Bawazeer NA, Choudhry H, Zamzami MA, Abdulaal WH, Middleton B, Moselhy SS. Role of hesperetin in LDL-receptor expression in hepatoma HepG2 cells. BMC Complement Altern Med 2016, 16:182-188.
Kobayashi S, Tanabe S, Sugiyama M, Konishi Y. Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers. Biochim Biophys Acta 2008, 1778:33-41.
van het Hof KH, Wiseman SA, Yang CS, Tijburg LB. Plasma and lipoprotein levels of tea catechins following repeated tea consumption. Proc Soc Exp Biol Med 1999, 220:203-209.
Mukai R, Fujikura Y, Murota K, Uehara M, Minekawa S, Matsui N, Kawamura T, Nemoto H, Terao J. Prenylation enhances quercetin uptake and reduces efflux in Caco-2 cells and enhances tissue accumulation in mice fed long-term. J Nutr 2013, 143:1558-1564.
Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins. J Biol Chem 2004, 279:47939–47951.
Anouar EH, Raweh S, Bayach I, Taha M. Baharudin MS, Di Meo F, Hasan MH, Adam A, Ismail NH, Weber J-FF, Trouillas P. Antioxidant properties of phenolic Schiff bases: structure–activity relationship and mechanism of action. J Comput Aided Mol Des 2013, 27:951–964.
Rossi R, Cardaioli E, Scaloni A, Amiconi G, Di Simplicio P. Thiol groups in proteins as endogenous reductants to determine glutathione-protein mixed disulphides in biological systems. Biochim Biophys Acta 1995, 1243:230-238.
Chu KO, Chan SO, Pang CP, Wang CC. Pro-oxidative and antioxidative controls and signaling modification of polyphenolic phytochemicals: contribution to health promotion and disease prevention? J Agric Food Chem 2014, 62:4026−4038. DOI: 10.1021/jf500080z