Accumulation of metal ions in selected plants from Brassicaceae and Lamiaceae families
PDF

Keywords

metal ions,
toxicity
bioconcentration factor
Brassicaceae family
Lamiaceae family.

How to Cite

Szczodrowska, A., Kulbat, K., Smolińska, B., & Leszczyńska, J. (2016). Accumulation of metal ions in selected plants from Brassicaceae and Lamiaceae families. Biotechnology and Food Science, 80(1), 29-42. https://doi.org/10.34658/bfs.2016.80.1.29-42

Abstract

This paper examines the accumulation of metal ions from soil in selected edible plants belonging to the Brassicaceae and Lamiaceae families. The effect of metal ions on factors, such as growth and morphology are also investigated. The results indicate that the addition of selected metal ions to the soil significantly increases the concentration of metal ions in the plants. The application of zinc ions significantly enhances Zn uptake in Ocimum basilicum and Mentha piperita (Lamiaceae family). Nickel ions significantly increase Ni accumulation in Lepidium sativum (Brassiaceae family). The research shows that nickel, zinc and copper accumulate in leaves at different concentrations depending on the plant species.

https://doi.org/10.34658/bfs.2016.80.1.29-42
PDF

References

Nazir A, Malik RN, Ajaib M, Khan N, Siddiqui MF. Hyperaccumulators of heavy metals of industrial areas of Islamabad and Rawalpindi. Pak J Bot 2011, 43:1925- 1933.

Jadia CD, Fulekar MH. Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ Eng Manag J 2008, 7:547-558.

Ahmad K, Ejaz A, Azam M, Khan ZI, Ashrat M, Al-Qurainy F, Fardous A, Gondel S, Bayat AR, Valeem EE. Lead, cadmium and chromium contents of canola irrigated with sewage water. Pak J Bot 2011, 43:1403-1410.

Kabata-Pendias A, Mukherjee AB. Trace elements from soil to human. Berlin-Heidelberg: Springer-Verlag; 2007.

Li X, Yang Y, Jia L, Chen H, Wei X. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf 2013, 89:150-157.

Balashouri, P. Effect of zinc on germination, growth and pigment content and phytomass of Vigna radiata and Sorghum bicolor. J Ecobiol 1995, 7:109-114.

Samreen T, Humaira, Ullah Shah H, Ullah S, Javid M. Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata). Arab J Chem 2013, doi:10.1016/j.arabjc.2013.07.005.

Loneragan JF, Webb MJ. Interaction between zinc and other nutrients affecting the growth of plants. In: Robson, A.D. (ed.), Zinc in Soils and Plants. Kluwer Academic Publishers, Dordrecht 1993, pp. 119-134.

Rajaie M, Ejraie AK, Owliaie HR, Tavakoli AR. Effect of zinc and boron interaction on growth and mineral composition of lemon seedlings in a calcareous soil. Int J Plant Prod 2009, 2:39-50.

Zengin FK, Kirbag S. Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings. J Environ Biol 2007, 28:561-566.

Zengin FK. The effects of Co2+ and Zn2+ on the contents of protein, abscisic acid, proline and chlorophyll in bean (Phaseolus vulgaris cv. Strike) seedlings. J Environ Biol 2006, 27:441-448.

Williams LE, Pittman JK, Hall JL. Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 2000, 1465:104-126.

Nieminen TM, Ukonmaanaho L, Rausch N, Shotyk W. Biogeochemistry of nickel and its release into the environment. Met Ions Life Sci 2007, 2:1-30.

Salt DE, Kramer U. Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds.) Phytoremediation of Toxic Metals – Using Plants to Clean up the Environment, Wiley, New York, 1993, pp. 231-246.

Madhava Rao KV, Sresty TV. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci 2000, 157:113-128.

Molas J. Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni (II) complexes. Environ Exp Bot 2002, 47:115-126. 42 Szczodrowska et al. Biotechnol Food Sci, 2016, 80 (1), 29-42 http://www.bfs.p.lodz.pl

Gajewska E, Sklodowska M, Slaba M, Mazur J. Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Plant Biol 2006, 50:653-659.

Duarte B, Delgado M, Caador I. The role of citric acid in cadmium and nickel uptake and translocation, in Halomine portulacoides. Chemosphere 2007, 69:836-840.

Arnot JA, Gobas F. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 2006, 14:257-297.

Jena V, Gupta S. Study of heavy metal distribution in medicinal plant basil. J Environ Anal Toxicol 2012, 2:1-3.

Mojiri A, Aziz HA, Aziz SQ, Gholami A, Aboutorab M. Impact of urban wastewater on soil properties and Lepidium sativum in an Arid Region. IJSRES 2013, 1:1-9.

Chaney RL, Malik M, Li YM, Brown SL, Angle JS, Baker AJM. Phytoremediation of soil metals. Curr Opin Biotechnol 1997, 8:279-284.

Soltan ME, Rashed MN. Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Adv Environ Res 2003, 7:321-334.

Swain G, Adhikari S, Mohanty P. Phytoremediation of copper and cadmium from water using water hyacinth, Eichhornia crassipes. IJAST 2014, 2:1-7.

Downloads

Download data is not yet available.